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STATISTICAL REGULARIZATION
OF A NOISY ILL-CONDITIONED SYSTEM OF LINEAR EQUATIONS
BY AKAIKE'S INFORMATION CRITERION

KUNIO TANABE

ABSTRACT

The problem of obtalning a reasonable solution of a
noisy ill-conditioned system of linear equatlons whose
coefficient matrix and right-hand-side vector are corrupted
by randdm'noise is considered.. It 1s well-known that direct
application of usual numerical procedures to the equation
wiil result in an oscilatory sclution which 1s ofteh not in
good agreement with the nature of the problem, This paper
introduces a statistical model which naturally leads to ‘the
approach assoclated with the singular value decomposition
of the coefficient matrix and by using Akalke's information
criterion an effective rank of the matrix is determined
objectively to obtain a solution in which the gain in
resolution 1s balanced agalnst the amplifilcation of the

noise.
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1. INTRODUCTION

The recovery of some definite structures from nolsy data forms
an important subject in experimental sciences. .The "inverse" prob-
lems in physics are typical sources of this type of problems.

These problems are inherently ill-conditioned in the sense that
small disturbances in data have a disastrous effect on the direct
estimate of tﬁe true structures, although sometimes the problems
are conéidered improperly formulated. They are called "incorrect=-
ly posed probxems“ and extensive efforts have been devoted to them

in the literature for reasonable estimate of the structure.

In this paper we consider a problem of obtalning a statistical-
ly reasonable solution of an ill-conditioned system of m llnear
equations in » unknowns

Az = b (1)
whose m x n coefficient matrix 4 and the m~dimensional right-hand-
side vector F?are corrupted by random noise. The problem l1s close~
ly associated‘kith the numerical solution of the Fredholm intégral
equation of tﬁe first kind

| [ k(s,t) x (£)dt = b(s) (2)
- with the singular or ill-qénditioned kernel X(e,t) and some dis-
turbance in tﬁe right-hand-side b(t), which arises in many branches
of physical séiences, typically in the expérimental Sciences where
physical data ‘are measufed by indirect sensing ‘devices. To solve
(2) numerically we dilscretize it either by numerical quadrature

formula or‘byifinite series expansion. These processes always in-
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troduce some errors into the original equation to produce an ill-

conditioned equation (1).

As well demonstrated by Phillips [20], direct application of
usual numerical procedures to the equation (1) will result in an
oscillatory solution which is often not in good agreement with the
nature of the problem. This subject was discussed extensively in
the'literature and various smoothing procedures were developed.

(8 - 10, 12 - 20, 22 ~ 33]

The procedures are classified into two categories. The first

one minimizes

15 - Zzl}? + vllz - = |2, (3)
where ||z|| = Yz*z, llzll, = Y=*Wz and the positive difinite matrix

W, an n-dimensional vector z, and the smoothing parameter y are
determined from a prior information of the 'true' solution. The

result thus obtained is given by
z = (4% + y0)TH(A% + yWz ). (%)

Phillips [20] and Tikhonov [28] originally devised this method.
Foster [12] and Starnd & Westwater [26] gave statistical exten-
sions and Jjustifications of this approach to certain models in
which disturbénces in the’coefficient matrix were not taken into
account. Thelr method for determining the smoothing parameter 1s
not entirely satlisfactory since it depends on the knowledge of
the covariance matrix of the statistical noise which is usually
unknown. The other uses the singular value decomposition to in-~

vert the equation by the least squares method for the rank defi-
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cient case. Colub & Saunders [14], Hanson [16] and Varah [32]
used an ad hoc method for determining an effective rank of 4.
Both approaches will give satisfactory results so long as W, md
and y or an effective rank of 4 are suitably chosen. However, the

cholices depend more or less on subjJective judgement of the inves-

tigator.

The purpose of this paper is to introduce a statistical model
which naturally leads to the second approach and determine objec-
tively an effective rank of 4 by using the Akaike's information
criterion and obtain a reasonable solution in which fhe gain in
resolution is balanced against the amplification of the noise.
The criterion was first introduced successfully in the field of
time series analysis and then extended to a general principle for

fitting statistical models to data. [1-7]
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2. SINGULAR VALUE DECOMPOSITION AND RANK CONSTRAINED INVERSES OF
A MATRIX

In thls section we define some matrix notations useful in
the following sections. The singular value decomposition of a

matrix is essential for our purpose.

