On the Orr-Sommerfeld type equations

東工大理 西本敏彦

§1 Introduction
非圧縮、粘性流体の平行流の安定性を論ずる際に関われる基本的な方程式は次の Orr-Sommerfeld equation 及びその adjoint equation である。

\[
\begin{align*}
\frac{1}{iK} \left(\frac{d^2}{dx^2} - \alpha^2 \right) \gamma & - i \left\{ (u(x)-c)(\frac{d^2}{dx^2} - \alpha^2) \gamma - u''(x) \gamma \right\} = 0 \\
\frac{1}{iK} \left(\frac{d^2}{dx^2} - \alpha^2 \right) \gamma & - i \left\{ (u(x)-c)(\frac{d^2}{dx^2} - \alpha^2) \gamma + 2u'(x) \frac{d\gamma}{dx} \right\} = 0
\end{align*}
\]

但し \(u(x) \) は与えられた関数, \(\alpha \) と \(K \) は実パラメータ, \(C \) は複素パラメータである。

ここでは、これらよりやや一般な形の次の方程式を Orr-Sommerfeld type equation と呼ぶことにする = の解の \(y = (\omega K)^{1/2} \rightarrow 0 \) の時の漸近展開を研究する。
(1.3) \(e^2 \frac{d^4 \phi}{dx^4} - p_3(x e) \frac{d^2 \phi}{dx^2} - p_2(x e) \frac{d \phi}{dx} - p_1(x e) \phi = 0 \)

\[p_k(x e) = \sum_{k=0}^{\infty} p_{k;k}(x) e^k, \quad \text{for } x \in D \text{ bounded region, } 0 \leq e < 1. \]

よく知られているように \(p_{30}(x) = 0 \) をみたす点を変り点（turning point）という。解の発達形態は変り点において複雑となる。

Prof. Wasow は turning point problem に関していくつかの重要な論文を発表されたけれども、特に次に記す論文は Oseen-Sommerfeld equation に関するもので simple turning point の近傍における解の漸近的性質をほぼ完全に解明した。

ここで用いられた方法は、いわゆる related equation method 又は comparison method と呼ばれるもので、それは与えられた方程式を適当な変換で簡単にする、そしてその簡単化された方程式を何らかの手法、例えば Laplace 積分によって解くという
うものである。同様な方法で以て、Lin-Rubenstein は方程式 (1.3) と simple turning point の近傍において解の漸近理論を得た。

3. Lin-Rubenstein On the asymptotic theory of a class of Ordinary
 Diff. equations of fourth order I. Trans. Amer. Math. Soc. 94 (1960)

一方それより前に C. C. Lin は One-Sommerfeld equation の漸近解を matching method を用いて求めることにより当時不明確であった平行流の安定性の問題に決定的な貢献をした。

4. C. C. Lin On the stability of two dimensional parallel flows I, II, III

Matching method というのは 2つの異なった regions において
各々漸近展開がえられ、もし 2つの regions が overlap してい
るならばそこで 2つの漸近展開の関係を計算する方法ひいては
1つの接続方法である。Matching method を数学的に厳密に用
いた最初の論文は

5. W. Wasow A turning point problem for a system of two linear

又 (1.1) と (1.3) の形の方程式については

6. T. Nishimoto A turning point problem of an n-th order diff.
さて今までの大半は，1つの turning point の近傍における漸近理論であるいわば local theory である。これに対して global なものとしては，方程式（1.1）において U(x)=x の場合には Basu Wasow が全平面で漸近展開を求めたのが唯一である。

物理学上の問題の中には考えられる領域内に 2 つ以上の turning points が起る場合があるが，物理学者は C.C. Lin の手法を手本として，Matching method と数値計算により実務的に問題を処理している。

そこで我々は方程式（1.3）に対し次のような問題を考える：

\[p_2(x_0) (x=1.2.3) \text{及び有限領域} D \text{に適当な条件を付し} \]

D で解の漸近展開を求めることがある。

ここには，簡単のため \(p_2(x_0) \) をスの多項式とし，かつ各 turning point において one segment condition をみたすとする。

