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Stability in linear systems of difference and

differential-difference equations
by

Jack K. Hale

Summary: The purpose of tﬁis paper is to discuss the present

status of the theory of stability for autonomous lineaf systems

of difference and differential-difference equations. In particular,
we will be concerned with the preservation of stability under

perturbations in the delays.

§1. Introduction and basic properties. For any real number

r >0, let C = C([-r, 0], R™) be the space of continuous functions
from [-r, 0] into R" with the topology of uniform convergence:.

Suppose D, L : C — R? are continuous linear Qperatbrs with

0 0
[au(6)1¢(8), Lo = S [an(8)Je(8)

(1.1) D¢ = ¢(0) - S

-1
where u, n are nxn matrix functions of bounded variation with

(1.2) Var[_S oM — 0 as s — 0.
3

We may always assume U, n defined on (-, «) by defining

u(e) = u(0), n(o) = n(0), 6 € [0, =), w(6) = u(-r), n(6) = n(-r),



91

o € (=, -r].
An autonomous linear neutral functional differential equation

NFDE(D, L) is a relation

(1.3) =t Dxy = Lxg

where x.(6) = x(t +8), -r< 8< 0.
By a solution of (1.3) through ¢ € C, we mean a function
x : [-r, ®) — R" which is continuous, Xy = ¢, and Dx. is
continuously differentiable and satisfies (1.3) on [0, =).
The proof of the existence of a solution through any ¢ € C
may be found in [1]. If x(¢) designates the solution through

¢ and T L(t) : C —>C, t 2 0, is defined by
3

(1.4) TD,L(t)¢ = x.(¢), t >0, ¢ €C,

then TD L(t), t 2 0, is a strongly continuous semigroup of
3
bounded linear operators with infinitesimal generator AD L
! H

and domain D(A ) given'by
D,L

(1.5) D(Ab’L) ={peC: ¢e€C, D¢ L¢}

If o(B), Po(B) denote respectively the spectrum, point

Spectrum of a linear operator B, then one also can prove



that (see [1])

(1.6) o = Po(A

Ap 1) D,L)

The equation detA(A) = 0 1is called the characteristic equation.

§2. Exponential bounds. With the notation of Section 1, it is

easy to ask interesting nontrivial questions.

Problem 2. 1. What 1s the relationship between o(TD L(t))
5

Q
and expo(AD,L).

This problem is difficult and an easier problem can be

stated as follows. The order a of the seimgroup Tp L(t)
3

D,L

is defined as

(2.1) a = inf{a € R : there is a K = K(a) such that

D,L
HTD’L(t)H=§K exp at, t = 0}.

- . ()
Problem 2. 2. Is ap, L sup{ ReX : A € O(AD,L)}‘

At this time,neither of these problems 1s solved for general
D, L as above. For the case in which the function n has no
singular part, partial results are known. Since we are concerned
with stability, we concentrate on Problem 2. 2. Suppose D

satisfies (1.2) and

{A:detd(A) = 0, A(X) = AD(e" T) - L(e I}

Qeias
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(2.2) Dy¢ $(0) —Z:=1Ak¢(—rk)
0

S A(8)¢(0)de

-r

D1¢

where the nxn matrix A 1s Lebesgue integrable and the nxn

-

matrices A, satisfy Z%=11Akl <~ and 0<r <r.

Theorem 2.1([2]) ap 1, = sup{ReX : X € o(A)}.
-_— 3

We give an outline of a proof of this theorem since it
will ililustrate many of the techniques used in neutral equations
as well as motivate other problems.

