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Dissipations and Derivations

A. Kishimoto

Department of Physics, Kyoto University

§1. Introduction.

Recently various authors have studied unbounded defivations
of C*algebras [2,3,4,6,7,10,11,13]. In particular Powers
and Sakai [10] have studied unbounded derivations of UHF
algebra.

- The purpose of the present note is to show a usefulness of
the notion of "dissi?ative operators" '[9,17] in the study
of derivations of C§algébras.

Our first result is that an everywhere defined "dissipation”
is bounded, which implies the well-known theorem concerning
derivations [5,12].

Our second result is about a normal ¥derivation of
UHF algebra satisfying a specigl condition discussed in
f1,10,14,15]. For such a *derivation, we prove that its
closure is a generator'of a one-parameter group of
¥automorphisms, As its application we .consider one-dimensional

lattice system.
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§2. Bounded derivation
Let (L be a Banach space. For each Y& (J( there is_.at least
one non-zero element ja of the dual Banach space [Zfsuch that
<X f > =u=)- nfn by the Hahn-Banach theorem. An fz denotes one

of them throughout this note.

Definition 1. [9] A linear map X with domain (¥) in a

Banach space is called dissipative if there is anrfz such

that |
Re<¥x,fy > &0

for each x & ,@O"),

Definition 2. A linear map y with domain‘ﬁ(f) in a Banach

space is called derivative if there 1s an :f;‘ such that
Re <JZ2, f»> =0
for each % ¢ D(J),
% :
Let Ol be a C -algebra. A linear map § of J7 is called

a derivation if it satisfies
Fexy) = Jey A+ XEED

for Z,yéﬂé{), where Q{tf), the domain of f , is é, ;'—subalgebra
in Y. A derivation § is a ¥*-derivation if J(2J)% = Iex* ) |
forixéﬁ%gi In the following we will bé concerned with only
*—derivatidn and so omit ¥, o

A linear map § of (2 is a derivation if j‘.and -£

are dissipations whose definition is :

%
Definition 3. [8] A linear map ¥ of a C -algebra Jf is

called a dissipation if it satisfies
Y(o* = rizt)
Flrx) > yr)x £ 2700



[

for each xé.j,D()") > where (7)) , the domain of ) , is a

¥_subalgebra.

Remark 1. Call ) an "n-dissipation" if Y ® 1 ; L ® F,

— Z® F, is a dissipation where F_  1is an algebra

of all nXn matrices and 2 1is an identity map. If )

is a 2n-dissipation of a C¥-algebra with identity and (7)) 2 1) 7
then 3’/ defined by -2”():)= Yz r_;j—‘izf(l)z —Pza’(u}

is an n-dissipation. Note )Y (1)<£0 and 3'/(l)= 0.

( See [8] for the arguments of bounded complete dissipations;

a complete dissipation is defined to be an n-diss:‘_’Lpation for

all n.)

Lemma 1. Let )/ be a dissipation with domain ﬁ (f) . Suppose
that for any positive Y¢ p@(}') there is a\m fx such that
Re< )‘Z,fz > <L 0, Then )~ is dissipative.
Proof. Note that 7‘:2, is positive for a positive 2 ¢ ot [12].
If we define 7(;(’? and I’f in 0?* for €07 and 7‘€6Z*’by
La,fxX7> = Kata, £> and Lo, Zf>=<ax, £> (ae& 0T),
then 27(7("2 =7;,and jrx*zz*';fz . For any yeP()/) , there is an
: f’,][zfx such that (ij"z)jf)é 0. Then we have
D2 TP, £>

2 0 2> +LyX, £

= 2 Re < yx, fr>,
Lemma 2. ( Lemmas 3.3 and 3.4 in [9] ") A dissipative operator
with dense domain in a Banach space 1is closable and its closurev
is also dissipative.
Sketch of the proof. Let Y be the dissipative oberator;. Let X, € (7))
with Xy 0 and )’,51’93’ . For any @ € P(4)and A€} , let j"ﬂ/,‘_
=J§_—i'/l7L with l”:{ﬂ//l” =1 aﬁd Ra()’(d—f}ll'n), 7(;2,/1>40 . We may suppose

