Analytic Structure と
極大 Ideal の中

坂大 理 西村 健

序

B を単位元を持つ可換Banach 環、ΣB と B との multiplicative linear functional の集合とし、$\phi \in B$ を固定して考える。C^* のある domain の analytic subvariety V と、V から ΣB への連続な（たとえ ΣB は、Gelfand 位相を考える）、one to one map ϕ^* が存在して、$0 \in V$、$\phi(0) = \phi$、かつ任意の $b \in B$ に対して、$b \phi^*$ が V で正則になるとき、V を（正確には (V, ϕ^*) を）'analytic variety at ϕ' と言います。こぶらは ϕ の Gelfand 変換を表します。

この Analytic structure について広範囲のまとめた報告が、[1] にもあります。ここでは話題を広げて、$B\phi = kerc \phi$ の中

$B\phi^n (n = 1, 2, \cdots)$ と variety at ϕ の $0 \in C^*$ に於ける次元 dim V との関係を non-trivialness との関係も含めて、T. Read の結果[2] を中心に紹介します。
§ 1. 'Analytic variety at Φ' の存在の十分条件。

C^2のある domain の subvariety V 上の正則函数全体からなる algebra を $\Theta[V]$ で表し、次の事柄は容易にわかる。

命題 1.1 準同型 $\Phi : B \rightarrow \Theta[V]$ があっ、B が、V の実を分離すれば、Φ の dual map を Φ^* とし、(V, Φ^*) は analytic variety in $\Sigma(B)$ である。すなわち、任意の $b \in B$ に対して、$(\Phi b)(0) = 0$ から (V, Φ^*) は、Analytic variety at Φ である。V 上の sup norm と ノルム $\| \cdot \|$ であらわされると、$\| \Phi b \|_V \leq \| b \|$ ($\forall b \in B$)（証明略）

前にも述べたように、B_{Φ} は $\ker \Phi$ を表し、以後 $n = 1, 2, \ldots$ に対して、B_{Φ}^n で「B_{Φ} の n 個の元の積」全体から生成される ideal を表す。B_{Φ} は B と規約する。B_{Φ}^* でそれぞれの norm closure を表す。これらも B の ideal である。$R > 0$ に対し $\Delta(R) = \{ z = (z_1, \ldots, z_n) \in C^n; |z_i| < R (i=1,2,\ldots, n) \}$ とおく。

以下を通じて仮定「$W_n + (B_{\Phi}^*)^\perp (n=1,2,\ldots)$ が vector space $B_{\Phi}/(B_{\Phi}^*)$ を張る」が成り立つものとし話を進める。

今 $b \in B$ に対して、$\bar{x}_M(b) = \{ f = \sum_{|\alpha| \leq M} x_\alpha \in \Theta[\Delta(M)] ; \sum_{|\alpha| = n} x_\alpha - b \in (B_{\Phi}^*)^\perp \ (n=1,2,\ldots) \}$ とおくと次の事柄が成立する。（補題 1.1、定理 1.1 等以下には [2] では implicit であった事柄を強出しあった事柄を出しみた事柄もある。）
一つだが、ここで得られたvarietyのdim.を調べるときの取り扱いは簡単になるなどの利点があると考え、ここからでもある。

補題1.1. \(\alpha, \beta \in C, f \in (\mathcal{P}(\alpha)), g \in \mathcal{P}(\beta)\) ならば \(\alpha + \beta \in (\mathcal{P}(\alpha), \mathcal{P}(\beta))\)。

証明 \(w^2 = w_1^2 - w_2^2 \in (\mathcal{P}(\alpha))^2\) で \(l \geq n\) を考慮すれば容易にわかる。

次の条件がanalytic variety at \(\phi\) の存在の十分条件として考えられる。\(C_1\): \(\exists M > 0\) で \(\forall b \in B\) \(\exists M \geq \phi(b) > 0\)。

定理1.1. \(C_1\) を仮定し、\(V = \{z \in \mathbb{C}(M)\} ; f(z) = 0\) とおく。\(\forall b \in B\) で \(f, g \in \mathcal{P}(\phi(b))\) なら \(fV = gV\)。