これはは（1.3）の reduced equation

\[p_3(x_0) \frac{d^2 p}{dx^2} + p_2(x_0) \frac{dp}{dx} + p_1(x_0) p = 0 \]

は turning point を確定特異点としてもつことを意味する。
§2 2 つの 2 体を含まない領域における微分同形

(1.3) は \(y_1 = y_1, \quad y_2 = y_2', \quad y_3 = y_3'', \quad y_4 = \varepsilon y_4^{(3)} \) とおくことにより 4 連立微分方程式系となる:

\[
2.1 \quad \varepsilon Y' = P(x, \varepsilon) Y \quad \text{with} \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}, \quad P(x, \varepsilon) = \begin{bmatrix} 0 & \varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon & 0 \\ 0 & 0 & 0 & 1 \\ p_1(x, \varepsilon) & p_2(x, \varepsilon) & p_3(x, \varepsilon) & 0 \end{bmatrix}
\]

Block diagonalization,

\[
U = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}, \quad V = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}
\]

\[A = \begin{bmatrix} 0 & \varepsilon \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ \varepsilon & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 \\ p_1 & p_2 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1 \\ p_3 & 0 \end{bmatrix}
\]

とおくと (2.1) は次のようになる。

\[
2.1 \quad \varepsilon \begin{bmatrix} U \\ V \end{bmatrix}' = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix}
\]

Transformation 1

\[
U = U_1, \quad V = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{p_{30}} \end{bmatrix} V_1 \quad \rightarrow \quad \varepsilon \begin{bmatrix} U_1 \\ V_1 \end{bmatrix}' = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \begin{bmatrix} U_1 \\ V_1 \end{bmatrix}
\]

ここで \(A_1 = A, \quad B_1 = B, \quad C_1 = \begin{bmatrix} 0 & 0 \\ p_1 & p_2 \end{bmatrix}, \quad D_1 = \begin{bmatrix} 0 & \sqrt{p_{30}} \\ \sqrt{p_{30}} & \frac{p_{30}}{2} \end{bmatrix} \).

Transformation 2

\(E \) は 2-2 行列、\(Q, R \) は 2-2 行列 として変換
\[
\begin{align*}
\begin{bmatrix} U_1 \\ V_1 \end{bmatrix} &= \begin{bmatrix} E + \varepsilon QR & \varepsilon Q \\ R & E \end{bmatrix} \begin{bmatrix} U_2 \\ V_2 \end{bmatrix}, \\
\begin{bmatrix} U_2 \\ V_2 \end{bmatrix} &= \begin{bmatrix} E & -\varepsilon Q \\ R & E + \varepsilon QR \end{bmatrix} \begin{bmatrix} U_1 \\ V_1 \end{bmatrix}
\end{align*}
\]

に よ り
\[
\begin{align*}
\begin{bmatrix} U_2 \\ V_2 \end{bmatrix} &= \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} U_2 \\ V_2 \end{bmatrix}
\end{align*}
\]

と は
\[
\begin{align*}
A_2 &= A_1 + B R - \varepsilon Q (C + D) R + \left\{ \varepsilon A_1 \varepsilon Q R - \varepsilon^2 Q C R \varepsilon Q R - \varepsilon^2 Q \right\} \\
B_2 &= B_1 - \varepsilon Q D_1 + \left\{ \varepsilon A_1 \varepsilon Q - \varepsilon^2 Q \varepsilon Q - \varepsilon^2 Q \right\} \\
C_2 &= C_1 + D R + \left\{ -R A_1 + \varepsilon C Q R - R \left(B_1 - \varepsilon Q D_1 \right) R + \varepsilon R Q C - \varepsilon R \right\} \\
&\quad - \left\{ \varepsilon R A_1 Q - \varepsilon^2 R Q C Q R - \varepsilon^2 R Q \right\} \\
D_2 &= D_1 + \left\{ -R B_1 - \varepsilon Q D_1 + \varepsilon C Q \right\} - \left\{ \varepsilon R A_1 Q - \varepsilon^2 R Q C Q - \varepsilon^2 R \right\}
\end{align*}
\]

