Some Applications of Transfer Theorems

Tomoyuki Yoshida (Hokkaido Univ.)

<u>Section 1. Preliminary results.</u> This section is the abstract of my paper "Character-theoretic transfers".

Definition 1. For groups $H \leq G$ and $\lambda \in \hat{H}$, we set $T^G(\lambda) = T^G_H(\lambda) = \det(\lambda^G + 1^G_H).$

The mapping $T_H^G: \hat{H} \longrightarrow \hat{G}$ is called a <u>character-theoretic</u> transfer.

<u>Lemma 1</u>. Let $H \leq G$. Then the following hold:

- (1) $T_H^G: \hat{H} \longrightarrow \hat{G}$ is a homomorphism.
- (2) If $H \leq K \leq G$, then $T_K^G \circ T_H^K = T_H^G$.
- (3) $T_H^G(v_{|H}) = v^{|G:H|}$ for any $v \in \hat{G}$.

Lemma 2. (Mackey decomposition) Let H, K \leq G and $\lambda \in \hat{H}$. Then

$$T^{G}(\lambda)_{|K} = \prod_{g} T^{K}(\lambda^{g^{-1}}_{|K \cap H}g),$$

where g runs over a complete set of representatives of (H, K)-double cosets of ${\tt G}$.

<u>Lemma 3</u>. A character-theoretic transfer is the dual of an ordinar; transfer $G/G' \longrightarrow H/H'$.

<u>Lemma 4.</u> Let $H \leq G$, $x \in G$ and $\lambda \in \hat{H}$. Assume $T^G(\lambda)(x) \neq 1$. Then there is g in G such that $\langle x^g \rangle \cap H \not\leq \text{Ker } \lambda$.

Lemma 5. Let H be a subgroup of G of index prime to p. Let $R_H^G: \hat{G}_p \longrightarrow \hat{H}_p$ be the restriction, where \hat{G}_p and \hat{H}_p are Sylow p-subgroups of \hat{G} and \hat{H} , respectively. Then the composition $T_H^G \circ R_H^G: \hat{G}_p \longrightarrow \hat{H}_p \longrightarrow \hat{G}_p$ is an isomorphism and $\hat{H}_p = (\text{Im } R_H^G) \times (\text{Ker } T_H^G)$.

<u>Lemma 6</u>. (Tate) Let P be a Sylow p-subgroup of G and let $K \le P \le H \le G$. Assume that P n $G^pG' = (P \cap H^pH')K$. Then the following hold:

- (1) If K < G', then $P \cap G' = (P \cap H')K$.
- (2) If $K \leq O^p(G)$ and $K \triangleleft P$, then $P \cap O^p(G) = (P \cap O^p(H))K$.

 Notation 1. Let X and Y be subsets of a group. Then we set

$$X^{Y} = \{ x^{y} \mid x \in X, y \in Y \}, X_{Y} = \bigcap_{y \in Y} X^{y}.$$

Definition 2. Let H be a group, x a p-element, S \leq H and λ \in \hat{S} . Assume that the following hold :

- (a) λ is of order p,
- (b) $T_S^H(\lambda)(x) \neq 1$, and
- (c) $\langle x^p \rangle^H$ n S \subseteq Ker λ .

Then we say that the triplet (S , λ , x) is a <u>singularity</u> in H . The subgroup S is called a <u>singular subgroup</u> or simply a <u>singularity</u>. The element x is called a <u>singular element</u>. The character λ is called a <u>singular character</u>. We denote the set of singularities (and also singular subgroups) in H by $\underline{Sing(H)}$.

Example 1. Let P be a 2-group, K \leq P and t an involution of P . Set S = N_P(K) and suppose t acts on the set P/K as an odd permutation. Then |S:K|=2 and (S,λ,t) is a singularity in P, where λ is a linear character of S with kernel K .

Example 2. Let \overline{H} be a transitive permutation group with the stabilizer \overline{S} of one point. Let C be a cyclic group of order p. Construct the wreath product $H = C \wr \overline{H}$ with base subgroup $V (\underline{\sim} C^{\left|\overline{H}:\overline{S}\right|})$. Then $V\overline{S}$ is a singular subgroup in H with singular element contained in V.