\(\phi(b) = f|V\) とおくと \(B\) から \(\mathbb{C}[V]\) への準同型 \(\phi\) が得られ、\(\phi\) のdual map \(\phi^*\) はhomeomorphism かつ \(\mathbb{C}[V]\) はanalytic variety at \(\phi\) である。(証明) \(f|V = g|V\) であることとは補題1.1 \(\alpha = \beta, \alpha, \beta \in \mathbb{C}\) とおけばわかる。

\(\phi\) が準同型であることも補題1.1から制る。座標函数 \(\mathcal{P}(\phi(b))\) \(\ni y\) は \(y = e^{\phi(b)}(\mathbb{C}[V])\) \(\rightarrow (\mathbb{C}[V], \mathcal{P}(\phi(b)))\) \(\in (\mathbb{C}[V])\) で定義される連続写像。よって \(\phi^*\) はhomeomorphism。

(証明終り) 次の条件 \(C_2\) は \(C_1\) と同等である。

条件 \(C_2\): \(\exists M > 0\) で \(\forall b \in B\exists \exists \phi(b) > 0\) で \(f_n = \sum_{\nu \leq (\mathcal{P}(\phi(b)))} f_n(\nu)\) と \(f_n(\nu) = \sum_{\nu \leq (\mathcal{P}(\phi(b)))} \mu(\nu)\) で \(\mu(\nu) \equiv b \mod (\mathcal{P}(\phi(b)))\) で \(\nu \leq (\mathcal{P}(\phi(b)))\)。

定理1.2. \(C_1\) と \(C_2\) は同値である。(証明) \(C_1 \Rightarrow C_2\)
は明らか。逆に (2) を仮定する。b に対する $\{f_n (w)\}$ は $A (M_+)$ の任意の compact set で有界であるから、ある $f \in \sigma [A (M_+)]$ に拡張し、後に収束と考えてよい。愛を一般に $g = \sum_{\omega} c(\omega) \cdot x(\omega)$ に対して $\sum_{\omega} \sum_{\alpha} c(\omega) \cdot x(\omega)$ を $g (x)$ で表わす。$0 \in C$ の近傍で正則な函数 h の 0 に於ける germ h 全体からなる環から $B (M_+)$ への $h \mapsto h \mid (\omega) + (B (M_+))$ で定義される写像は準同型である。ここへ考えるから、その kernel $I_n = \{ f \in \mathcal{O} \mid f \mid (\omega) \in (B (M_+)) \}$ は \mathcal{O} の ideal。$f_n - f_{n+k} \in I_n \ (k > 0)$ $f_n - f_{n+k} \rightarrow f_n - f$ と closure of Modules Theorem [3, Th. II D.3] により $f_n - f \in I_n$ すなわち $f_n (w) = f_n (w) \equiv b \mod (B (M_+)) \ (\forall n) \quad \forall f \in \mathcal{O} (\sigma)$ （証明略）。

Read [2] にある条件即 S (2) は見掛け上弱い（実は同等）条件 (2') に置き換える。 (2') $\forall b \in B \exists \mathcal{O}(b) > 0, \exists (b) > 0$ と $\forall n \exists f_n (w) = \sum_{\omega} c_n (\omega) \cdot x(\omega) \text{ with } f_n (w) - b \in (B (M_+))$ と $f_n (w)$ が

定理 1.3. (2) と (2') は同値である。（証明） (2) \Rightarrow (2') は明らか。逆に (2') を仮定する。$B_n, c = \{ b \in B \mid \forall n \exists f_n (w) = \sum_{\omega} c_n (\omega) \cdot x(\omega) \text{ with } f_n (w) - b \in (B (M_+)) \}$ と $g_n (w) = \sum_{\omega} c_n (\omega) \cdot x(\omega)$ で $f_n (w) - b \in (B (M_+))$ とする。$m = \sum_{\omega} c_n (\omega) \cdot x(\omega)$ で $g_n (w) = \sum_{\omega} c_n (\omega) \cdot x(\omega)$ で $f_n (w) - b \in (B (M_+))$ とする。
必要な部分列を取る、\(\beta, \gamma, (\gamma_n) \xrightarrow{(n \to \infty)} \beta \) となる。\(f_n(w) \to f(w) \) と \(f_{\nu}(w) = b \Rightarrow f_n(w) - b \in (B^n_{m+1})' \) 。明らかに \(|\beta_n(w)| \leq C N^{1/1} \) と \(b \in B_{N, c} \) である。