The first step 1s to analyze in detail the difference

equation
(2.3) Dg¥y = 0, ¥y =V € CDO
where CD is defined by
0
(2.4) CDO =>{w € C : Dow = 0}

Equation (2.4) generates a strongly continuous semigroup of

linear transformations T. (t) : C, — C. , t = 0, with
DO DO DO



T, (8)y =y . (y) for ¢ € C,.. The infinitesimal generator A
DO t D0 DO
and its domain D(AD ) are given by
0

{yp € Cp : weCy }

(2.5)  ap ¥ = v, DAy )

0 0
also,
(2.6) o(A. ) = Po(A. ) = {A : deth. (A) = 0, A (A) = I - D.e T}
D D D D 0
0 0] 0 0
Lemma 2. 1. The order ap of TD (t) 1is given by
0 0
a = sup{ReX : X € o(A, )} dgf B
D D
0 0
Idea of the proof: By using Laplace transform, one shows that
the solution y(¢)(t) of (2.3) can be represented as
zm 0-
y(t) = - [ ragny(e-s-r) 1508,
k=1 J-r P K k
where Y(t) is the fundamental matrix solution; that is, Y(t)
is the nxn matrix solution of the equation
0, t <0
Y(t) = {
1+ V7 AY(E -1), t =0,
Loy B k
which is of bounded variation and continuous from the right.
The Laplace transform of Y(t) is A—IABI(A). Since ap > B,
0] 0



to prove the lemma, it remains to show that, for any a > B, there

is a constant k = k(a) such that

t

[¥(6) [ ke, varp, ¥ < ke®", £ > 0,
>

To obtain this estimate using the inverse Laplace transform,

one makes use of the fact that [detAD (k)]_1 is an analytic
0
almost periodic function on each line Rel = a for which detAD (A)
0

is bounded away from zero. Therefore, there exist real Yy such

that
oYy,

AY _o _
k
b,e , 2_ |bkle < o,

_.1 L
[detA. (A)] 1=
Dy L k=1

k=1

One now uses these relations to estimate Y(t).

The next step is to analyze the nonhomogeneous linear equation
(2.7) Doy, = h(t), he C([0,®), R).

The argument used in proving the next lemma is valid for general

D, satisfying (1.1),(1.2) and can even be adapted to the case

0

where D depends on t. For simplicity, we consider only DO

0

independent of t. The ideas follow [3].

Let ¢O = (¢g,..., ¢g), ¢$ € C, be n functions such that

D0®O =TI and let ¥, =1 - ¢&.D,. Then WO : G —=> CD is a

0 070 0
continuous projection.

If y(y, h) is the solution of (2.7) through ¥, then



y(w: h) = y(WOW, 0) + y(¢oh(0), h).

If we define Kn(t) : ¢([0, t], R") — R" by Ky (t) = y(eyh(0),h)(¢),
0 0

then KD (t) 1is a continuous linear operator and one can prove
0]

Lemma 2. 2. For any a > ap » a # 0, there is a constant . k = k(a)
0 ;

such that
1Ky (6) < @ ke?® ir a >0
"o, |

1 k if a< 0

Idea of the proof: Suppose a = an + 2e, y(t) = z(t)eat,
~ . 0
H(t) = e™%n(t), Dy¢ = Dye® ¢. Then

= e "et -
Dgzy = H(t), lTﬁo(t)l% ke -7, t = 0.

One now uses fairly standard estimates over intervals

[jo, jo + 0], j =0, 1, 2, ... for an appropriate o.

t) = Ty (t)WO + U(t), t =2 0 where U(t) is
0

Lemma 2. 3. TD,L(

completely continuous.

Idea of the Proof: The function U(t)¢ has initial data

U(0)p = ¢0D0¢. Therefore, as ¢ ranges over C, U(0)¢ ranges over
a finite dimensional space. Furthermore,

t+1T

DoLUCt+T)¢ = U(t) ¢ = Dy (T (e+T)¢ = Tp [(£)¢) + 5 L(Tp, 1,(s)¢)ds

t

7



Now use Lemma 2.2 and the above remark about the initial data.

