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‘Studies on Holonomic Quantum Fields. I

By .

Mikio SATO, Tetsuji MIWA and Michio JIMBO

To understanding the mathematical structure of quantized
fields or systems with infinite freedom, non trivial but
exactly calculable models would be of great help [1].’ In this
and subsequent notes we present, both in the continuum and in
the lattice, 2-dimensional soluble models of neutral scalar
massive field theory whase t-functions exhibit a non trivial
singularity structure.

In the present article we deal with the continuum case.
We introduce an auxiliary free fermi/bose field and construct
the field operator by giving its induced rotation in the space
of wave functions. "Making use of the "theory of rotation"

(2. cf.[2]) developed recently by the first author, we express
this field operator in the normal product form of these free
fields. We also calcﬁlate the asymptotic fields and the S-
matrix of the field Yﬁﬁ defined in 3. ﬁext we give explicit
formulae for t-functions of these models and study their
holonomy structure.

The lattice field theory will be discussed in a subsequent
paper. Specifically we shall show that our model 93/49F
coincide with the scaling limit of the Ising model from
above/below the critical temperature. Main part of these
results has been announced in t3].

We .use the following notations. The space-time and the
)

energy-momentum co-ordinates are denoted by x=(xo,x and
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p=(po,pl). We also use xE = (xoixl)/2 and pi=poip1. The

22y

mass-shell {péﬁzlp2=(po)2—(pl) m (m>0) 1is denoted by

M. For peM we set uil=pi /m, du=du/27|u].

1. Let w(u)+ and ¢(u) (u>0) be the creafion and
annihilation 6perators of auxiliary fermion. If we define
w(u)=w(—uﬁ+ for u<0, their anti-commutation relation reads
[w(u),w(u)]+=2ﬂ|u|6(u+u'). Likewise we define auxiliary bosons
¢(u) with the commutation relation [¢(u),d(u')] _=2mus(u+u').
In two dimensional space-time these two are in fact equivalent.

Namely
1) ¢t(u)=:¢(U)epr06(i‘(lu|-u'))w(ut)'f'w(uv)ig::

satisfy the commutation relation [¢i(u), ¢i(u')]_=2ﬂu6(u+u'),

and conversely Y(u) 1is given by

(2) w(u)==¢icu)expj:e(ic|ul-u'))¢icu')*¢i‘cu')d_u':

2. We let W denote an orthogonal/symblectic space,‘
a vector space equipped with a non-degenerate symmetric/skew;
symmetric inner product <w ,w'> . First consider the ortho-
gonal case and denote by A(W) the enveloping algebra
(Clifford algebra) over W with defining relation [w,w']+
=<w;w'>. G(W) denotes the Clifford group {gEA(W)Iag—l,
gWg-l=W}. Let g —> g* denote the anti-automorphism of A(W)
characterized by w¥=w for weW. Set n(g)=g¥g=gg* for
g€G(W), and g+ n(g) defines a group homomorphism G(W)
—> GL(1). Let w=vtav be a decomposition into two holonomic
subspaces) This meaﬁsdthat there exist a basis ¢+ =(WZ) of

.t.

, _ LA S
v and a basis w—(wu) of V such that <wu,wv>—0, <wu,wv>

-2 -
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=0 and <w$,wv>=5w . Then A(W) 1is a semi-direct product
of two exterior algebras A(V+) and A(V), and a A(V*)-A(V)
-isomorphism N: A(W)=A(V+) . A(V) — A(W)=A(V+)AA(V) such
that N(1)=1] 1is determined uniquely. The image N(g)€A(W)

we call the norm of g. (In physicist's notation g=:N(g):.)
g:wew —> gwg—lew is a rotation, an isomorp;is;
which preserves the inner product. Let Téwf,w)=(w+,w>(T§ Ti] .

For geG(W) T

First assume that TM is invertible. Then we have the follow-~

ing expression of the norm of g.