Baier の Category Theorem と \(B_{N, c} \) の凸性により \(\exists ! \) \(N, c \) すなわち \(B_{N, c} \) の内包。\(\forall b \in B ① \exists k \in \mathbb{Z}^+ \) すなわち \(k \in B_{N, c} \) \(\vdash B_{N, c} \) \(B_{N, c} \) である。\(\forall b \in B \Rightarrow (\forall b \in B) \Rightarrow (C1) \) 成立。

定理 1.4。定理 1.1 で得られた analytic variety at \(\phi \) に対し次が成立する。(U, \(\theta^* \)) を analytic disc at \(\phi \) (i.e. \(\mathbb{C} \) の単位円盤 \(\mathbb{D} \) から \(\Sigma(B) \) への連続写像 \(\theta^* \) に対し \(b \theta^* \) が \(\mathbb{D} \) に対正値かつ \(\theta^* = \phi \) となっている）とする \(0 \) のある近傍 \(U(< \mathbb{D}) \) により \(\theta; B \to \mathbb{D} \) なる準同型を引くこと。また十分小さいとすると、\(\theta^*(U') \subset \Delta(M^{-1}) \) とも出る。（\(D \) の定義は定理 1.1 の証にある）、\(f \in \overline{\mathbb{H}}(b) \) に対し \(\theta(b - \mathbb{H}(w)) \in (B^n_{m+1})' \)。

よって \(\theta(b - \mathbb{H}(w)) \) は \(0 \in U \) において zero order が少なくとも \(m+1 \)： \(\theta(b - \mathbb{H}(w)) \in (\mathbb{H}(b))' \) となる。特に \(f \in \overline{\mathbb{H}(w)} \) に対し \(f(\theta(b)(z)) = 0 \) \(\forall z \in \mathbb{U} \) である。（\(\theta \) の定義は定理 1.1 の証にある）。\(\forall b \in B \) に対し \(\forall f \in \overline{\mathbb{H}(b)} \) と定義する。
とすると \(b(\theta^*z) = (\theta b x_0) = f(\theta^*x_0) = \theta(b x_0) = b(\theta^*x_0) \)
だから \(\theta^*z \) は \(\theta^*z \) である。故に \(\theta^*z \) は \(\theta^*z \) (証明終り).

定理1.4 は、C1（従って C2, C2') については、保証される 'analytic variety at \(\Phi \) が、すべての analytic variety at \(\Phi \) のうる' て
'極大' であることを意味している。なお、これ等の条件は \(\Phi^* \)
(\(\Phi^* \) と \(\Phi^* \) は \(\Phi^* \) と \(\Phi^* \) で
のとりすに depend している) に見られるが、一組
の、 \(\{w_t + (B \Phi^*)^2\} \) が \(B \Phi^*/(B \Phi^*)^2 \) a basis になる様な組について
で成立しているならば、他の \(\{w_t + (B \Phi^*)^2\} \) が \(\Phi^* \) になる組について
でも成立することがわかっている。

§2 \((B \Phi^*)^n = 1, 2, \cdots \) と variety の 0 に接近する次元

直和 \(\sum_{n=0}^{\infty} (B \Phi^*)^n \) は \((B \Phi^*)/(B \Phi^*)^2 \) を n 次の homogeneous element 全体と考えると、graded ring になる。この場合 \(a + (B \Phi^*)^n \in (B \Phi^*)/(B \Phi^*)^2 \) と \(b + (B \Phi^*^2) \in (B \Phi^*)/(B \Phi^*)^2 \) の積は \(a b + (B \Phi^*^2) \)
\((B \Phi^*^2)/(B \Phi^*^2) \)とすると、'well defined' である事は明らか。

\(\Phi^* \) に接近する様にここでも、\(\{w_t + (B \Phi^*)^2\} \) が \(B \Phi^*/(B \Phi^*)^2 \)
を張ると言う似定を置く。すなわち不定元 \(X_1, \cdots, X_k \) の C 上の多
項式環 \(C[X_1, \cdots, X_k] \) から \(\sum_{n=0}^{\infty} (B \Phi^*)^n \) への自然な degree zero
の homogeneous homomorphism \(\Phi \) (従って \(\Phi(X_i) = w_i + (B \Phi^*)^2 \)) が
考えられる。(Graded algebra に関する用語定義は [4] 参照)