これを\(C_1, D_1 \) と \(\varepsilon \) の 中 期 数 に 展 開 して おき
\[
Q = \sum_{i=0}^{\infty} Q_0 (x) \varepsilon^i \quad R = \sum_{i=0}^{\infty} R_i (x) \varepsilon^i
\]

と \(B_2 \sim 0, C_2 \sim 0 \) となる よう に き め る。 例 えば
\[
Q_0 = \begin{bmatrix} 0 & 0 \\ 0 & P_{30} - \frac{1}{2} \end{bmatrix}, \quad Q_1 = \begin{bmatrix} P_{30}^{-1} & 0 \\ P_{30} - 2P_{20} & \frac{P_{30}^2 - 2P_{20}}{2P_{30}} \end{bmatrix}
\]
\[
R_0 = \begin{bmatrix} -P_{30} & -P_{20} \\ P_{30} & P_{20} \\ 0 & 0 \end{bmatrix}
\]

と と れば
\[
A_x = \begin{bmatrix}
0 & 0 \\
-P_{10} & -P_{20}
\end{bmatrix} + \cdots
\]

\[
D_2 = \begin{bmatrix}
0 & \sqrt{p_{30}} \\
\sqrt{p_{30}} & 0
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
\frac{p_{31}}{\sqrt{p_{30}}} & \frac{p_{20} - \frac{p_{30}}{2}}{p_{30}}
\end{bmatrix} + \cdots
\]

こうしておけば、更に \(D_2\) を対角化することにより形式解が容易にえられる。変換をもとにして最初の方程式 (2.1) の解が得られるが、leading term をかくと

(2.2)

\[
\begin{pmatrix}
1 & 0 & \frac{1}{\sqrt{2}} \frac{1}{\sqrt{p_{30}}} e^a & -\frac{1}{\sqrt{2}} \frac{1}{\sqrt{p_{30}}} e^a \\
0 & 1 & \frac{1}{\sqrt{2}} \frac{1}{\sqrt{p_{30}}} e^a & -\frac{1}{\sqrt{2}} \frac{1}{\sqrt{p_{30}}} e^a \\
-\frac{P_{10}}{p_{30}} & -\frac{P_{20}}{p_{30}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
0(0) & 0(0) & \frac{p_{31}}{\sqrt{p_{30}}} & \frac{p_{20}}{p_{30}}
\end{pmatrix}
\begin{pmatrix}
U_0(x) \\
0
\end{pmatrix}
\]

\[
\sim
\begin{pmatrix}
U_0(x) \\
V_0(x, \epsilon)
\end{pmatrix}
\]

但し \(U_0(x)\) は、reduced equation (1.3) の基本解とし、又 \(V_0\) は

\[
V_0(x, \epsilon) = p_{30}^{-1/4} \begin{pmatrix}
\exp \int \left\{ \frac{p_{30}}{\epsilon} + \frac{p_{31}}{2 \sqrt{p_{30}}} + \frac{p_{20}}{2 p_{30}} \right\} dx & 0 \\
0 & \exp \int \left\{ -\frac{\sqrt{p_{20}}}{\epsilon} - \frac{p_{31}}{2 \sqrt{p_{30}}} + \frac{p_{20}}{2 p_{30}} \right\} dx
\end{pmatrix}
\]

ここで積分の始点は適当に与えてよいが、後で接続をするとときに定義しよう。次に形式解 (2.2) を漸近展開する (2.1) の実解の存在領域を考へる。
$P_{30}(x)$ は多項式と仮定すると、その零点群の turning point は有限個である。従って D はこれらの全ての turning points を外部に含んでいるものを仮定してよい。各 turning point a_i からなる曲線 S_i:

$$Re \int_a^x \sqrt{P_{30}(x)} \, dx = 0$$

を Stokes curve と呼ぶ。そうすると全複素平面は Stokes curves で境界される有限個の Stokes regions に分けられる。更にこの Stokes regions のいくつかの合併集合として canonical region が定義される。 canonical region は Stokes curves で境界される無限集合でその内部には turning point は含まないが、少なくとも一本の Stokes curve は内部に延びている。それから全ての Stokes curve から適当に曲線を（無限遠にについて）二本引くことがでてき、その上をうが動くとき $Re \int_a^x \sqrt{P_{30}(x)} \, dx$ が単調に増加又は減少する。