Lemma 7. Let P be a Sylow p-subgroup of G and let $P \leq H$ $\leq G$. Assume P n G' \neq P n H'. Then there are g ϵ G - H , x ϵ P and a linear character μ of H of order p such that (S, λ , x) ϵ Sing(P), where S = P n H^g and $\lambda = \mu^g$ | S . Let (S, λ , x) ϵ Sing(H). Then the following hold:

- (1) $(S^a, \lambda^{a^{-1}}, x^b) \in Sing(H)$ for any $a, b \in H$.
 - (2) $S Ker \lambda$ contains a conjugate of x.
 - (3) If $S \leq R \leq H$, then $(R, T_S^R(\lambda), x) \in Sing(H)$.
- (4) If S \leq L \leq H, then (S, λ , y) ϵ Sing(L) for some y ϵ L \cap x $\stackrel{H}{x}$.
 - (5) If N $\underline{\bullet}$ H and N $\underline{<}$ Ker λ , then (S/N, λ , xN) ϵ Sing(H/N).
- (6) If $x \in L \leq H$, then there is a conjugate $R = S^h$ of S such that $(R \cap L, \lambda^{h-1}|_{R \cap L}, x) \in Sing(L)$.
 - (7) If $P \in Syl_p(S)$, then $(P, \lambda_{|P}, x) \in Sing(H)$.

Notation 2. For any p-group P, $\Phi^*(P)$ denotes the intersection of all subgroups of P of index at most p^2 .

<u>Definition 3.</u> A p-group which has no quotient groups isomorphic to $Z_p \ Z_p$ is called a <u>weakly regular</u> p-group.

Lemma 9. Let P be a p-group. Then $cl(P/\Phi^*(P)) \leq p$ and $\Phi^*(P) \geq \Phi(\Phi(P))$. P is weakly regular if and only if $cl(P/\Phi^*(P)) < p$. When p = 2, P is weakly regular if and only if all subgroups of P of index 4 are normal.

<u>Lemma 10</u>. A p-group P has no proper singular subgroup if and only if P is weakly regular.

Lemma 11. Let (S, λ , x) be a singularity in a p-group P. Set K = Ker λ and \overline{P} = P/K_p. Then the following hold:

- (1) Assume $x \in V = S_P$. Then $\overline{P} \cong Z_p \ (P/V)$, where the wreath product is constructed by the permutation representation of P/V on the set P/S and the base subgroup is \overline{V} . In particular, $m(\overline{V}) = |P:S|$ and $\overline{V} = \langle \overline{x}|\overline{P} \rangle$.
 - (2) $N_P(K) = S$.
- (3) Let $Q \leq P$ and assume that $[x, y; p-1] \in \Phi^*(Q)$ for all $y \in Q$. Then $\langle Q, x \rangle$ is contained in a conjugate of S.
 - (4) $N_p(\langle x \rangle)$ is contained in a conjugate of S .
 - (5) If N $\underline{\mathbf{4}}$ P and N n S $\underline{\mathbf{5}}$ K , then N $\underline{\mathbf{5}}$ K .
 - (6) $\overline{S} = \overline{K} \times Z(\overline{P})$ and $|Z(\overline{P})| = p$.
 - (7) If S < Q < P, then Q is not weakly regular.
 - (8) If $S \leq R \triangleleft Q \leq P$, then $m(R/\Phi(R)) \geq |Q:R|$.

- (9) Let $P = P_0 > P_1 > \cdots > P_n = S$ be a series of subgroups such that $|P_i:P_{i+1}| = p$ for $0 \le i < n$. Then Ker $T^i(\lambda) \not \le P_{i+1}$ for $0 \le i < n$. Let $a_0 \in P_0 P_1$ and $a_i \in \text{Ker } T^i(\lambda) P_{i+1}$ for 0 < i < n. Define inductively elements $x_i, 0 \le i \le n$, by the rule $x_0 = x$ and $x_{i+1} = [x_i, a_i; p-1]$. Then $T^P(\lambda)(x) = \lambda(x_n) \ne 1$.
 - (10) $\overline{x} \notin Z_{n(p-1)}(\overline{P})$, $cl(\overline{P}) > n(p-1)$.
- (11) If p = 2, K_p = 1 and N is a cyclic normal subgroup of P, then $x^2 \in C_p(N)$ and $< x > N/< x^2 >$ is dihedral or semidihedral.
- (12) Let N be a subgroup of P normalized by x. Assume that p=2, $\exp(N/N') \le 2^n$, $n\ge 2$, and that all subgroups of N of index at most 2^{n+1} contain N'. Then there is a conjugate T of S such that $|N:N\cap T|<2^n$.
- (13) Assume that P is the central product of P₁ and P₂ and that $x = x_1x_2$, where $x_i \in P_i$. Then for some i, $(S \cap P_i, \lambda_{\mid S \cap P_i}, x_i) \in Sing(P_i), (S, \lambda, x_i) \in Sing(P) \text{ and } S \geq P_i \text{ , where } j \neq i.$

Theorem 1. If G has a weakly regular Sylow p-subgroup P, then P \cap G' = P \cap N_G(P)'.