定理2.1 [S.J. Sidney [5]] に述べた準同型 \(\Phi \) は onto で

6
ある。（証明省略[5]参照）

上の定理は $C[X_1, \ldots, X_r]$ の homogeneous ideal J が存在して、
$\sum_{n=0}^{\infty} (B^n_{\mathfrak{m}})/(B^n_{\mathfrak{m}})$ が $C[X_1, \ldots, X_r]/J$ と同型（$J = \ker \varphi$）となる事と示しているがその逆も Sidsney は示している。

定理 2.2[5] J と任意の homogeneous ideal in $C[X_1, \ldots, X_r]$ とするとある sup norm algebra A と $\varphi \in \Sigma A$ が存在し、
$C[X_1, \ldots, X_r]/J$ と $\sum_{n=0}^{\infty} (A^n)/(A^n)$ は同型になる。（証明省略）

以下この \mathfrak{m} では W_1, \ldots, W_r に対する $C1$ （又は $C2, C2'$）が成立していると仮定する。従って定理 1.1 によって Analytic variety (V, φ^*) が φ が存在する。この V の要素に対応する次元 $\dim_{\mathfrak{m}} V$ について次の事が成立する。

定理 2.3 a）ある （定義）$\pi(X)$ が存在して十分大きいかにに対しても $\pi(n) = \dim (B^n)/(B^n_{\mathfrak{m}})$ が成立する。b）$\dim_{\mathfrak{m}} V = (\deg \pi) + 1$ こんにちは deg π は多項式 $\pi(x)$ の次数。たとえば deg -1 と規約する。以下はこの定理の証明にあっての a）または b）による。

定理 2.4 [4 Theorem 41 in Ch.VII] Hilbert Serre $C[X_1, \ldots, X_r]$ から、graded ring $R = \sum_{n=0}^{\infty} R_n$ の上の、homogeneous homogeneous homomorphism π があれば、多項式 $\pi(R(X))$ が存在し $\pi(n) = \dim R_n$ が十分大きいかにに対応する。

定理 2.3 b）の証明のために次の定理が必要

定理 2.5 定理 2.4 の $\pi(n)$ の \ker を I で表わす。P を I の
isolate ideal とし動かしたとき、$C[X_1, \ldots, X_t]/P$ の最大の transcendence degree over C は$(\deg P)+1$ である。
（証明略、[4]参照）。この定理は実際には次の形で使う、[2]における系を一般的な形で述べておく。

定理 2.5系 $\deg P+1 = t$ とおく。$\mathcal{R}(X_1), \ldots, \mathcal{R}(X_t)$ のうちも個の元の組がある（それを単純のために $\mathcal{R}(X_1), \ldots, \mathcal{R}(X_t)$ とする）任意のnに対してもそれ等の\mathcal{R}次の単項式がR_nで一次独立である。かつも$t+1$個からなるこの様な組はなく（言い換えると $\mathcal{R}(X_1), \ldots, \mathcal{R}(X_t)$ のうちn個独立的に独立な極大な組はも個の元からなる）。定理 2.5 ⇒ 定理 2.5系の証）PをIに属する isolated prime ideal で$C[X_1, \ldots, X_t]/P$ のC上の transcendence degree がそのものとする。$C[X_1, \ldots, X_t]/P = C[X_1', \ldots, X_t']$。（$X_i$ は X_i の Residue）$\ker \varphi = I \subset P$ゆえ$R$から $C[X_1', \ldots, X_t']$ 上への自然な homogeneous homomorphism φが存在して $\varphi(\mathcal{R}(X_i)) = X_i'$ （$i = 1, \ldots, t$）