Qgggliﬁion of the proof of Theorem 2. 1. Let re(A), y(A) be,
respectively, the radius of the essential spectrum and the radius
of the spectrum of a bounded operator A. Lemma 2.3 implies

O N
implies Y(TD (P)WO) = Y(TD (r)). The next step is to prove that
0 0

r(Tp, (1) = v (Ty (2)¥). Also, <TDO<er>k = T, (kr)¥,

Y(TD (r)) = re(TD (r)). This uses the almost periodicity of

0 0
detAp (A) on a line Rel = constant.

0

The proof of the theorem 1s now completed by observing that
there exist roots Aj‘ of detA(A) = 0 of large modulus such that
Rexj — aD as j —= o,

0
This latter argument also shows that

(2.8) a < a

In particular, if the zero solution of the NFDE(D, L) is uniformly
asymptotically stable (u.a.s.), then the zero solution of the

difference equation DOyt =0 1is u.a.s.

§3. Preservation of u.a.s. We now turn to the preservation of

u.a.s. when perturbations are made in the parameters in the
equation.  The next result can be proved either directly from the
characteristic equation or from the variation of constants

formula for the equation



a

TﬂT{DXt - H(t)] = Lx, + h(t).

t

Theorem 3. 1. 1If the NFDE(D, L) is u.a.s., then there is a

neighborhood V of (D, L) in the operator topology such that
the NFDE(D, L) is u.a.s. for all (D, L) e V.

Theorem 3. 1 says that we can make small variations in the
coefficients of D, L and not destroy the property of u.a.s.
For the case when D = DO + D1 in (2.2), this means we can
change the norm of the matrices Ak and the Ll norm of A(6)

a small amount and preserve u.a.s. We now study the effect of

variations 1n the delays. To do this, we suppose

D(r) = Do(r) + Dl
L(s) = Lo(s) + Ll
Dp()e = T M), x = (s )
(3.1) .-
' Lo(S)q) = L Bk(b(_sk)’ S = (sl, LA | SM)
k=1
¢}
Dl¢ = S A(B)o(6)Ad6
0
Ll¢ = J B(9)¢(9)d9

where each rk> 0, Sy >0 and A, B are L1 matrix functions.

Definition 3. 1. We say the NFDE(D(r), L(s)) is stable locally




in the delays (s.1.d.) at (r, s) if there exist intervals

I c(R+)N, ISC(R’L)M of r, s such that the NFDE(D(Tr), L(S))
r
1s u.a.s. for each (r, §)e I.xI . We say D(r) 1is s.l.d.at r

if the there 1s an interval IPC(R+)N

of r such that the zero
solution of DO(F)yt= 0 is u.a.s for all 7o € I.

From Inequality (2.8), we have the following

LEEQE_E;_l; If the NFDE(D(r), L(s)) is s.l.d4. at (r, s), then

Do(r) is s.1.d. at r.

From this lemma, it is clear that we must understand when

Do(r) is s.1.d. ar r. This 1s the topic discussed in the next

section.

§4. Preservation of stability for Do(r). Suppose D(r) is

defined as in Relation (3.1). The behavior of the solutions of

Do(r)yt= 0 as a function of r is very complicated. The
following simple example from [4] shows that u.a.s. may not be

preserved when one makes small changes in r. Suppose
Doy, = y(t) + 2y(t-1) + Zy(t-2)
0¢ 2 2

The characterisctic equation is

A -2A

1 - 1 _
1+ 5€ + 5e =0

and (ex| = 1/2, which implies Reix = - 1n 2 < 0. For any

10
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.

integer n, the equation

y(£) + 5y(t-1- m=) + 1y(t-2) = 0

has the solution y(t) = sin(n+%)wt. Thus, there is a X € o(A)
with Rel = 0 and u.a.s is not preserved even though n may
be very large.

The following result which will not be proved is the best

one available at this time.

Theorem 4. 1[4]. The following statements are equivalent

(1) Do(r) is s.1.d. at one r € (R+)N

(i1) Do(r) is u.a.s. for all r € (R+)N

(111) Do(r) is u.a.s. for one fixed r € (R+)N with the
components Ty rationally independent.