(3)  N(g) = <grexp((1/2)w T,y T (Pt n Per /2yt ),

where n(g)=<g>2 (detTu)_l, and we regard w:,wu, as elements
of A(W). Next we assume that dim KerTu=l, and choose wg
ev*, woéVi and Wweé€G(W)NW such that Tgwo=wg, w°=1 and

<w,wg>=1. Then (ng)u is invertible and

(1) N(g) = yiN(wg)+N(wg)y,

Here we regard wg and wo as elements of A(W). Next
consider the symplectic case, and define A(W), G(W), etc.
with due modifications. 1In particular w¥*=iw for weW, and
the norm of g€A(W) 1s defined as an element of the symmetric
teﬁsor algebra S(W). Assuming that TU is invertible, we
have

(5)  N(g)=<grexp((1/2)0" (-T,131) %0 +e"(* i -1y "0 +a1/230m ),

with n(g)=<g>2detTu.
3. Let now W be the space of wave functions w(x)
+
=(w;(x),w_(x)) satisfying the Dirac equation 3w+(x)/8x-

F mw;(x)=0. An orthogonal structure is introduced to W by

- 3 -
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oo .
defining <w,w'>=[ dxl(w+(x)w_;_(x)+w_(x)w_'_('x)). If we identify

-0

400
wéW with the operai:orl J dxl(w+(x)1p+(x)+w (x)y_(x)), where
s 31 e -
1];+(x)=(1//_2_)J duy0+iu w(u)exp(—-im(x—u+x+u—l)), the Clifford

algebra A(W)—mis nothing but the operator algebra of free

fermions. We choose as V+/V the set of creation/annihilation
operators in W. Set Wi={weW|w(x‘)=O ’if (x'—x)2 < 0,

'x'l-x1§0}, and we shall have W = W;GB W;( , an orthogonal decomposi-
sition. We now introduce our field operator ¢PL(x)EA(W) by
specifying its induced rotation T‘PF(X) with the property

2
Tepp (xy™t PY

+
(6) TEPF(X\ (whw )=w —w", w € W;.

Applying the formula (3) to the present situation and choosing

<S°F(x)>=l we obtain the following expression for CPF(X):

(7) (.PF(X)=:exp LFQJF):,

00 L
where LF(x)=(l/2)”'_'%;Ll 'gg';iﬂg%o—)w(u)w(u' Yexp (-im(x (u+u')

+x+(u_1+u'—l))). The micro-causality and the Lorentz covariance
of ?F(x) are manifest in this approach.

We construct gF(x) and CPB_(X) ‘analogously, using the
formulae in the case dim Ker’I‘u=l and in the symplectic case,
respectively. In kthe latter case we choose as W the solution
space to the Klein-g}_ordon equation and equip it‘with the inner

p+oo

product <w,w'>=—ij dxl(w(x)'aw'(x)/axo— w(x)/axo‘w'(x)). The

-0

results are

(8) LPF‘(X)=:¢O(x)éx‘pLF(x):,

+c

where wo(x)=J c_i_qlp(u)exp(-im(;(_u+x+u'1)),;

(9) EPB(x)=:expLB(x):,
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where LB(x)=(1/2)JJ du du' -2vu-i0vu'-

T e weu)

Ty

exp(—im(x-(u+u')+x+(u—1

4., The asymptotic fields for ?F| are defined by

400

(10,00 = [ duf wexp(-ipx) |

where (¢ (u)=lim ij 0 dxl(qf(x)(8/8x0)exp(ipx)-(3/3x0)
n - t>to /X =t

¢ (x)exp(ipx)). We find that this 1limit coincides with ¢i(u)

defined in 1. The asymptotic states‘|>+ére related to the

auxiliary fermion states|>, through the formulae

R =1 s{i(ui-uj))lun,-..,u1>p,

where e€(u) stands for the signature of wu. Accordingly the
particle number is conserved, and the S-matrix in the n-particle
state 1s given by (“)n(n—l)/z times the identity operator,

showing that the maximum phase shift is attained in this model.