Theoreml. Kn m x n matrix A of rank r can be decomposed in the
following way:
o1 0
A = UDV*, D = ] 1> 061 202 20°c 20, 20, (5)
0 .
where U and V are unitary matrices. of respective dimension m and
n and V* denotes the complex conjJugate of V. If we denote the

J-th column vectors of U and V by U and vj respectively, the ex-

pression (5) is rewritten in
r . .

A= jild3u503’ (6)
in this case the Moore-Penrose inverse 41 of A, which 1s defined
by

aata = 4, ataat = 4%, (aTa)* = ata ana uaT)+ = aat, (1)

has the following expression:

t v -l
= = ul.
A iflo? v ul (8)

The Frobenius norm

1/2
L]

[[A“F = trace (4*4)1/2 = trace (44+) (9)

for m x n matrices is unitary invariant, i.e.,
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Hallp = llvrally = llavilg,

for any unitary matrices U and V.
The following theorem has been shown by Eckart and Young [11].

Theorem 2. Given an m x n matrix 4 of rank r and a non-negative in
teger p(p £ r), there exists uniquely an m x n matrix Ap of rank
p that satisfies
14 - 8l 2 114 - Ayl = (T o})}/2 (10)
. J=p+l
for any matrix B of rank p, and AP can be expressed as

1%
A_ = I o.u., vt
P 1:=13JJ

This result 1s easlly deduced from the singulaf decomposition of

A, since II-HF is unitary invariant. We will call Ap the rank p

approximation to 4.
Now we introduce rank constrained inverses of a matrix.

Definition Given a m x » matrix 4 of rank r and a non-negative inte-
ger p less than r, the rank p inverse A; of 4 is the Moore-Penrose

Inverse of the rank p approximation Ap of 4, 1i.e.,

at = 5 o1y ut, - (11)
P sy dF
Note here that A; satisfies
ATaat = 4t 12
pA4s p? (12)

i.e. 4 is a generalized inverse of A;. See Rao & Mitra [21].
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3. STOCHASTIC MODEL AND MAXIMUM LIKELIHOOD ESTIMATOR FOR THE
COEFFICIENT MATRIX

We consider the following stochastlic linear equation model:
(A +E)z =b+d (13)
where 4' = (“ij) is an m x n rank deficient constant matrix with

rank » (r < min(m,n)) and b 1s an m-dimensional constant vector

such that

Az = b (1)
is solvable in x, 1.e., b belongs to the image space R(4) of 4,
E = (Eij) is an m x » random matrix whose elements ;ij are inde-
. pendent and identically normally distributed with mean zero and
unknown variance n? and d = (gi) is an m-dimensional random vector
whose elements Si are'independent and identically normally dis-
tributed with mean zero and unknown variance 62. We assume E and
& are distributed independgntly. We will denote 4 + E and b + d
by Z.= (&ij) and b = (éj). E and d may be interpreted as the ran-
dom disturbance of sensing devices in measurement and as the error
of measurement respectivel&.' In the case of numerical solution of
the Fredoholm integral equation, they may be considered as dis-
cretization or trunction errors.. We will denote sample values of
A, £, band d by T = (Eij)’ E = (Eéj)’ b = (E&) and d = (33) res-

- pectively.

Now the problem can be formulated as one of estimating the
minimum norm solution 4Th of Eq. (14) from a sample egquation
Ax = b, (15)

where 4 is almost surely of full rank and this equation is not
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always solvable. It should be noted 4Ty 15 a constant vector.
To solve this problem we first estimate the coefficient matrix 4

by the method of maximum llkelihood.

