58

On the Higman-Sims simple group of order 44,352,000 =
$$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$$
 = $176 \cdot 175 \cdot 10 \cdot 9 \cdot 8 \cdot 2$

木 村 浩 (北大理)

Let y be a field automorphism of $PGL(2,q^2)$ of order 2, where q is a power of an odd prime number.

Theorem. Let G be a 2-transitive group on $\Omega = \{1, 2, \dots, n\}$, n is even. If $G_{1,2}$ is $PGL(2,q^2) < y >$, then either

- (1) G has a RNS, or
- (2) q = 3, n = 176 and G is the Higman-Sims simple group.

I gave an outline of a proof of this theorem

Notation: Let X be a subset of a permutation group Y.

Let F(X) denote the set of all fixed points of X and $\alpha(X)$ be the number of points in F(X). $N_{\mathbf{v}}(X)$ acts on F(X).

Let $\chi_1(X)$ and $\chi(X)$ be the kernel of this representation and its image, respectively.

1. Properties of $PGL(2,q^2) < y > .$

Let t' be an element of $PGL(2,q^2)$ of order q^2-1 and x be an involution of $PSL(2,q^2)$ which normalizes <t'>. Set <s> = $0_2(<t'>)$ and <t> = 0(<t'>). We may assume <t'>y = <t'> and y = 1. Let y be a unique involution of <s>.

(1.1) $\langle y,s \rangle$ is quasi-dihedral if $4 \nmid q-1$ and $\langle yx,s \rangle$ is quasi-dihedral if $4 \mid q-1$

- (1.2) $PGL(2,q^2) < y > has 3 classes of involutions.$ $\boldsymbol{\tau}$, y and xs are representatives of these classes.
- Let I be an involution of G with the cyle structure (1,2) · · · . Then I normalizes $G_{1,2}$ and we may assume [I, $G_{1,2}$] = 1. By (1,2) every involution of G is conjugate to I, It, Ixs or Iy.
- 3. Conjugation of involutions.

Lemma 3.1. $\tau \sim y$, xs.

Lemma 3.2. y /~ xs

By Lemma 3.1 and a theorem of Witt $\chi(\tau)$ is 2-transitive on $F(\tau)$.

4. Structure of $\chi(\tau)$.

Let \overline{g} denote the image in $\chi(\tau)$ of an element g of $\text{C}_{G}(\tau)\text{.}$

Lemma 4.1. $\chi(\overline{x})$ is 2-transitive on $F(\overline{x})$.

Let T be a Sylow 2-subgroup of $\chi_1(\tau)$ contained in S = $\langle x, s, y \rangle$.

By the structure of $\chi(\tau)_{1,2}$ we have the following cases.

(I)
$$s^2 \notin T \notin \langle s \rangle$$

(II)
$$s^2 \in T \notin (s)$$

(III) T C <s>.

Lemma 4.5. $\chi(\tau) \supset RNS \Longrightarrow I \sim \tau$.

Lemma 4.6. $\chi(\tau) \supset RNS \Longrightarrow q = 3$

Iy
$$\sim \tau$$

Lemma 4.7. $\alpha(\tau)$ is a power of $2 \Longrightarrow IXs \sim \tau$.

Lemma 4.12. $q = 3 \text{ or } \overline{t} \neq 1$.

Lemma 4.4. In the case (I) T = $\langle xys^j \rangle$ or $\langle ys^j \rangle$ \downarrow \downarrow \downarrow $[s^j,xy]=1$ $[y,s^j]=1$

$$[s^{j},xy]=1$$
 $[y,s^{j}]=1$

where $|s^{j}| = 4$, and $\chi(\tau) \supset RNS$.

5. The case (I)

Lemma 5.1. $q = 3 \Rightarrow G$ is H-S

Lemma 5.2. $q \neq 3 \implies G > RNS$.

6. The case (II)

There is no group statisfying the conditions in Theorem.

7. The case (III).

Lemma 7.10. $T = \langle \tau \rangle$.

Lemma 7.11. $\chi(\tau) \supset RNS \Rightarrow q \neq 3$.

Lemma 7.12. $\chi(\overline{x}) \supset RNS$.

From these lemmas we have that G has a RNS.

8. By the proof of Theorem we have the following.

Corollary. Let G be as in Theorem. If G has a RNS, the following conditions are satisfied.

- (1) $n = \alpha(\tau)^2 = \alpha(y)^2$.
- (2) $\overline{t} \neq 1$, and
- (3) $\chi_1(\tau) = \langle xys' \rangle$ if $\langle y,s \rangle$ is quasi-dihedral, $\chi_1(\tau) = \langle ys' \rangle$ if $\langle xy,s \rangle$ is quasi-dihedral

or

 $\chi_1(\tau)$ = $<\tau>$, where s' is an element of <s> of order 4.