5. The n-point t-function of an operator P(x) is
expressed as foliows:
n!

T (Dq5°+,p, )= ) T - (DysD;¥D55° 5D+ " 4D
n=l a2 permutations n-17"1771 72 1

)

n-1

{(12) T
(12) where » (2“)262(p1+...+pn) ,

ees = ce e ]

T oo

n ' .
Jofon 1@ b ey gy

017 =1 V5V YUY I=1V51
n-1 + _ -1
x I 2w8(qs-mU, )i(q,-mU!+i0) ,
V. v,
ith U,= ’ S|
with kzl Usy s Uj—£; Usy and v =v =0. The (anti-)



Symmetfic functions @n are the matrix elements defined by

?n(ul,...,un)=<—um+l,...,—un[@(o)lul,...,um> for ug,...,u>0

and Uppgsesesly < 0. In our models they are obtained from

(7Y, (8) and (9).

U.-—U.k

. i
Pfafflan(lPﬁg?E;)lgj,kgn

(13) Py p(uyseensuy)

u;-u
in/2 if Pﬁi;ag (n even)
- 1.k j<kgn 7J 7k
0 (n odd),
(14) F uy,-eu) = i (o,uq 50+ ,u)
(P n-1’ *“n F,n+1' *71° >“n
0 (n even)
C(n-1 u.-u
j(m-1)/2 g pLk (n o0dd)
1<j<k<n %57
and ' :
/uj—iO/uk—iO
(15) (PB,n(ul,...,un) = Hafnian(-2P uj+uk )lgj,kgn

Here P(1/ut+v) denotes the principal value -of 1/utv, and

for a symmetric matrix (a we set Hafnian(ajk)=0

4 jk)lgj,kgn
for odé n and ‘= Z'ajlj2aj3ju...ajn_ljn |

for even n, where the sum is taken over (n-1)!! pairings
of indices 1,...,n. In particular the (Euclidean) two point
functions of QPF and (;F‘ coincide with those obtained by
[4] and [5].

The singularity/holonomy spectrum of Tn(p)r is confined

to the union of positive-a/complex Landau singularities
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corresponding to graphs with no internal vertices [6], where

the number of (internal and external) lines incident to each

vertex is always even for SDF and is always odd for y’F,

P
¢
(16)

F

On the leading singularity At the order of T for

G’
or ‘9% is given by

ord , T, =n_-N/2- ] N

A+G n i<j

ij(Nij—l)/z,

where n, denotes the number of vertices of G, Ni. the

J

number of internal lines Jjoining the vertices i and j,

and N = J N

... Note that repulsive effect of multiple
i<j iJ

internal lines is incorporated in (16).

Finally we remark that the generalized unitarity relation

for the t-function of ?F

@™

e

i%iTég)(pl""spk;ula'"’uz)

0 combinationsJ J’i 1

xTé%%("Pk+1j'"{'pn;ul,""uz)

(

w?ere we set Tkl)(pl""’pk;“l""’“z)ka+zfp1""?pk’ql""’ql)

L

2 2 : .
x‘nl(qi_m ), +1 and bar denotes the complex conjugation, is
i= Tul

Uy

directly and analytically verified by using our explicit formulae

(12) and (14). References

[1] M. Sato: in Proc. Mn®, Kyoto, 1975. Springer Lecture
Notes in Phys. 39. '

[2] B. Kaufman: Phys. Rev. 76, 1232-1243(1949).

[3] M. Sato, T. Miwa and M. Jimbo: Field theory of the 2-
dimensional Ising model in the scaling limit, RIMS preprint
207, (1976).

(47 T. T. Wu, B. M. McCoy, C. A. Tracy and E. Barouch: Phys.
Rev. B 13, 316-374 (1976).

(5] R. Z. Bariev: Phys. Lett. 554, 456-458 (1976).

[€] M. Sato, T. Miwa, M. Jimbo and T. Oshima: Holonomy

structure of Landau singularities and Feynman integrals,
£o appear in Publ. RIMS 12. suppl.

-7 -