Given a sample matrix 4, the likelihood function L(4: 4,m)

for the parameters 4 and n is given by

T a7t 2y=1/2 = 2 2
L(A: A,n) = i?j(2“n ) ezp(-(aij - aij) /2n2%)
~nn - ‘
= (2mn?)772 ezp(-||Z - 4]l }/2n%), (16)

and the log-likelihood function 1s given by
_ 1 -
logL(Z: A,n) = -Tflog (2m?) - 2—n—5—||A - all}. (17)

Here we consider the case where the rank r of the matrix 4 1is
known to be p, although we will treat in the next section a gener-
a2l case where the rank is unknown and estimated from the sample
matrix 4. In this case, maximizing logL(4: 4,n) with respect to

A and n subject to rank(4) = é, we obtain the maximum likelihood
estimates

AP(A) = AP, (18)

R (M) = |7 = Il p/vam = (2 o2(@)/mn)t/2 (19)

i>p
of 4 and n, and we have

-2 logL(4: ﬁp(Z),ﬁ(Z)) = mn(logl||d - (Z)p“; + log(2me)/(mn))

= mn(log( L GE(Z))
1>p

+ log(2me)/(mn)), (20)
where Zé is the rank p approximation to 4 and ci(Z)‘s are the sin-
gular values of 4, numbered in decreasing order.

By the above discussion we have the following lemma.

Lemma 3. The maximum likelihood estimator A(4) with rank p of A

is the rank p approximation Zp to,ﬂ.
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4. APPLICATION OF AKAIKE'S INFORMATION CRITERION FOR CHOOSING
THE EFFECTIVE RANK

We are adopting K;E as an estimator for A*b, but the problem
of finding the rank p of the coefficient matrix remains to be
settled. Before proceeding to this central problem, we give a
brief sketch of the 1nhereht difficulty of obtaining a reasonable
solution of the equation (15).

We define a signal to nhoise (SN) ratio Pa/E of the coefficilent
of the stochastic system (13) as

2
pA/E' = 0;5\:&), (21)

where-or(A) is the smallest non-zero singular valug of,Af This
definition is partly Justified since we have “

E(A*4) = A*A + mn?I, (22)
whose singular values are |

02(4) + mn? (< =‘1, 2, «v. n), (23)

where o;(4) = 0 for i > r and E(-) denotes the expectation. We

also define an SN ratio Pasd of the stochastic’system (13) as
o*, ' ‘
Pasa = Bz (28)

When the rank of A is less than m and n, small errors Eij in
4 will yileld small singular values of Z, which together with the
errors Sj in E, can cause large errors in the least squares solu-
tion of the sample equations (15), although this phenomenon may
be mitigated when the ratio 6/n is sufficiently small and the S¥

ratio pA/E is large. Also when SN ratio pA/E is of order less
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than one, the information corresponding to the singular value S,

1s covered by the random néise E, and it is difficult to recover

A from 4, in which case however, the rank reduced approximation
Z?(p < r) to 4 may retain some useful information about 4. In

any case the direct inversion of Eq. (15) by the usual least
squares method 1s not an adequate approach and we must choose an
effective rank p of A, with which we may estimate Atb by Z;F. If
we allow too large p, we pick up a great deal of noise. Congrarily
if we choose p less than r, we 19se some of the information about
Atb., Hence the problem is how to balance the gain in resolution ‘
against the amplification of the noise in an estimate Z;F by choos-
ing suitable p.

Akaike devised a new method for determining the degree of
freedom of the statistlcal model which are ﬁo be fitted to finite
number of data. Making use of the Kullback-Leibler's information
quantity and the asymptotic theory of likelihood ratio test statis-
ﬁic, he proposed a new statistlc which we wiil call Akaike's*infor—

mation criterion (4IC),

AIC = -2Zoge (maximized likelihood of a model with respect
to given data)

+ 2 (degrees of freedom of the model) (25)
and the model chosen 1s the one with the smallest AIC value among
competetive models with varying degrees of freedom.[7] This pro-
pedure which we will call minimum AIC estimation (MAICE) differs
from the existing methods in that it does not require such a sub-

jective criterion as the significance level 1n statistical hypothe-
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sis testing. Its significance 1in the field of time serles analy-
¢ ~

sis was well demonstrated in Akaike's original papers. [1 - 7]

It is easlly seen that the MAICE procedure can be incorporated
to our problem of finding effective rank p of 4. Since m x n ma-
trices with rank p‘have-p(m+n—p) degrees of freedom, our model
(estimator for 4) with rank p haé p(m+n-p)+1 degree of freedom
since n is taken into account. Hence given data 4, Akaike's in-
formatién criterion AIC(p:4) for our model with rank p is

A¢(p:T) = -210g L(K: A, (M), A(D) + 2(p(ntn-p)+1)

= mn Zoge(‘f 02(1)) + 2p(m+n-p)+k, (26)
i>p.