Theorem 2. Let $P \in \operatorname{Syl}_p(G)$ and let Q be a weakly closed subgroup of P such that $[P, Q; p-1] \leq \Phi^*(Q)$, then $P \cap G' = P \cap N_G(Q)'$.

Theorem 3. Let $P \in \operatorname{Syl}_p(G)$ and let Q be a strongly closed and weakly regular subgroup of P. Then $P \cap G' = P \cap N_G(Q)'$. Theorem 4. Let $P \in \operatorname{Syl}_p(G)$ and $P \leq H \leq G$. Take elements x_1, \cdots, x_m of P such that $H = H^P H' < x_1, \cdots, x_m > and <math>x_k$ is an element of $P - H^P H' < x_1, \cdots, x_{k-1} > of minimal order for each <math>k$. Let G_k , $1 \leq k \leq m$, be the subsets of G which consist of $g \in G - H$ such that $(P \neq)P \cap P^g$ is a singular subgroup in H with singular element x_k . Set $P_k = (x_k^{-1}x_k^{Hg^{-1}} \cap P \mid g \in G_k^>, 1 \leq k \leq m$. Then $P \cap G' = P_1 \cdots P_m(P \cap H')[P, N_G(P)]$.

Theorem 5. Let $P \in \text{Syl}_p(G)$. Take elements x_1, \cdots, x_m of $P - \Phi(P)$ such that $P = \langle x_1, \cdots, x_m \rangle$ and x_k is of minimal order in $P - \langle x_1, \cdots, x_{k-1} \rangle \Phi(P)$ for each k. Let \mathfrak{F} be the set of pairs (F, N), where F < P and $F \leq N \leq N_G(F)$, satisfying the following conditions:

- (a) F is a tame intersection;
- (b) $N_{G}(F)/F$ is p-isolated;
- (c) $F \in Syl_p(O_{p'p}(N_G(F)));$
- (d) For any $x \in N_P(F) F$, $N = \langle x^N, N_P(F) \rangle$;
- (e) $N_{G}(F)$ is p-constrained;
- (f) F contains a conjugate of a singular subgroup in P with singular element $\, x_k^{} \,$ for some $\, k$;
- (g) N_P(F) has a normal subgroup K such that $\Phi(F) \leq K \leq F$ and N_P(F)/F \cong Z_p (N_P(F)/F). In particular, m(F/ $\Phi(F)$) \geq |N_P(F):F|.
 - (h) If p = 2 and $m(N_p(F)/F) > 1$, then there is L $\underline{\triangleleft}$ N

such that $\Phi(F) \leq L < F$, B = N/C $_{\!\!\!N}(F/L)$ is a Bender group and F/L is the Steinberg module of B .

Then $P \cap G' = [P, N_G(P)] \langle [F, N] | (F, N) \in \mathcal{F} \rangle$.

Section 2. Applications.

Theorem 1. Frobenius kernels are nilpotent.

Theorem 2. Conway's group C_2 is characterized by its Sylow 2-subgroup.

Theorem 3. Radvalis group Rd is characterized by its Sylow 2-subgroups.

Theorem 4. The unipotent subgroups of simple groups of Lie type are weakly regular, except for the following:

(*)
$$E_{n}(2), U_{n}(2), Sp(2n, 2), D_{n}(2), D_{n}(2^{2}), ^{3}D_{4}(2^{3}), E_{n}(2), ^{2}E_{6}(2), F_{4}(2), ^{2}F_{4}(2)'.$$

Conjecture 1. Simple groups with weakly regular Sylow 2-subgroup have abelian Sylow 2-subgroups or are isomorphic to simple groups of Lie type of characteristic 2 excepting the above (*). Conjecture 2. Let $P \in \text{Syl}_p(G)$, $p \neq 2$. Let $\Re(P)$ be the set of weakly regular subgroups of P of maximal order and let $\Re(P)$ be the set of $R \in \Re(P)$ such that $|R:\Phi(R)|$ is maximal. Set $W(P) = \langle \Re(P) \rangle$. Then $P \cap G' = P \cap N_G(W(P))'$.