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Finite Element HMethod of Incomnressible
Viscous Fluid ¥low by Means of Perturbation Method

Muvsuto Kawahara¥*

l. Introduction

As is generally known, laminor flow analysis of
incompressible viscous fluid is to analize initial and
boundary value problem given by the Navier-Stokes
equation. The purpose of this paper is to discuss
finite element methods concerned with steady and unsteady
flvuid flow problems and to present related illustrative
examples.

There have already been presented some contributions
to the solution procedures for the problem given by the
Navier-Stokes equations ([1] -[7]).

In the present paper, steady flow and unsteady flow are
analized by using perturbation method. In case of steady
flow, solutions obtained by the Newton-Raphson method and
perturbation method are compared numerically. In case of
unsteady flow, assuming that the basic flow is known, the
unsteady flow is calculated by the linearized equation
increasing the boundary valuves by small amounts.

2. Basic Equation

Basic equations, namely, equation of motion, constitu~
tive equation, equation of continuity snd boundary
conditions employed in the present paper are described in
this section. Throughout the paper, equations are expressed
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by using spatial description with rectangular coordinate
system X; (4=1, 2 and 3) and time . Indecial notation
is . used and the usual summation convention is employed
for repeated indices, which run from 1 to 3, unless
otherwise noted.

Denoting velocity as U3 , the equation of motion
of a fluid is expressed as in the following form.

U, . 2
/D(%{“*u](z/i7) - Z-"/I’J’ =P£ (21)

where P and f,- are density and body force, respect-
ively. In case of incompressible nonlinear viscous fluid,
stress tensor Tt'z' is described as folloews using
Kronecker's delta function 57’ .

Tij = —pSif + 2u (T4, Ia) iy ‘2.2)

where P denotes pressure and M is nonlinear viscosity
function and is assumed as the function of the second and
third order invariants of deformation rate tensor dtj ’
i. e. ,

Iy = -d,-]'d,'j ZED)
I = det(d,.&.;) (2.4

where deformation rate tensor d,/' is related to velocity

Uu; as:

dif = }-'-(LI,-,J' +U,) (2.8)

In case of Newtonian fluid, ,M- is the constant and
equation (2.2) and (2.5) yield:

T_‘]' = —Pé;’j +/U (LI;',/ +L//',z') (2'5)

Moreover, the well known Navier-Stokes equation can be
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obtained by introducinz equation (2.6) into equation (2.1)
and using equation of continuity,

P (%‘"‘;H + (/IJ u'z'yl) +Rz, ‘—'/M (/[;',/'Jl =/)](z' (2?)

Baguation of continuity of incompressible fluid is as
follows.

MZ‘/ l' =0

As the boundary condition, the following two conditions

(2.8)

are employed for simplicity. Boundary condition for
velocity is expressed as:

U; = [ o 3, (2.9)

. A .
where superscripted means the given value on the
boundary. The surface force is prescribed on the boundary

Sz 5 1. e,

Sz; = T"'JM], = /Si' or 82, (Z-/O)

where M, 1is the components of the unit normals to the
boundary surface Sz . Let it be assumed that

/S/ USg = S (2./1)
SNS, = ¢ (2.12)

where AS is the surface of the body l/ and <P means
null set.

In order to apoyly finite element method, variational
equation corresponding to equations (2.1), (2.2), (2.9)
and (2.10) is required and it can be obtained by following
the conventional procedure of the Galerkin method. Let
the weighting function (/;¥* be the function, the value
of which is arbitray except on the boundary &5, , where
it takes the value zero. IMultiplying both sides of equation
(2.1) by ¢Q=*, integrating over the whole volume 7|/ and
using Green's theorem, it follows that



v

_ j (PUs*;fi )dV + J(uz S;)dN (2.13)
v Ps

Introducing ecuation (2.2) into eguation (2.13) =2nd
rearranging it, the following variational equation is

obtained.
[(fu*a“‘)d‘f «“j(Puz Usg)av = J (Ug; PV
Vv
+jp(u3fd-u4,j)dV +J)*(U§.0iujré)dv
Vv Y

jP(U; f )dv + J‘ (U:" e)ds (2./4)
v

As to the equation of continuity (2.8), the variational
equation:

j(P* . )AV =0 (2.7¢)
’

is followed, in which })* is the arbitrary weighting
function.

3. Finite Element Method

It is assumed that the flow field to be analized is
divided into small regions called finite elements., Let
the interpolating equation for velocity and pressure in
each finite element be expressed by the following forms.