-3 -



85
;ﬁm\ - £ (ﬁ%&) and —f/‘af‘/()-} p2) . Then we have f’—:f‘band
7&;(9,{’)50 . We may suppose 75/——> f{a-—?fj) . Then f = fgg
and (1%l =ﬁ.1<3, f)éO, i.e. 3"‘0 . The rest of the progf; is easy-
Ih tlr;e rest of this section we‘will treat only everywhere
defined operétors.
Theorem 1. A dissipation )/ of a C*—algebra OZ('»’OD(]))'is_
dissipative and bounded.
Proof. We suppose 371 . 1r131, we can consider a dissipation
5"} of ﬂ/:ﬂ‘f‘f‘l defined by 3} (21) =¢&) (Xfﬁ/,{ef)..
Let Xé{] ve positive. Setting [f.. (IYI’E\J—Z)%' we have for
f= fz,
¥, £> £ < ylx-u=zn1), £>
= =< FAE, £D

S KA, Y= KAYA £
o

i

. 2 —
where we have used the Schwartz inequality and the fact <4 ,f,)—~0
and fZU . Hence ) is dissipative by Lemma 1 and closed
by Lemma 2. An everywhere defined closed operator is bounded

by the closed graph theorem.

Corollary. A derivation of a C*—algebra is deriﬁative and
bounded.

Proof. The proof is quite similar to the abové. | Or 4it follc;ws-u
from the above theorem by the following remark..'

Remark 2. From the proof of‘. Theorem 1 we can conclude that if 7
is a dissipation, for any f;, » o<z, f40<0. 1t is immediate for
X>0 . For a general T¢€ (7, any fr is equal to fx™* where

f = f_za:z:ﬂlf/-‘lﬁ:!- ( Let ;C=Z((Z]" be the polar decomposition of

in the enveloping von Neumann algebra ofﬁZ. Then lfx! ‘—‘_J;Z( >



o

from which we can deduce If,] if,z;‘sfzq o) The same situation
prevails for derivations. (See Remark 2 in [9]) | '
Remarik 3. [6] A dissipation Y generates a uniformly continuous
one-parameter semi-group of positive contractions i;t = etﬂ” .
~Lindblad showed the equivalence of (i) and (ii);

(1) @t is uniformly coptinuous, @t“) _—.', and

. (2X) e (1) & Py (1*x J.
(11) ) is a dissipation with Y (1)=0.
Finally we remark the following px;operty of a derivation

J . LetZ be self-adjoint and {(z) be the commutative
C*subalgebra generated by X and ] . Let 9’ be a character
of (£(Z) and -55 be any norm-preserving extension of ? ( ; is

a state). Then {§% > =0 which is considered as generalization

of derivativeness (see [5]).

This is easily seen; if a polynomial P(xX) of x satisfies
<Pl §>=P/ (<X, $>) =0 , then { §P(), § D= O
The set of such () is dense in ((x) and so <{§z, 55)::0 by the

continuity of § .
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§3. Unbounded derivations

In the following the domain of a derivation or dissipétion
of a C —algebra is a dense *—subalgebra. . '
Theorem 2. Let }‘ be a dlSSlpatlon of aC —algebra 07, If D)
is closed under the square root operation of positive elemen’ts,
then f is dissipative and hence closable.
Proof. [4,10] The proof that ¢ is dissipat:':ve is quite
similaf to that of Theorem 1. By Lemma 2 it is closable.
Let (] be a uniformly hyperfinitre C*algebra (UHF algebra).
A derivation § in [ is said to be normal [10] if ﬁ(cf)bis the -
union of an increasing sequencelof finite type I subfactors
{mﬁlw?LZ,—“ f in UL .
Corollary' . A normal derivation of a.UHF algebra is derivafive
and hence closable. Its closure is also a derivative derivation.
Let T be a unique tracial state on a UEF algebraAOL .
A derivation § in (] 1is said to be regular [ie] if Ja), tp=¢aq
ror ge D). | |
Let § be a normal derivation. Since <a®,7ef )y =<%a, Tof>
for Q,fséﬂ(f)EUOZh and <1,T°X>=0, Zoy/azézo
for any ## . Hence [ is regular [io]. |
Theorem 3. If a derivation 5 in a UHF algebra is regular,
then {Y is‘derivative. | 7
Proof. Let L‘?(ﬁl, T) be a Hilbert space completion Aof a UHF
aigebra {1 with inner product _<_I,?)rk?<‘§‘l*z, T) . Let