Important theorems for the proof of Theorem are the following:

- 1. Theorems of Aschbacher.
 - (i) Doubly transitive groups in which the stabilizer of two points is abelian, J. Alg. 18 (1971).

- (ii) 2-transitive groups whose 2-point stabilizer has 2-rank 1, J. Alg. 36 (1975).
- 2. A theorem of Baer.

Engelsche Elemente noethersche Gruppen, Math. Ann. 133 (1957).

3. A Theorem of Bender.

Endliche z weifach transitive Permutationsgruppen, deren Involutionen keine Fixpukte haben, Math. Z. 104 (1968).

- 4. A theorem of Huppert.

 Z weifach transitive, auflösbare Permutationsgruppen,

 Math. Z. 68 (1957).
- 5. Degree formula (Ito-Nagao-Kimura).

Let G be a 2-transitive group on $\Omega = \{1, \dots, n\}$. Let ζ be an involution of $G_{1,2}$. Let $\beta(\zeta)$ be the number of involutions of G with cycle structures $(1,2)\cdots$ which are conjugate to ζ and $\gamma(\zeta)$ be the number of involutions of $G_{1,2}$ which are conjugate to ζ . Then

$$n = \frac{\beta(\zeta)}{\gamma(\zeta)} \alpha(\zeta)(\alpha(\zeta)-1) + \alpha(\zeta), \text{ and}$$

$$|C_{G}(\zeta)| = \alpha(\zeta)(\alpha(\zeta)-1) \frac{|G_{1,2}|}{\gamma(\zeta)}.$$

Degree formula is useful in a proof of Theorem.

As an example we shall prove Lemma 3.1. and the case (I).

Proof of Lemma 3.1.

	τ	У	XS
G _{1,2} : C _{G_{1,2}()}	$\frac{q^2(q^2+1)}{2}$	q(q ² +1)	$\frac{q^2(q^2-1)}{2}$
(q = 3	45	30	36)

- <s, x, y> is a Sylow 2-subgroup of $C_{G_1}(\tau)$ and $u^2 = \tau$ for every
 element u in <s, x, y> of order 4, a square of every element
 in $C_{G_1,2}(y)$ of order 4 is y. On the other hand $C_{G_1,2}(y)$ is
 isomorphic to PGL(2, q) × <y>, a contradiction.
- (2). Assume $\tau \sim xs \sim y$. As in the case (1), $\chi(\tau)$ is also of rank 3. Thus $C_{G_1,2}$ (xs) is conjugate to a subgroup of $C_{G_1,2}$ (xs). A Sylow 2-subgroup of $C_{G_1,2}$ (xs) is $< xs > \times Z_4$, which is a contradiction.
- (3). Assume $\tau \sim y \sim xs$. As in the case (1), $\chi(\tau)$ is of rank 4 and we have also a contradiction. This proves the lemma.

The case I

Lemma 5.1. In the case I G is the Higman-Sims simple group if \bar{t} = 1.

Proof. By Lemma 4.12 q = 3. By Lemma 4.4 T is $< xys^2 >$, $< \overline{x}$, $\overline{s} >$ is dihedral of order 8 and $\chi(\tau)$ has a RNS. Since $\chi(\tau)_{1,2}$ is non-abelian, $\chi(\tau)$ is not solvable by [7]. By Lemma 4.1 $\chi(\tau)_1$ has two classes of involutions. By [5. Theorem 7.7.3] $\chi(\tau)_1$ has a subgroup \overline{x} of index 2 and $\overline{x}_{1,2}$ is a four-group. By [1] $\chi(\tau)$ is a semi-direct product of V by PSL(2, 4), where V is a 2-dimensional vector space over the field GF(4) of 4 elements, and i = 16. By Lemma 4.5 and Lemma 4.7 τ is not conjugate to I or Ixs.

By Lemma 3.3 $\chi(y)$ is a rank 3 group on F(y) with subdegrees 1, $5(\alpha(y) - 1)/11$ and $6(\alpha(y) - 1)/11$. Set $\alpha(y) = 11m + 1$. If $\tau \sim I\tau \sim Iy$, $\gamma(\tau) = \beta(\tau)$ and $n = 16^2$. Since $\gamma(y) = 66$, by the degree formula $\lim(\lim + 1) \beta(y)/66 + \lim + 1 = 16^2$, where $\beta(y)$ is a sum of elements in a subset of $\{1, 30, 36\}$. A calculation yields that there exists no integer m satisfying the above condition. Similarly we have a contradiction in the case $\tau \sim I\tau \sim Iy$. Thus $\tau \sim Iy \sim I\tau$, $y \sim I \sim I\tau \sim Ixs$, $\chi(y) = 12$ and $\eta = 30 \cdot 16 \cdot 15/45 + 16 = 176$.