X_1', \ldots, X_t を $C[X_1', \ldots, X_t']$ の C 上での transcendence basis としよ。今、ある nに対して一次從属関係

$$\sum_{i=1}^{t} \mathcal{R}(X_i)^{n_i} = 0 \quad (\exists n_i \neq 0)$$

が存在する。φを両辺に施して $\sum_{i=1}^{t} X_i'^{n_i} = 0$ これは矛盾。$t+1$個以上の元からなるその様な組があれば \mathcal{R}次のn次単項式はmC_n個以上あるから十分大きくなって対して $\mathcal{R}(m) = \dim R_n \geq n+t C_n$。両辺の$m$に関して次数はそれぞれ$t-1$または$t$だから矛盾。（証明終り）
定理 2.3 の証明）\((\text{deg} m) + 1 = s\) とする。まず \(d\text{im} N < s\) を示す。\(I\) と \(C\) に於ける要素に属する数の germ から生成される \(O\) の ideal とする。ある coordinate system に関して \(x_0 I = \{0\}\) になる事を示せばよい。（ここに \(x_0\) は「最初の \(s\) 側数ののみの函数」の germ からなる \(O\) の subring, 詳しくは [3] 参照。）実際には \(I = \{\sum a_j e^{ij} \in O \mid \sum a_j m^{ij} \in (B^m)^- \forall n\} \) とおくと \(I = \sum_{i_0} I_{i_0}\) つ \(I\) （\(I_0\) は定理 1.2 の証明にある）は明らかで、これについて \(I_{i_0} O = \{0\}\) が示される。定理 2.1 と定理 2.5 により \(y(x_i)\) の \(2\) つの monomial が各 \(i\) に対して一度独立と考えてよい。\(f = \sum a_{i_0} e^{ij} \in I_{i_0} N O\) とする。このとき \((i)\) が (\(i_0\) = \(0\), 0, 0) の type でなければ \(\beta_i = 0\) である。まず \(\sum_{i=1}^{\infty} a_i m^{ij}\) \(\in (B^m)^-\) だから \(\sum_{i=1}^{\infty} (y(x_i))^i \ldots y(x_k)^i = 0\) よって \(\beta_{i_0} = 0\) が \(f(1) = 1\) に対応する。従って同様な引く形法で任意の \((\alpha)\) に対して \(\beta_{i_0} = 0\) が好きな。 \(d\text{im} N < s\) を示すにはさらに次のようない前準備が必要になる。

\(O\) の素 ideal のに対しても \(O/\mathfrak{m}\) と考えて, \(M\) の residue を \(\widehat{M}\) で示し, \(O/\mathfrak{m}\) の極大 ideal を \(M\mathfrak{m}\mathfrak{m}\) と呼ぶことにする。\(M\) は \(O\) の極大 ideal \(M\) の自然準同型による像である。\(\mathfrak{m}^\infty = \bigoplus_{n=0}^\infty (B^m)^n\) と構成するのと同じように、graded algebra \(\mathfrak{m}^\infty = \bigoplus_{n=0}^\infty M\mathfrak{m}\mathfrak{m}/M\mathfrak{m}\mathfrak{m}\) が考えられ, 他又 degree 0 の homogeneous homomorphism \(\varphi : C[x_1 \ldots x_r] \to \bigoplus_{n=0}^\infty M\mathfrak{m}/M\mathfrak{m}\mathfrak{m}\) で natural (従って \(\varphi(\mathfrak{m}) = \mathfrak{m} + M\mathfrak{m}/M\mathfrak{m}\mathfrak{m}\)) なもののが得られる。そこで定理 2.4 を適用して得られる多項式を \(\varphi\)
と以下では表す。従って十分大なrに対し,$\dim \mathbb{M}_r^m = \dim \mathbb{M}_r^m$。

命題2.1 $\dim \mathbb{M}_r^m = (\deg \mathbb{M}_r^m) + 1$ (素理想 in \mathbb{M}_r^m)。

証明

$(\deg \mathbb{M}_r^m) = t'$, $(\deg \mathbb{M}_r^m) + 1 = t$ とおく。
i) $t' \geq t$ を示す。定理2.5 系により必要なら $x_1 \cdots x_n$, $z_1 \cdots z_t$ の番号を付けながらして、A 対して $\mathbb{M}_r^m \mathfrak{a}_1(x_1) \cdots \mathbb{M}_r^m \mathfrak{a}_n(x_n)$ の各次単体式が一次独立と考えてよい。これより $\mathfrak{a}_n(x_n) = \{0\}$ が明らか、$t' = \dim \mathbb{M}_r^m \geq t$。

ii) $t' \leq t$ を示す。まず $t' = 1$ のとき $\mathfrak{a}_1(x_1) = \{0\}$ と考えてよい。$\mathbb{M}_r^m \mathfrak{a}_1(x_1)$ を示せば $\mathbb{M}_r^m \mathfrak{a}_1(x_1)$ となり $\deg \mathbb{M}_r^m = t$ となる。今 $\mathbb{M}_r^m = \mathbb{M}_r^m(z_1)$ とすると $\mathbb{M}_r^m = (z_1 + \mathbb{M}_r^m)$. よって \mathbb{M}_r^m は除去する。次に $z_j - 2^i$ は一致でない。