X be a positive element of D(f)and [2(((z),T) be the closed

‘subspace spaned by (). Let Ex be the orthogonal projection

onto [2((C(z) T) . If § is regular,
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L1 Tod 2
= nLx* P, T
N F), 277>,

1\

Hence [E, §(z)=0 - Let ¢ bea character of ((z) and }b be
any norm-preserving extension of §0 into L (C[,z) z‘) . Since
Ez 0= LW(DZ}'C)%L‘”((’[I) T) is a contraction, ? ?aEZ is an

element of sz . Let Sb be a character such that {x, > =[xl il

—

oo e — . N — _
= Iz| and let §=§eFy . Then §=Fz and L&z, §>=0. Now
the proof is completed by Lemma 1.

A
Let § be a normal derivation in (7 .

Let J be the great-

est linear extension of J in all linear extensions ) satisfy-

-

ing
Y a4 )= §ladxf + A X0 + az P )
{Z, To¥>=0 , a,¢ eD(F), =& D))

&

)\ is called the greatest regular extension of a normal deriva-

tion § [jol.

L ™
Theorem 4. Let (f be a normal derivation. Suppose that J‘

is a derivation (or 5}’ is derivative) and that there is an
1nfinitesimal generator J/. of a strongly conti.ﬁuous group of
*—automorphiéms such that &25 . Then (fl‘;f.

Proof. Since d; is regular [10],57@5:'. As (Ii’f)@(ﬁ)? (128,)26, )=
and f is derivative by Theorem 3, fl is an infinitesimal

. oy
generator by the following theorem and remark. Hence 5:,:[ .
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: .
Theorem 5. Let 5’ be a derivation of a C -algebra (Z . If X is
derivative and closed and (J# §)D(f) is dense in O , then g
is an infinitesimal generator of a strongly continucus group of

¥-—-automorphisms.

Proof. 1If fzﬁ satisfies ﬂ((fz',f;>=0 and //fz// =/ R

WS+ 2 £ R <(F+A>x, f2>
= L ReAd Ixi

e, WS+ d)z = [ReA-wxil
The rest of the proof is standard [2, 3, 4].
Remark 4. The assumption that 5‘ is a derivation in Theorem 5
can be replaced as follows: Let J be a linear operator with
dense domain J(J) such that Q2(§)>1 and F(=0 . It is shown
as follows: By a result in the Hill-Yosida semi-group theory [17]
3‘ gene»rates a strongly continuous group of contractions )% on
O . Since f)=] (by the assumption §(y=0 ) and Ji P =]
they are positive contractions. As they form a group, they are
order-isomorphisms. Thus Pﬁ is a strongly cdntinuous one-
parameter group of Jordan automofphisms. Hence we have to show
that any strongly continuocus group of Jordan automorphismsA of‘
the C*walgebra O[ is a group of Aae—automorphisms.b Let 7L .be
any irreducible representation of (7 and MZ be its represen-—
tation space. Then.the Jordan hcomomorphism 7[0}% of ¢ onto -
Tz{[Z)C(B(,}(}L) is a homomorphism or an anti—-homomorphism fi16,
Theorem 5.1]. Let

H = ‘{ te iR > 72 Pz is a homomorphism %

A = { teR > Z°psis an anti- homomorphism } 3



Then H and A are both closed subsets of IR as easily shown: .

Let {i;§ be a sequence in H such that ¢, 7 . Then

Lofr(2y) = i Tofy (%) .
= lm T P (2) £ (%))
= TLofelX3 To ()
Hence <Te¢H . (Similarly for ,4 .) Now if dl‘no’f}l—"—‘ t L, HAR.