Finally we shall prove the simplicity of G. Let N be a minimal normal subgroup. If N is Frobenius group, G has

a RNS and n must be a power of 2. Therefore $N_{1,2}$ contains PSL(2, 9). If $N_{1,2} = PSL(2, 9)$, the image in $\chi(\tau)_{1,2}$ of $C_N(\tau)_{1,2}$ is $\langle \bar{x}, \bar{s}^2 \rangle$ since $\chi_1(\tau) = \langle xys^2 \rangle$. We have $\bar{x} \sim \bar{s}^2$ since $\chi(\tau)_1 = P\Gamma L(2, 4)$. This contradicts Lemma 4.1. If $N_{1,2} = PSL(2, 9) \langle ys \rangle$, the image in $\chi(\tau)_{1,2}$ of $C_N(\tau)_{1,2}$ is isomorphic to $\langle x, s^2 \rangle$, $ys \rangle / \langle \tau \rangle$, a contradiction. Thus $N_{1,2}$ contains y. Since $y \sim xs$, $N_{1,2} = G_{1,2}$. Since $\chi(\tau)$ is generated by \bar{x} and $\bar{s}^{\chi(\tau)}$, the image in $\chi(\tau)$ of $C_N(\tau)$ is $\chi(\tau)$, that is, $C_N(\tau) = C_G(\tau)$. Since $Z(\langle x, s, y \rangle) = \langle \tau \rangle$, $N_{G_1}(\langle x, s, y \rangle)$ is contained in $C_{G_1}(\tau)$. By the Frattini argument $G_1 = N_1N_{G_1}(\langle x, s, y \rangle) = N_1$. Thus G = N. By $C_1(\tau) = C_1(\tau)$ is simple group. This completes a proof of Lemma 5.1.

Lemma 5.2. In the case I G has a RNS if $\bar{t} \neq 1$.

Proof. By Lemma 4.4 $\chi(\tau)$ has a RNS. Therefore by Lemma 4.5-Lemma 4.7 τ is not conjugate to I, Iy or Ixs and $\tau \sim I\tau$. By the degree formula $n = i^2$. By Lemma 3.2 $\gamma(y) = even$. Since $\alpha(y)$ is even, $\beta(y)$ must be even by the degree formula. Thus $y \sim I$ and $\alpha(I) = 0$. Assume $\langle y, s \rangle$ is quasi-dihedral. \overline{I} is contained in a RNS of $\chi(\tau)$. By Lemma 4.1 \overline{x} is not conjugate to \overline{s}^j . If $\overline{s}^j \sim \overline{xs}$, $\chi(\tau)_1$ has three classes of involutions, it is solvable by [5, Theorem 7.7.3] and so is $\chi(\tau)$. This contradicts [8]. Thus $\overline{s}^j \sim \overline{xs}$. Since $[\chi(\tau)_{1,2}:C_{\chi(\tau)_{1,2}}(\overline{u})]$ is

even, where \overline{u} is \overline{x} or \overline{xs} and it is 1 for $\overline{u}=\overline{s}^j$, $\gamma(\overline{s}^j)$ is odd and $\gamma(\overline{x})$ is even. By the degree formula $\beta(\overline{s}^j)$ is odd and $\beta(\overline{x})$ is even, that is, $\overline{Is}^j \sim \overline{s}^j$. Since $Is^j T = \{Is^j, Is^j \tau, Ixy, Ixy\tau\}$ and $s^j T = \{s^j, s^j \tau, xy, xy\tau\}$, $Ixy \sim xy$ and hence $Iy \sim y$. Since $xT = \{x, x\tau, ys^j, ys^j\tau\}$ and $IxsT = \{Ixs, Ixs\tau, Iys^{l+j}, Iys^{l+j}\tau\}$ $\overline{x} \sim \overline{Ixs}$. Therefore $\overline{Ixs} \sim \overline{Is}^j$ since $\alpha(\overline{Ixs}) > 0$, that is, $Iy \sim Ixs$. This prove that $IG_{1,2}$ contains a unique fixed point free involution I and n is a power of 2. By Lemma 2.2 G has a RNS. This completes a proof of the lemma.