そこで、この canonical region と D の共通部を D に関する canonical region と呼ぶことにしよう。このとき次の定理が成り立つ：

定理。D に関する canonical region を $C[D]$ とし、$C[D]$ の境界上の turning points を $\{a_1, \ldots, a_n\}$ とし、その O 球の order も $\{b_1, \ldots, b_N\}$ とする。各 a_i に対し domain of influence N_{a_i}

$$N_{a_i} \colon \{z : |z - a_i| \leq N e^{2/(8z+2)}, N \text{ const.}\}$$

8
に対応させる。このとき

\[C(D) = \bigcup_{i=1}^{r} N_{a_i} \]

において形式解 (2.2) を漸近展開とするような (2.1) の実解
が存在する。ここで domain of influence は \(\epsilon \to 0 \) のとき \(x = a_i \)
に絞むことが、後で turning point 自身における漸近展開を求
めることに役立つことを注意しておく。 証明は

8. T. Nishimoto On the Orr-Sommerfeld type equations, I

§3 接続公式

この節では全ての turning points は simple \((s=1)\) とする。
接続公式を計算する前に漸近展開の公式 (2.2) の意味を明確
にしておく必要がある。即ち 1 個関数の分枝数や積分配与の下
側を決めなくてはならない。

任意の \(D \) に関する canonical region を \(C(D) \) としよう。\(C(D) \)
は少なくとも 1 つの Stokes curve を含むから従って \(C(D) \) の境界
上にある 1 つの turning point \(a \) とそこから \(C(D) \) の外部にあ
びている Stokes curve \(S \) を指定する。この \(\{ S \cup C(D) \} \) の組
に対して (2.2) の漸近展開を次のように定義する:

(1) \(U_0(x) \) は \(x = a \) の近傍で
\[y_{11} = 1 + \sum_{i=1}^{\infty} d_i (x-a)^i \]

\[y_{12} = (x-a)^{1-\lambda} \left\{ \sum_{i=0}^{\infty} e_i (x-a)^i \right\} \quad \lambda = \frac{p_{20}}{p_{30}}, \quad e_0 = 1 \]

(注: \(p_{20}(x) = p_{20} + p_{21}(x-a) + \cdots, \quad p_{30}(x) = p_{30}(x-a) + \cdots \))

これらに基づき、定義されるもので、解析接続により \(C[D] \) で分けていくものをとする。（注 (1.3) の \(x = a \) における決定方程式の根は \(0, 1-i \) となるが、簡単のため \(x \) は integer でないものをとす）

次に

(2) \(V_0(x) \) については積分を

\[\int_a^x \left\{ \frac{p_{30}(x)}{\varepsilon} + \frac{p_{21}(x)}{z \sqrt[p_{30}]{x}} \right\} \; dx + \int_b^x \frac{p_{20}(x)}{z \sqrt[p_{30}]{x}} \; dx = p_{30}(b) = 0 \]

と定義し、更に \(V_0 \) 代わりに \(\delta(a) \) を持てて、\(\exp \left\{ \int_b^x \frac{p_{20}}{z \sqrt[p_{30}]{x}} \; dx \right\} \) を \(x = a \) の近傍で展開したとき \((x-a)^{\lambda/2} \{ 1 + \cdots \} \) となるようにする。このような \(\delta(a) \) は次のように求められる。

\[\frac{p_{30}}{z \sqrt[p_{30}]{a}} = \sum_{i=0}^{\infty} A_i + q(x), \quad A_i \; \text{const}, \quad q(x) \; \text{项式}, \; a = a_0 \]

とかけるならば

\[\delta(a) = e^{\int_a^b q(x) \; dx} \cdot (b-a)^{A_0} \prod_{i=1}^{M} \left(\frac{b-a_i}{a-a_i} \right)^{A_i} \]