式の定理6.3.5により \mathbb{M}_r^m これは $\mathfrak{a}_n(x_n) = \{0\}$ に反する。$t' \geq 2$ の場合、定理2.5 系より $t' \leq t$ に対し $\mathbb{M}_r^m \mathfrak{a}_1(x_1) \cdots \mathbb{M}_r^m \mathfrak{a}_n(x_n)$ は代数的に乗算、かつ $\mathbb{M}_r^m \mathfrak{a}_1(x_1) \cdots \mathbb{M}_r^m \mathfrak{a}_n(x_n)$ は代数的乗算としてよい。z_1 でなければ $\mathbb{M}_r^m \mathfrak{a}_1(x_1) = \{0\}$ が矛盾。よって $z_1 = \mathbb{M}_r^m \mathfrak{a}_1(x_1) \mathfrak{a}_1(x_1)$ ある同様の素理想の前で、$\dim \mathbb{M}_r^m = t'$ である。

(6) 定理2.14。このとき $\mathfrak{a}_n(x_n)$ が素数とし、$\mathbb{M}_r^m \mathfrak{a}_n(x_n)$ とすると、$\sum_{r=1}^{m} \mathfrak{a}_r(x_r)/\mathfrak{a}_r(x_r)$ の上への準同型 η が自然には決まり、$\eta \mathbb{M}_r^m \mathfrak{a}_n(x_n) = \mathfrak{a}_n(x_n)$ ($r = 1\cdots t$)。また $\mathfrak{a}_n(x_n)$ が素数より $\mathfrak{a}_n(x_n) = \{0\}$

ゆえに z_j に対する $\mathbb{M}_r^m \mathfrak{a}_1(x_1) \cdots \mathbb{M}_r^m \mathfrak{a}_n(x_n)$ は代数的乗算。ゆえに定理2.5 系により $(\deg \mathbb{M}_r^m) + 1 = t' - 1$, t' に関する帰納法の仮定に
より、\(\dim \mathfrak{a} = \deg \mathfrak{a} + \tau + 1 \) で、\(t - 1 \leq t_1 \leq t \)。

定理 2.3 の証明の続き。\(\dim V \leq s \) と示す。\(\mathfrak{I} \) の逆像素 ideal で \(\dim \mathfrak{a} = \dim \mathfrak{V} \) となるものを考える。命題 2.1 により \(\dim V = (\deg \mathfrak{a} + \tau) + 1 \)、ここで \(\deg \mathfrak{a} \) は homogeneous homomorphism \(\theta \) で \(\sum_{n=0}^{\infty} \frac{(\mathfrak{I}^n)^n / (J^n)^n}{n!} \to \sum_{n=0}^{\infty} \mathfrak{a}^n / \mathfrak{a}^{n+1} \) の逆像
が存在すれば、十分大きな \(n \) に対して \(f \in J^n / \mathfrak{a}^{n+1} \) が存在するため、\(\dim V \leq (\deg \mathfrak{a} + \tau) + 1 \) である。よって \(\dim \mathfrak{a} = (\deg \mathfrak{a} + \tau) + 1 \) である。

以下 \(\mathfrak{I} \) の構成について \(\mathfrak{I} \leq \mathfrak{a} \) に注意すると、homomorphism \(\mathfrak{I} : B \to \mathfrak{I} / \mathfrak{a} \) を \(\mathfrak{I}(b) = b^* (b \in \mathfrak{I} / \mathfrak{a}) \) により定義出来、\(\mathfrak{I}(\mathfrak{I}) \leq \mathfrak{I} / \mathfrak{a} \) が成立する。\(\mathfrak{I}(\mathfrak{I}) \leq \mathfrak{I} / \mathfrak{a} \) が示されれば、\(\mathfrak{I} / \mathfrak{a} \) の構造は、これより \(\mathfrak{I} \) が導かれる。onto は \(\mathfrak{I}(w) = \mathfrak{a} + \mathfrak{a} \) から \(\mathfrak{I} / \mathfrak{a} \) がontoになるかわかる。