Y
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u‘l. = @d (/{Q’z‘ (-3-/)

P = Z\Px (32)

where g&i and ZEA mean internolation function for
velocity @nd pressure, Lhd denote the velocity at
X th node of finite element in the ¢ +th direction,

and /& is the »nressure at the A th node, respectirely.
The selection of interpolating function §d and _Q-E)\
is one of the wmost imnortant »nrocedures in the finite
element ~nalysis. Teylor «nd *lood, [53 ’ (6) rawzhara et,.
al. [1)-04] and others have been used % e ralation that

éo& is selected so as to be aigher order »nolynomials
than EEA is. On the contrary, Oden .nd .ellford ['ZJ
used the relation that 1%(13 the same order polynomial
as g@k is. In case of the selection by Oden and ‘Jellford,
the aditional boundary conditions should be imwosed in the
analysis., Oden and vwellford employed the boundary condition

of the »pnressure gradient normal to the wall, i. e.,

'a‘a‘nE = ;‘\ NS, (3.3

where 9] is the normal coordincte to the boundary, and
Sk means prescribed boundary value of the nressure
cradient.

In the numerical examnles of tae nresent papver, two
dimensional fluid flow anslysis is obtained, and, in that
case, perfect polynomial series to second order bterms is
used for velocity and linear polynomial series for pressure,
Triangular finite element with six nodes is employed for
velocity and with three .odes for »ressure.

According as the ccnventional Galerii:n method, the

ecuations:
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Uf = @al/l;{(, (34)

P* - E)\ PA* C3-$)

%*
are used for weighting functions LJ{ and FZ\
Introducing ecuations (3.1), (3.2), (3.4) and (3.5) into
equations (2.14) and (2.15), and making use of the
arbitrariness of the quantities Lﬁz and A% , the
follow1ng finite element equations are obtained.

ﬁ7“ﬁﬁ/ L{@; + ﬁa§8ﬁ7 L&y»LJa@ + fiﬂbﬂ/%\ *‘igabei Lf@; = 5:20%
(3.8

Hain Uy =0 (3.7

where superposed dot denotes the partial differentiation
with respect to time ¢ , and

Hoigj = fv (%3,)3ijdV
Kapri = | P(Pu®s Py, )AV
& fvf’ P

Hots x =f (%,%,,,)4V
v

Saip; = f M (o 2 By )01V + j 2 @ooi@/s,/ )4
v v

S:zaé ==J{}°(j;§§x)6{tr *:Jn<f§§v£§')‘qjg

14 <

Following the conventional finite element procedure,
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the equaition system for the whole flow field can bhe

obteined using superposition.
A

FiAO(sz =0 (3.9

where Ua and 5& denote the velocity and npressure
of the nodes in the whole flow field and whole direction,
and coefficients can be constructed by superposing the
coefficients of equation (3.€6) and (3.7) applied to the
whole flow fielé. In eguations (3.8) and (3.9), indices

A » B and Y take the value from / to 2K and

XA from , to @ ,where A/ is the total number of
nodal points of the flow field and @ is the total
number of the nodes at which pressure is taken to be the
unknowns.

In case of steady flow analysis, equations (3.8)

and (3.9) are rewritten as in the following form.

Ropr Vs Uy + Hary + Sug Vs ~ Oy =0 (3./0)

Hray =0 (3.00)

Equations (3.10) and (3.11) are the finite dimensional
nonlinear simultaneous equation system.

4. teady Flow Analysis

In order to solve nonlinear equation system, in-
cremental solution method is one of the most commonly
used procedures in the finite element analysis. It
seems to be more convenient to proceed the calculation
considering the effects of the terms of the higher order.
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In this purpose, the perturbation method is suitable.
Assume that the boundary term (v can be expsnded into
the Taylor series in small perturbation parameter & as:

A (2)

A A 3
éid = (;)'*2 Qo +E°Q4 + --- (F.1)

The velocity $¢ and pressure f} are also assumed
to be expanded into the form that

Q)P-.-_ (UP“" + E(U/;‘" + 52¢UF<2’.,_ (4.2)

Fr= P HEPH” ERT - (4.3)

Assumming that viscocity coefficient A is constant

for simplicity,introducing equation (4.1) to (4.3) into
equations (3.10) and (3.11), and eguating the coefficients
of the same order terms in £ , the following linear
simtltaneous equation system can be obtained: for the

oth order term:

Kd(sar Vs VS + Hoax g + S VFW - §2§°’ =0 (4%
Haoa 1, =0 (¢.5)
for the lst order term:
Kepr CU7 U7 4 00)) + Hon 83"
+ Saps” - 4 =0 (4:6)
Haox Vg’ =0 (4.7

for the nth order term:
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), 1)) (07 ¢n)
+ +
Kopy (U Uy Uﬁ Uy”) Hoix 85
A ”'/ - )
) = ) -7 (4.3)
+ Sug Vg = - 2 Kagr?), 4.8
) _ (4.9)
Postulating that the intial values Z%w) and ;a) are
previously knovm, equations (4.5) - (4.9) give the

increments 7)[9‘*) and 3’\"’) (f=1,2, ---n) calculating re-

cursively up to the required order

n .