‘where k = mn log (2me/mn) + 2.

Here i¢ should be noted that the MAfCE procedure l1ls based on
the assymptotic theory of likelihood ratio test statiétics, and
we must be careful tp use it only in the'situatibn'where the num-
ber of parameters, r(m+n-r)+l is relatively small compared with
the number of data, mn, although 1t may be used as a heuristic
procedure even when this condition is not saﬁisfied. Hence 1t 1is

sufficient to confine the alternative models to those whose rank

p satisfy
P—(—’E-;ﬁ'-ﬁ < & (say). (27)

We will denote the integer p which minimize AIC(p:Z) subjects to
(27) by p(4), and adopt it as an effective rank of 4.

Definition Given a matrix 4, the AIC inverse Zzic of 4 is thé rank

p(Z) inverse 4T ,—~, of Z. We adopt A%, b as an estimator for Ath,
p(4) aie _
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5. AIC RESOLVER

In this section we summarise the procedure, which we will call
AIC resolver, for practical computation of AZieb and give some

modifications of it.

AIC RESOLVER

1. Compute the singular value decomposition

|
[}
<
Q
«
<
»*
[
Qaj
—
v
Qj
[N}
v
Qj
w
1

ceey  (28)

(Yis Y25 oo ?ﬁ)t. An efficient algorithm

i

of 4, and compute U*b

for this was given by Golub and Reinsch. [13]

2. Find the positive integer p which minimizes

(mn)log ,( T 6@) + 2p(m+n-p),’ (29)
i>p '

subjects to the inequality (27). It should be noted that since
only the differences of AIC are of interest an arbitrary common

constant can be added to the definition of AIC(p: 4).

3. Compute

n? = LG/ mn (30)
i>p

8% = I ¥2/(m-p) and (32)
i>p

Bﬁ/d = E;/Ez, (33)



202

' 2 2 _
which may serve as estimates for n®, °A/E' 6¢ and pA/d respective

ly.

4, Compute the vector

3

14
_— e - - -1 e\

which is equal to Zzicz, where ﬁé and 5{ are the i-th column vec-

tors of U and V respectively.

Now we will glve some of heuristis modifications of the above

procedure.

MODIFICATION 1: The choiée of p in the above statement 2 depends
only on the coefficient matrix 4 and not on the right-hand-side

b. This is justified when 0,(4) is comparatively iarger than 6.
But when‘pA/d is of smaller order than one, errors due to d will
undesirably effect to the 'solution', in which case we should dis-
card the information corresponding to Ot This suggests the fol-

lowing statement to be inserted after the statement 3.

3. If Eﬁ/d is less than one (say), reduce p by one and go to 3.

MODIFICATION 2: Since Ef's are blased upwards by the amount about
mn?, we may use the reduced value (52 - mﬁ'z)l/2 as an estimator
for Iy In this case EA/E should be larger than one or preferably
more. This suggests the use of the following two statemetns in

place of the statements 4.

3. If EQ/E is less than ten (say), reduce p by one and go to 3.
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4r, Compute the vector

e~

(Vi/vcf: - m.ﬁz);i (35)
1l

1
which may serve as an estimator for atp,
OTHER POSSIBLE MODIFICATIONS: Since given 4 we can calculate the

-2 = w2 = ‘ : _
estimates n?*, Py/E 6% and Pasd by the formulge (30) (33) for‘each
value of p, if we have an a priori knowledge of the magnitude of -
2 2 '

either of the values n°, pA/E’ 9% or pA/d’ wevcan easlly incorporate

this information 1lnto the estimation of »r.
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4, Compute the vector
p —
L (y;//0% - mn®)v, (35)
i=1
which may serve as an estimator for A+b.
OTHER POSSIBLE MODIFICATIONS: Since given A4 we can calculate the
=2 — 4.2 ’ — : .
estimates n*, Pa/E? 64 and Pasd by the formulae (30) - (33) forveacb
value of p, if we have an a priori knowledge of the magnitude of
either of the values n?, pA/E, 62 or pA/d’ we can easily incorporate

this information into the estimation of ».
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