\(\mathfrak{I}(\mathfrak{I}) \leq \mathfrak{I} / \mathfrak{a} \) は \(\mathfrak{I} / \mathfrak{a} \) の証明。明らかに \(\mathfrak{I}(\mathfrak{I}) \leq \mathfrak{I} / \mathfrak{a} \) だから、\(\mathfrak{I}(\mathfrak{I}) \) は \(\mathfrak{I} / \mathfrak{a} \) なら \(\mathfrak{I} / \mathfrak{a} \) 上の線型汎函数
である。\(t \mathfrak{I} = 0 \) かつ \(\exists \tilde{f} \in \mathfrak{I}(\mathfrak{I}) \) と \(\mathfrak{I} / \mathfrak{a} \) 上に対して \(t \tilde{f} = 1 \) となるものがある。\(\mathfrak{I} / \mathfrak{a} \) 上の線型汎函数
を \(t(f) = \tilde{f}(g) (g \in \mathfrak{I}) \) によって定義する。列 \(\{ f_i \} \leq \mathfrak{I} / \mathfrak{a} \rightarrow \mathfrak{I} / \mathfrak{a} \) について \(f_i \cdot \tilde{f} = \tilde{f} \) となるものがある。\(\tilde{f} \in \mathfrak{I}(\mathfrak{I}) \)
と \(\tilde{f} = 0 \) \((\tilde{f} = \mathfrak{a} \tilde{f} + \mathfrak{I}(\mathfrak{I})) \) かつ \(\| f_i - \tilde{f} \| \leq \| f_i - \tilde{f} \| \rightarrow 0 \) である。これにより \(\| f_i \| \rightarrow 0 \) である。
\[\| f_j \|_w < K \| f_j - f_i \| \to 0, \quad \forall g \in M^n \] （\(M \)は\(\mathcal{A} \)の極大イデアル）に対して\(\widetilde{g} \in M^n \)から\(\tilde{g} = 0 \)。これよりでは高々0次\(n-1 \)のpartial derivativesの一次結合であることがわかる。\[\| f_j \|_w \to 0 \] より、\[t(\tilde{f}_j) \to 0 \]。一方（\(f_j - (f_j - f_i) \))\(W_{\\not\subset} W = 0 \)より\(f_j - (f_j - f_i) \in \text{ideal of } W \leq \mathcal{K} \)；\[t(\tilde{f}_j) = t(\tilde{f}) = t(\tilde{f} - \tilde{f}_i) = t(\tilde{f}_i) = 1 \]。ことか。

§ 3. 定義「nontrivialness」など。

定理 3.1. \(\dim (B\mathcal{P} / B\mathcal{P}^n) < \infty \) ならば i) analytic variety \((V, \mathcal{A}) \) at \(\phi \) が存在し、\(\mathcal{A}(V) \) は \(\phi \) の norm 近傍になる。 ii) \(V \) が non-trivial である必要十分条件は、\((B\mathcal{P})_n \neq (B\mathcal{P}^n)_n \)（\(n = 1, 2, \ldots \)）。

定理 3.2. \(B\mathcal{P} \) が有限生成ならば i) analytic variety \((V, \mathcal{A}) \) at \(\phi \) が存在し、\(\mathcal{A}(V) \) は \(\phi \) の Gelfand 近傍になる。 ii) \(V \) が non-trivial である必要十分条件は \((B\mathcal{P})_n \neq (B\mathcal{P}^n)_n \)（\(n = 1, 2, \ldots \)）。

定理 3.1 における結果で、T. Read [2] には ii) にも含められた証明がtensor積を使ってなされているが長いので省く。

定理 3.2 の i) は Gleason [7] で定理 3.1 i) 以前に知られている。またその簡便化された証明は[8]などにも見られる。ここでは定理 3.2 ii) をも含めた証明を、Read の定理 3.1 の証明の考え方にならせて形を打つ。