If dimdy> 2 , then R=HUA and HAA=¢ . This shows |
and A are both open and closed subsetsof R . Since R
is connected and H is non-empty(h’; 0) , we have H=/ .
Since the direct sum of all irreducible representations o¢f the
C*—algebra Q is faithful, P‘& is a homomorphism and hence
a #~automorphism. (This remark cannot be applied in th case of
von Neumann algebras. O. Bratteli sI:;c?wed me an example of a
g™ -weakly continuous group of Jordan automorphisms of a von

Neumann algebra which is not a group of x-automorphisms.)

N
Remark 5. 4 is in general not a derivation. (see Problem 1

of [10]). For if § 1is a normal derivation which has more
than two different extensions to infinitesimal generators,
then :}'V is not a derivati‘on, as easily shown by using
T}}eorem L, ( We can construct such § . See Remark 3 of {10]. )
Let P?z ‘be the canonical conditional expectation of (L
onto (7, . Let ﬁ'n be a self-adjoint element of (JJ such that
§(a)=[9hn,0] = §j,(Q) for all @€ Oy, . Then &ﬁ(z}:—_})w&-/zn(‘z-)
for xeﬂ(f') [10]. For if €, ,

- 3{4_
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Lapfn f(Z), t>=<ad, > _
= Kax, te S > L (da)x, T>
= - <Up,a)x, T>
<ady,x,
| =< A Bdig,x, ©>
In [10] W¢ D) is defined by

W= {x€DE); bim Pal U-PrIx =0}
If we set .P%(An):/‘;w
W= {xeI); Lin Sikn Pax = ffl)}.

In [6] an operator ex-lim Jik; ( the extended limit
of the 51;(,1157’2 is defined, whose graph is the set of (x ,%)
€ CUx L such that there is a sequence X & {7,, with lz,-xl] 20
and //J}A;,,{Z}z)‘}//’i' 0.

In [7]‘ an operator 4 ( the graph limit of the d}kn )
is defined, whose graph is the set of (X ,Y )& & ¥ U such .
that there is a sequence xaéDZ , with [}Zh“Z//‘90 and |
I G, (@)= = O-

Then

§C §|w C exlim Sikn C § CA’"V

A
Theorem 6. § 1s derivative.

. A :
Proof. Let X e,@([}and -}1},? be a sequence such that > %

. A ’
and 5%%(1‘,()—; J(X) . Let f,= fz’z be of norm 1. We may suppose

'fm"‘?f . Then f:fz and |
Ro< fz, £ = Jim Re < 8ty T, f2 >

= 0



where we have used Remark 2.
A . '
Remark 6. [6,7] J and ex—-lum cﬁ/% are closed derivations.

N -
Lemma 3. If {jpa—k,ll j» is uniformly bounded, § is derivative.

Proof. Let X¢ ﬁ(ﬁ and fa"'ffﬂ,,x with 04l =1 . We may
suppose fm—}f . Then f‘}fz and '
R< $2, #> = bim Re<Pal2, £
o 2 Re < P F I Pa)Z, f D
= L Re < P Cit-ifs, G—Prdx, T2>

~ .
where we have used ﬁ(ﬂ,fﬁnz, j$,>= 0, P?z(fik,, (= Pr)=0
and &ﬁh‘iﬁn-’.” [ﬂh——&-kh . The last term is dominated by

20k —kntt- U C1—=Pr) X |l
" which tends to zero as 1> 0o .

Theorem 7. Let § be a normal derivation. If ’{H/l;,‘“k«nlfﬁ—

'is uniformly bounded, § , the closure of § , is an

infinitesimal generator of a strongly continuous group of
-— o
*_automorphisms and J = { .