Substituting

the increments UP(”) and ?A‘k) into ecuations (4.2) and

(4.3), velocity

Ve

and pressure

a2t

each nodal

point of a finite element can be calculated.

Equations (4.8) and (4.9) are rewritten
following form to calculate the M +th order

Hox

delx Uy + Kot U§°)+S,,5 Hot

N

( h)
Ve

0 £

as in the
incremente.

] [am &

! ) A
.Q 3 ,U(r y(n-y')
o YZ;’ %f/ar s Uy

\

On the contrary, iteration »nrocedure of Newton-

Raphson method can be obtained as follows.

’ \
Kopr Uy "+ Katyp U7+ Sap Hoon

Hot

r \
n)
Us

wm
A

b 0 ]
(4.10)
”Ug4f' (F(wo\
ol
;\n—l) m-1)
L) S

(4.11)
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where
- A ) )

. ‘F;("")\ r Kd]”‘])(;n_l)l);”-‘) + Houg)sn-l) + Sal/@U - ot

[Ca)) n=i
(4.12)
Eguation (4.11) can be derived by 2 little modification

for eqguation (4.10). Perturbation method, i. e., solution
procedure by eguation (4.10) is advantageous to use because
the coefficient matrix needs not reformulate in each
iteration cycle. However, given boundary condition term
fia should be able to be expanded into Taylor series
as in equation (4.1). On the contrary, Newton-Raphson
method, i. e., solution procedure by equations (4.11) and
(4.12) proceeds the iterative calculation by reformulating
the coefficient matrix by use of previously calculated
values (UF("-» ana ¢,

Two dimensional steady fluid flow between two parallel
rigid wall is treated as the first numerical example. The
computed results obtained by the perturbation method and
Newton-Raphson method are compared in figures (1) -(4).
Figures (1) and (2) illustrate the finite element idea-
lizations named model A and model B, respectively znd
computed velocity profiles. On the boundaries indicated
by hatched lines, it is assumed that two components of
velocities are zero. On the boundaries numbered from 31
to 56 of the model A and from 38 to 63 of the model B,
velocities are assumed to be given, of which profiles are
shown parabola. The Reynolds number calculated by using
inlet flow velocity and inlet width is 150. The boundary
numbered from 6 to 67 of model A and from 8 to 74 of model
B, is regarded as the boundary LSZ in equation (2.10),

i. e., surface force are assumed t0 be zero. Numerals in
the figures are computed pressure. In figures (3) and

/0
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(4), comruted results by zerturbation method and Hewton-
Raphson method are shown. Velocities at certain representative
nodal noints are nlotted according s the Réynolds number
calculaoted using inlet length snd inlet maximum velocities.

The computation results by both methods shows well in

agreement 811 through Reynolds number in the figures.

5. TUnsteady Flow Analysis

In order to solve unsteady flow in equations (3.8)
and (3.9), perturbation method and Newton-Raphson method
are used, both of which are similar procedures employed
ig\the steady flow snalysis. It is assumed that the term
Cla can be expanded into the following form in small
parameter € .

A ) 22
By = v eQa +8Qa * (1)

Also, expanding the velocity 'U,B and pressure P)\ as:

Vg = Vs + g’l)/ga) + g2+ —oe (s.2)
F)\ - Alo) + ¢ P,\U) + 5,2&53)+ . (\{73.)

introducing equations (5.1) - (5.3) into equations (3.8)
and (3.9) and rearranging them lead to the following
simultaneous equation system equating coefficients of
the same order terms in § .
A\ a)
. ) () o) 0 (o) ) ¢ (S 4
Mo(/%?//e -+ Kd/?a’ 'Ulg UJ + Ho:;f,\ + So(/S’U/Q = 4

Hox U =0 (si8)

/1l
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Md/s ,Z%CI) + Kd(da' (UP(D Qj;") + U (0 U)'m)