定理 3.2 の証明. \(B\mathcal{P} = \bigoplus_{i=1}^n Bw_i (\equiv w_1, \ldots, w_n) \) とすると、線型写
$
exists K > 0 \text{ st. } \forall b \in B \exists b_1, \ldots, b_r \text{ with } b = \sum_{i=1}^r b_i \phi_i \wedge \|b\|_1 \leq K \|b\|_1 (i = 1, \ldots, r)$. よって帰納法で次の事がわかる。\(\forall b \in B \exists \{b_n\} \subseteq B \text{ s.t. } b = \sum_{i=1}^n \tilde{b}_i \phi_i + \sum_{i=n+1}^\infty (\tilde{b}_i - \tilde{b}_{i+1}) \phi_i \|b\|_1 (\forall n) \) — (**) かつ \(\|b\|_1 \leq (rK)^n \|b\|_1 \) — (**).\n
\(n \to \infty \) およびについて \(\{b_n\} \) をとり \(\tilde{f}_b(\omega) = \sum \tilde{b}_i \phi_i \omega \) とおくと (**) により \(\tilde{b}_i \phi_i \leq M_i \|b\|_1 \), これにより容易に \(\tilde{f}_b(\omega) \in \overline{\tilde{B}_g[\omega]} \) がわかる。\(\tilde{f} \in \mathcal{B}(\omega) \), \(\cdots, \hat{\omega}(n) \) (\(\varphi \in \Sigma B \) とおくと \(N = 0 \) (\(\Delta M_i \)) は \(\phi \) の Gel'fand 近傍。\(I = \{ \tilde{f}_b \tilde{a}_b, \alpha \tilde{f}_b \tilde{a}_b, b \tilde{f}_a, b \tilde{a}_b \} \) とおくと補題1 より \(I \subseteq \hat{\varphi} \) より \(\forall \varphi \in \hat{\varphi} \) から \(V' \cap \{ z \in \Delta(M_i) ; g(z) = 0 \atop \forall g \in \mathcal{G}(\omega) \} \supseteq V \) (\(V \) は定義1.1 の variety で \(V = \{ z \in \Delta(M_i) ; g(z) = 0 \atop \forall g \in \mathcal{G}(\omega) \} \))。\(V' \cap \tilde{f}_b \mid V \) は明らかに準同型だから命題1 より \((V', \tilde{f}_b^*) \) は analytic variety at \(\tilde{f}_b \) になる。\(\forall \varphi \in V \) — (**) 定理1.1 により \(V \) は極大だから (必要なら \(M \) を大きくとりなおして) 結合 \(V \) と一致する。\(\forall \varphi \in \overline{\tilde{f}_b} \) を言えばよい。

\(\ast \) と (**) より \(\forall \varphi \in \tilde{B} \leftrightarrow \forall b \in B \leftrightarrow \tilde{B}_g \) に対する \(\tilde{b}(\varphi) = \tilde{f}_b(\tilde{a}) \) かつ \(\forall \varphi \in V \) — (**) （例えば）(\(\tilde{f}_b(\phi) = f_b(\tilde{a}) \) – \(\tilde{a} \phi = \tilde{a}(\phi) \tilde{a}(\phi) = \tilde{f}_b(\phi) \) など）\(\forall \varphi \in V' \)。\(\forall b \in \tilde{B}_g \exists \tilde{a} \) かつ \(\tilde{B}_g \) の極大なので \(\forall b \in \tilde{B}_g \) で \(\tilde{B}_g \) がよい。\(\forall \varphi \in \tilde{B}_g \) に対して \((\tilde{a}(\phi)) \) は \(\tilde{f}_b(\phi) = \tilde{a}(\phi) = \tilde{B}(\phi) \) である \(\forall b \in B \) で \(\tilde{B}_g \) がよい。
文献

(1) 鶴見 and 神保，Analytic structure について，数理解説研究集 148 Function algebra，数理解説刊行会，1972。

(8) A. Browder, Introduction to function algebras, W.A. Benjamin, 1969.

(9) A. Browder, Point derivations and analytic structure in the spectrum of a Banach algebra, J. Functional Analysis 7 (1971), 156-164.

(10) S.J. Sidney, Point derivations in a certain sup-norm algebras, T.A.M.S. 131, (1968), 119-148.