更に \(S \) 上において

\[\text{Im} \int_a^x \sqrt[p_{30}]{x} \; dx > 0 \]
とす。このことはαからの進行方向に対して、Sの右側で
$\Re \int_{0}^{\infty} \sqrt{\mu_0(x)} \, dx > 0$となり左侧で$< 0$となることを意味する。
その他のμ個の数は適当にとる。$C[D]$内には$\textit{turning point}$は含まれていないから分枝は1つきめれば$C[D]$内で一
意的にきまる。

このように$\{ S \subset C[D] \}$に対応してきまる基本解を
$Y \{ S \subset C[D] \}$とおくことにする。これとき1つの$Y \{ S \subset C[D] \}$のD全体での漸近展開を得るには次の5つの型の接続
公式を求めればよい：

(1) $Y \{ S \subset C[D] \} = Y \{ S_1 \subset C[D] \} \Omega_1$

(2) $Y \{ S_2 \subset C[D] \} = Y \{ S_1 \subset C[D] \} \Omega_2$

(3) $Y \{ S \subset C[D] \} = Y \{ S \subset C[D] \} \Omega_3$

(4) $Y \{ S_2 \subset C[D] \} = Y \{ S_1 \subset C[D] \} \Omega_4$

(5) $Y \{ S \subset C[D] \}$の$x = a$の近傍における漸近展開
これらの接続係数はxにはdependしないがμにはdependする行
列である。以下においてこれらの行列の$\textit{leading term}$を求める
ことにする。

$$\xi(a, x) = \int_{a}^{x} \sqrt{\mu_0(x)} \, dx$$ とおく。
(1) \(\Omega_1 \)

\[{S a_2 C[D]} \bigcup \{S a_1 C[D]\} \]

は \(S \) の外側が反対である。従って \(\mathfrak{f}(a_2) \) の分枝のとり方が反対になっている。そこで \(Y\{S a_2 C[D]\} \) の分枝を \(Y\{S a_1 C[D]\} \) にあわせると \(Y\{S a_2 C[D]\} \) は

\[
Y\{S a_2 C[D]\} \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix} = Y\{S a_2 C[D]\} I
\]

となる。それ以外の分枝は同一にとると

\[
Y\{S a_2 C[D]\} I = Y\{S a_1 C[D]\} \Omega_1
\]

\[
\Omega_1 = \begin{bmatrix}
U_0(x a_1) \cdot U_0(x a_2) (E + O(\varepsilon_1)), & O(\varepsilon_1) U_0^{-1}(x a_1) V_0(x a_2) \\
O(\varepsilon_1) U_0(x a_2) V_0^{-1}(x a_1), & V_0^{-1}(x a_1) V_0(x a_2) (E + O(\varepsilon_1))
\end{bmatrix}
\]

従し \(V_0(x a_1) = \delta(a) p_{20}^{-1} \left[\exp \left[\int_a^b \frac{p_0(x)}{\varepsilon c} \frac{p_1(x)}{2 \sqrt{p_0(x)}} dx + \int_a^b \frac{p_0(x)}{\varepsilon c} \frac{p_1(x)}{2 \sqrt{p_0(x)}} dx \right], \ 0 \right] \]

\[
0, \ \exp \left[- \int_a^b \frac{p_0(x)}{\varepsilon c} \frac{p_1(x)}{2 \sqrt{p_0(x)}} dx + \int_a^b \frac{p_0(x)}{\varepsilon c} \frac{p_1(x)}{2 \sqrt{p_0(x)}} dx \right],
\]

\[
\sigma_+ = \operatorname{sup} \{ \mathfrak{f}(a, x) > 0 \}, \ \sigma_- = \operatorname{inf} \{ \mathfrak{f}(a, x) < 0 \}
\]

\[
\sigma = \min \{ \sigma_+ , -\sigma_- \} - \gamma (> 0)
\]

とおく。\(\gamma \) は任意に小さい正数である。
\[U_0(xa_1)^{-1} U_0(xa_2) = C(a_1, a_2) \]