G + Sy U = o (§4)
Hax V.5 =0 (7

/\70(/3 ?)PCH) + Ko(/d)’( UP(O)U;M (h) {o;)

+ Hor g + So,/s /Q(’” = ZKA;B? M?) (nr) ()]

Hoxn ¥y " ($57)

Equation (5.8) can be rewritten as in the form:

- )

Mup?//g +/4d,67//3 g Hotx g’w = A:) ($/0)

where

Aa/e = ( Kapy ?./,w + Ko(y/e U)m) + Sd/e

A ) n-y

A
Boc’n) Qd —:-I Kd,&}’ Ufg(r) U;” r)

Replacing the differetiation with respet to time with the
difference as:

()]

(n)
. — g (0)
Ve at 2

where fu;%q) denotes the initial value of the velocity
increment q)/s("’ for o short time increment AT .
Introducing equation (5.11) into equation (5.10) and com—
bining with ecuation (5.S), it follows that

/6
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[ ,
n r A(n [ )
/‘\a(s + Z’E Mol,@ ot UF( ) B;) Zlfl"fo//a U[f, )(0 )

"
+

Flax 0 g ) 0

(£12)

is is seen in equation (5.12), coefficient matrices are
the same through the all increments, and the equivalent
load terms should be modified as in right side of the
above equation.

First of all, the basic flow, which satisfies
equations (5.4) and (5.5), is assumed to be known. And
then, the flow at the boundary gs, or the surface force
at the boundary ,Sz is increased by a little quantity.
The responce to the flow or surface force can be calculated
by using equation (5.12). This method of solution is
called perturbation method. TFigures (5) to (11) show the
computed results of unsteady flow analysis obtained by
the perturbation method. In figures (5), (7) and (9),
finite element idealigzation, the computed velocities and
the pressures are illustrated. The Reynolds number in
the figures is calculated using inlet maximum velocity
and inlet length. As the basic flow, the steady flow
obtained by the method mensioned in the previous gection
is emvloyed. Changes of unsteady velocity ratio to the
corresponding steady flow velocity versus time are plotted
in figures (6), (8) and (165 comnuted using various basic
flows of different Reynolds number. Figure (11) shows
the changes of the velocity versus time a2t node Mo. 9
according as the velocity of basic flow.

/T



1 Fig.(6) Computed Unsteady Velocity from R.=50to R.=6€0

Mo 2.0

1.5
1.0

0.5

-0.5

-1.0
VY/vyo 2.0

1.5

1.0F

0.5

-0.5

-1.0

----- Steady Velocity v,
at R.= 60

: } } 4 ' " : ' + " + ! ! ¢ + } — t
0.05 0.10 0.15 0.20

—----~ Steady Velocity v,
at R. =60

+ TSI
0.05 0.10 0.15 0.20



65

AR z Ll : : 7100
(90z)s~__ S¢ QL) 7€ (G 0€7)|t €€ (S L€2)¢ € (Il

s77 €7 AV 07 68 1ee  LE 96 15¢°0

- - < 05 08 4 60

v

79 1! 7S 1S u/m.w 1640
- , €, g ., vy /2 L4 / .
(@¢)L1 €9 (€€Q9l 29 ?m‘lm_/m@ [CRIyIV 09 (7ese-)EL 6G (8'9%72)|C! 8G (76%.) { Ol

L S04 5 " 89 VJ,: 59 < % %!

6201 87 (3296 17 (9778 $ ®e7L Y0679
\
/5 98 Tmm/ //om

P —

—
—

<«—9. ST VA €L L

S -~ Gl

SGaag, eIy L e — [
ok CZEC 069122 18e 0L e ) 3'GEL)|8l
(@Li)7e 28 (0'€2°) 18 (6°05-) 08 (6181 /mu (7' 0LI|0C 8L WBNV ol LL (0'GEL)

~ .
<56 qm\ <6 6 <6 06 <—68 88 <«—.8 98 «—G8 «——¥%g8 < 3 1GLL
(Lole 10l (G'177)|0€ 001 (€7957)|6Z 66 (6'8077)|82 86 (Z6lI)|L2 L6 (1'%792)92 96 (0LEL)ST 07
/77, 2 ST /77 7. SIS 777

09 =°4 10 Auoojap Appalg pandwo)d (9) by



G Fig.(7) Computed Unsteady Veloéity from R, =100to R.=12(
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F—ﬁig. (9 ) Computed Unsteady Veﬂo'city from Re=200to Re=240
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70 Fig.(11) Computed Unsteady Valocity at Node No.S
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