Proof. Suppose that (/4§ )D(8)is not dense in (Z . Then

there is an elerﬁent -f' in OZ,* such that [ £/ =1 and <1+J’z, F>=p
for all Z e D(£) . There are Xp & (o C P(SI= V0,

~ such that (Iq,f )"-'—v 0Zn il !lf/gzmﬂ ={f/|ol. Then

0= Lomld <z, £> +&2, £> 4
= lin B V6, Il -+ < Eipy Xn, £> A
= 0f) 4 LB Tih- ik, X, £ S
1T Ve 2 Uhn— kn

- 10 -
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where we have used/Z/(‘J,}h Zn, £ =0 - Suppose [he=kull < Yo g (€>0),
Then it is a contradiction and hence (/+ §) g)[é"} 'is dense

in 07 . .Quite similarly we can conclude that ([—{) Q(&)

is dense in Ol . Since S: is derlvatlve by Corollary of

Theorem 3, 5‘ is an’ infini’cesimal generator by Theorem 5.

If lf/th—'k,, I<_C for éﬁy 71, we may 'chsi.der 5/30

NS/

—

. instead of § . §=4 follows from Theorem 4 and Lemma 3.

| Remark 7 Under the assumption of Théérem 7 the one-paramater

—

group ﬁ- generated by §  satisfies

Pr(x)= Lom e-t&k“ (0, xe L

?

where the convergence is uniform in 'Z' on every compact
subset of (-& , 00 ). This follows from Theorem 7 cor’fxbined"
with Theorems 6 and 8 in [10] (cf. the proof of Theorem 8
below). A

As an application of Theorem 7, we consider one—dimensioﬁal
lattice system. Let {UL-: jeZ g 'be.? family of typg I‘ finite |
factors and let (7= ®DZ~ be the infinite tensor product
of them. Let 5'§ be adfnzp from the family &(Z) of finite
subsets of % into (. such that &(¢)=0 and (1) is a

self-adjoint element of OZ(/I) & Ol- . Put

dé/\ ¢ _
n»’é:u.,, = Z e Sup = AN
K=y 4 /19),/V¢/])=~k

where N(A) denotes the number of points in /\  and 0(20 .

It is known [ ef."1 ] that if [ZIx<0® for o>g

there exists a one-parameter group of ¥-automorphisms such

=] -



that

- \tU(A) —1TU ) | 1' .
fo@)= ™ M gy PNy pern
veay = = (7).

JCTA

Now we give another sufficient condition for thé existence
of ‘the abdve automorphism group:
Theorem 8. Suppose that (i) §&f,< @ and (ii) there is
an increasing sequence . § Ap %C ?f(z) such that UAx =2
and the f~ol.lowing element W{/An) of OU is bounded in norm

uniformly in 77

W(An,)"‘- J‘Z '{@(T) J :)_é— EL(Z}) J-nA’_f??) J’f)/\C?&CP%

where Ac denotes the complement of A in Z . Then there
exists a strongly continuous one-parameter group of ¥-automorphisms

such that
. tdn
fecay = o € 7 (Q) ¢ *)

where 5'” = 5‘2‘1}01,,) and the convergence is uniformly in Z

on every compact interval of < . |

‘Proof. By (1), WI(An) is well-defined. Let (Mn= 02 (An )
and let ho= Ul/n y+Wh). Let J be the normal derivation
such that '

S| o = Bity |, DU =00

Then [1]
Rhn—Kenll & [(Ay —UMI I + i UlAn ) —kn il
< 2 1w

where #mr—l’oz(/lﬂ). Hence J is an infinitesimal generator



38,

by Theorem 7. Now the proof of the convergence in (¥) follows
as in [10]: It is shown by (i) that ﬁdué;,—-d’ oni DS).
Then for x & NH(S)

it &)™ =G 5O axd)x

= ed a2 fox - (xdaux § 1

LMz l)x — (12§ |

< Ufx-gax

— 0 as m-00,

where we have used I C1x8a )"‘ I £ 1,
Hence I (12 §n) ' = (128)71 since (1£8§)P(F)  is dense .
in O . . By the Trotter-Kato theorem [ef. 17j

we get (¥).
Finally'we remark that the assumption (i) can be weakened
by (1') 3 Ig(A)li<mfor any jeT .
A3 g
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