とおく。\(C(a_1, a_2) \) は reduced equation (1.3) の確定特異点 \(a_1 \) と \(a_2 \) における基本解の接続係数である。これより

\[
\Omega_1 \equiv \begin{pmatrix}
C(a_1, a_2) (E + O(\varepsilon)) & O(\varepsilon) \exp(-O(\varepsilon)) \\
O(\varepsilon) \exp(-O(\varepsilon)) & \delta(a_1) \delta(a_2) D(a_1, a_2, \varepsilon) (E + O(\varepsilon))
\end{pmatrix}
\]

とし

\[
D(a_1, a_2, \varepsilon) = \begin{pmatrix}
O(\varepsilon) \exp(-2O(\varepsilon)) & \exp[-\eta(a_1, a_2, \varepsilon)] \\
\exp[\eta(a_1, a_2, \varepsilon)] & O(\varepsilon) \exp(-2O(\varepsilon))
\end{pmatrix}
\]

\[
\eta(a_1, a_2, \varepsilon) = \int_{a_1}^{a_2} \left\{ \frac{1}{\sqrt{p_{50}/\varepsilon}} + \frac{1}{2} \frac{\sqrt{p_{50}}}{\sqrt{p_{50}}} \right\} \, dx.
\]

(2) \(\Omega_2 \)

\(\delta(a_1, x) \) と \(\delta(a_2, x) \) は \(C[D] \) で同じ分枝をもつ場合の接続係数を求めておけばよい。右図の場合でそうになっている）。

\(\Omega_1 \) と同様にして

\[
\Omega_2 \equiv \begin{pmatrix}
C(a_1, a_2) (E + O(\varepsilon)) & (O(\varepsilon) \exp(-\eta(\varepsilon))) \\
(O(\varepsilon) \exp(-\eta(\varepsilon))) & \delta(a_1) \delta(a_2) (\exp[\eta(a_1, a_2, \varepsilon)] O(\varepsilon) \exp(-2O(\varepsilon)))
\end{pmatrix}
\]
(3) Ω_3

\[
\Omega_3 = \begin{bmatrix}
1 + O(\varepsilon) & O(\varepsilon) & O(\varepsilon) \exp\left(-\frac{\varepsilon}{\varepsilon_0}\right) \\
O(\varepsilon) & 1 + O(\varepsilon) & 1 + O(\varepsilon) \exp\left(-\frac{\varepsilon}{\varepsilon_0}\right) \\
O(\varepsilon) \exp\left(-\frac{\varepsilon}{\varepsilon_0}\right) & O(\varepsilon) \exp\left(-\frac{\varepsilon}{\varepsilon_0}\right) & 1 + O(\varepsilon)
\end{bmatrix}
\]

(4) Ω_4 及び central connection problems

Friedrichs の "Special topics in Analysis" によれば Ω_4 を求める問題は type (5) の turning point 自分における渐近展開を求めることに帰着される (central connection problem)。

方程式 (2.1) は stretching and shearing により

\[x - a = 5 \varepsilon^{2/3}\]

\[Y = \text{diag}\{e^{4/3} \varepsilon^{3/3} \ 1 \ \varepsilon^{1/3}\} W,\]

\[W' = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
A_2(\varepsilon) & A_1(\varepsilon) & B_2(\varepsilon) & B_1(\varepsilon) \varepsilon^{-3/3} 0
\end{bmatrix} W.\]
(2.3) \quad W = \sum_{i=0}^{2} W_i(s) e^{ik}

とおいて上式に代入すれば

(2.4)

\[W_0' = A_0(s) W_0(s) \]

\[W_i' = A_0(s) W_i(s) + A_1(s) W_0(s) \quad \text{等々。} \]

恒し

\[A_0(s) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & P_{00} & P_{01} s & 0 \end{bmatrix}, \quad A_1(s) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ P_{00} P_{01} s \end{bmatrix} \]

方程式 (2.4) は、単独方程式

\[-w^{(4)} + P_{00} w^{(2)} + P_{200} w' = 0 \]

と同値である。

\[\zeta = \frac{P_{00}}{P_{01}} S, \quad \lambda = \frac{P_{00}}{P_{01}} \text{(not integer)} \]

とおくと上式は

\[w^{(4)} - \{ \zeta w'' + \lambda w' \} = 0 \]

となりこの解は Laplace 積分で容易にとける。

\[\omega_0^{(2)} = \frac{1}{2\pi i} \int_{C_0} e^{\lambda t} \exp\left\{ \omega t - \frac{1}{4} t^2 \right\} dt \]

\((j = 1, 2, 3, 4, 5, 6) \)

積分路 \(C_0 \) は右図のとおりとする。\(\omega_0^{(2)} \) は容易に原点での収束解、無限遠での漸近展開が計算される。
\[w_j(z) \approx \begin{cases} \frac{\sqrt{\pi}}{\sqrt{2} \pi i} e^{\frac{\lambda \pi i}{2}} z^{\frac{1}{2} - \frac{\lambda}{2}} e^{-\frac{z}{4}} \left\{ \sum_{k=0}^{\infty} \Gamma(k+\frac{\lambda}{2}) b_k \frac{1}{z^{k/2}} \right\}, & \text{if } \arg z < \pi \\ \frac{\sqrt{3}}{2 \pi i} z^{\frac{1}{2} - \frac{\lambda}{2}} e^{-\frac{z}{4}} \left\{ \sum_{k=0}^{\infty} \Gamma(k+\frac{\lambda}{2}) b_k \frac{1}{z^{k/2}} \right\}, & \arg z < \frac{\pi}{3} \end{cases} \]

\[w_3 \approx \sqrt{\frac{3}{2}} \pi i \frac{1}{2} z^{\frac{1}{2} - \frac{\lambda}{2}} e^{-\frac{z}{4}} \left\{ \sum_{k=0}^{\infty} \Gamma(k+\frac{\lambda}{2}) b_k \frac{1}{z^{k-\frac{1}{2}}} \right\}, \quad \arg z < \frac{\pi}{3} \]

\[w_4 \approx \frac{e^{-\frac{\lambda \pi i}{2}} + e^\frac{\lambda \pi i}{2}}{2 \pi i} z^{-\lambda+1} \left\{ \sum_{k=0}^{\infty} \Gamma(2k+\lambda-1) \frac{d}{2k+\lambda-1} \frac{1}{z^{2k}} \right\}, \quad -\pi < \arg z < \frac{\pi}{3} \]

\[w_5 \approx \frac{(e^{-\frac{\lambda \pi i}{2}} + e^\frac{\lambda \pi i}{2})}{2 \pi i} (e^{-2\pi i/3}) z^{-\lambda+1} \left\{ \sum_{k=0}^{\infty} \Gamma(2k+\lambda-1) \frac{d}{2k+\lambda-1} \frac{1}{z^{2k}} \right\}, \quad -\pi < \arg z < \frac{\pi}{3} \]

\[w_6 \approx \frac{e^{-\frac{(\lambda-1) \pi i}{2}} + e^{\frac{(\lambda-1) \pi i}{2}}}{2 \pi i} (e^{-2\pi i/3}) z^{-\lambda+1} \left\{ \sum_{k=0}^{\infty} \Gamma(2k+\lambda-1) \frac{d}{2k+\lambda-1} \frac{1}{z^{2k}} \right\}, \quad -\pi < \arg z < \pi \]
さてこの定理とMatching methodに関する一般論から
解 $Y \{ S \alpha C [D] \}$ と内部解 $\text{diag} \{ e^{y_1} \, e^{y_2} \, e^{y_3} \} \tilde{W} (S, E)$ は互いに overlapする領域で定義され従って matchingが可能である。
更に connection matrixは漸近的に対角形であることが分っていてなので $Y \{ S \alpha C [D] \}$ と $x = \alpha$ の近傍で $x - \alpha$ の中に展開し一方では $\tilde{W} (x)$ と $x \to \infty$ において漸近展開したものを比較することにより割合簡単に matching matrixが得られる。

今 $Y \{ S_1 \alpha C [D] \}$ において

S_1はαから $\arg x = \arg (1, 0, 13 (x - \alpha)) = \frac{\pi}{2}$ の方向に出てているものとする。従って $R e \bar{y} (ax)$はSの下、即ち $-\pi \sim \frac{\pi}{2}$ 正、$\frac{\pi}{2} \sim \pi$で負となっている。Yの
4つの解を略式に

$$y_1 \sim 1 + \cdots$$

$$y_2 \sim (x - \alpha)^{-1} (1 + \cdots)$$

$$y_3 \sim \cdot \exp \{ \frac{5}{2} (ax) e \}$$

$$y_4 \sim \cdot \exp \left(\frac{1}{2} (ax) e \right)$$

とかも丁度これにに対応する内部解を採用すればそれは
$e^{y_3} \{ 1, \omega_6 (x), \omega_3 (x), \omega_1 (x) \}$ とすればよいことが分る。

matching matrixの主要項は
\[
Y \{ S_1, a G[D] \} = e^{ny} \{ 1, w_6, w_3, w_1 \} \Pi_1
\]

\[
\Pi_1 = \text{diag} \{ e^{-ny}, c_{22} e^{-\frac{y}{2}(\lambda + n)}, c_{33} e^{-\frac{y}{2}}, c_{44} e^{-\frac{y}{4}} \}
\]

\[
c_{22}, c_{33}, c_{44} \text{ は定数。}
\]

同様に \(S_2 \), \(X = a \) の近傍で \(\arg z = \arg \beta_{01}^{1/2}(a-a) = \pi \)
とし \(Y \{ S_2, a G_{[2]} \} \) を考える。これに対応する内部解は
\[
e^{ny} \{ 1, w_5(z), w_2(z), w_3(z) \}
\]
であり。matching matrix \(\Pi_2 \) は

\[
\Pi_2 = \text{diag} \{ e^{-ny}, c_{22}' e^{-\frac{y}{2}(\lambda + n)}, c_{33}' e^{-\frac{y}{2}}, c_{44}' e^{-\frac{y}{4}} \}
\]

次にこれらを利用して \(\Omega_4 \) を求めてみよう。

\[
Y \{ S_1, a G[D] \} = \Pi_2
\]

\[
\{ 1, w_6, w_3, w_1 \} \Pi_1 = \{ 1, w_5, w_2, w_3 \} \Pi_2 \Omega_4
\]

\[
\{ 1, w_6, w_3, w_1 \} \text{と} \{ 1, w_5, w_2, w_3 \} \text{の接続公式は原点における値から計算できる}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & \omega^{3\lambda} \\
0 & 0 & 0 & -\omega^{3\lambda} \\
0 & 1 & -\omega^{-3\lambda} & 1
\end{bmatrix}, \omega = e^{\frac{2}{3} \pi i}
\]

\[
\Omega_4 \sim \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & c_{22} & 0 & c_{44} e^{\lambda + \frac{y}{2}} \\
0 & 0 & 0 & e_{22} \\
0 & e_{44} e^{-\lambda - \frac{y}{2}} & e_{33} & e^{-\lambda - \frac{y}{2}}
\end{bmatrix}
\]
ただし

\[\bar{c}_{22} = \exp\left\{ -\frac{4}{3} (\lambda - 1) \pi i \right\}, \]

\[\bar{c}_{42} = \frac{\Lambda_{101}^{\frac{1}{2} (\lambda + 1)} \sqrt{\pi} \exp\left\{ (\lambda - 1) \pi i / 3 \right\}}{\Gamma(\lambda - 1)}, \]

\[\bar{c}_{24} = \frac{\Lambda_{101}^{\frac{1}{2} (\lambda + 1)} \exp(-\lambda \pi i) - \exp(\lambda \pi i)}{\sqrt{2} \pi i \exp[3(\lambda - 1) \pi i / 3]} \Gamma(\lambda - 1), \]

\[\bar{c}_{33} = \bar{c}_{34} = -1. \]

さて以上で 0-S type equation の解の軽近展開、接続公式の leading term が全て終わりである。応用上必要な入が整数の場合の接続係数やその higher terms も計算できるであろう。しかし、数学的には \(\mathcal{C}(a, a_2) \) を precisely に求めることが物理的には neutral curves の存在性等につき、研究すべきことが数多くあるように思われる。

以上