(iv) If +vy(B) is the spectra} radius of a matrix B, then
vo(8) 927 supiy( Zi_lAkelek) : 8, € [0, 21], k=1,2,...,NKI

For the scalar difference equation, Do(r)yt = 0, the number

YO(A) in (iv) 1s given by

N

Thus, for the scalar equation, Do(r) is s.1.d. if and only if

N
X ]Ak] < 1. This result was first proved in [5]. All of

k=1

11



. the statements 1in Theorem 4.1 concern the nature of the roots of g

characteristic equation

where the o, are real scalars and each W > 0 1is a linear
function of the components of r. If the w, are allowed to

vary independently, this corresponds to the case of a sclalr Do(r)
discussed in [5]. For the matrix case, the Wy do not vary
independently when the r, vary independently. For this latter
case, the equivalence of (i) and (ii) was first proved in [6].

To apply Theorem 4.1 to a scalar difference equation with delays
which are not independent, one must transform the scalar equation

to a system which preserves the characteristic equation. When

applied to the equation
(4.1) y(t) - ay(t—rl) - by(t—rz) - cy(t—rl—r2) =0
one has s.l.d.at (ry, r,) if and only if
1+ a> |b+tc|, 1 -2a > |b-c]|
which is larger than the set 1 > |a| + |b| + |c| corresponding

to letting the three delays vary independently.

Using [7, Theorem 7, p. 70] and Theorem 3.2, one can also

12



prove the following interesting result.

Theorem 4. 3. The following statements are equivalent:

(1) Do(r) is s.1.d. at r
(i1) There exist constants %k > 0, a > 0 such that,
for every r € (R+)N, Ty (r)<t)“ < ke_at, t =0
0 /
(iii) There exist an o > 0 such that Sup{aD (r):re(R+)N} < -q,
0
From Theorem 4.3, there is an equivalent norm in C such that
T ()l < e_at, t 2 0. Therefore, if g.(r) : ¢ — C 1is
Do(r) 0
defined by go(r)¢ = ¢(0) - Do(r)¢, then, in this norm,

Hgo(r)H S 1. From Theorem 4.1 and computations on Equation(4.1)

is seems that Hgo(r)H < 1 and we formulate this as a conjecture.

Conjecture. DO(P) is s.1.d. at r 1if and only if there exists
an equivalent norm in C such that ”DO(P)¢ - ¢(0)| < |¢| for

all r e€ (R+)N and all ¢ € C. Another interesting problem is

the following one.

Problem: If Do(r) is s.1.d., for what continuous functions

r(t) € (R+)N is Do(r(t)) u.a.s.?

§5. Preservation of stability for NFDE (D(r), L(s)). Suppose

D(r), L(s) are defined as in Relation(3.1). Recall that the
radius of the essential spectrum of a bounded linear operator
B is denoted by re(B) and the radius of the spectrum of B

is denoted by vY(B). As remarked earlier,

13
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i aDO(r)t
re(To(r),1(s) (8 7 YTy () () = ¥(Tp (1) (8)) = e

for all t = 0. If Do(r) is s.1.d. at r, then Theorem 4.3

implies this is equivalent to supfa r € (R+)N} < - o < 0.

Dy(r)’
Therefore, for any 0 < a < a, there i1s an interval IPS (R+)N“
countaining r and an interval I C (R+)M containing s such
that only a fixed finite number p of eigenvalues of

-at

TD(E),L(§)(t) lie outside the circle e for (r, s) € IrXIs‘

These eigenvalues must be of the form ri(r,s)t

where

Aj(r,s) € o(Ap gy 1¢5))> J=1,2,..., p. If it 1s assumed that -
the NFDE(D(r), L(s)) 4is u.a.s., then Rekj(r,s) < 0 for
j=l,2,..., Dp. Rouché's theorem implies that one can further
restrict the intervals Ir’ IS in such a way that Rekj(F,Eg < 0.
for all (r,s) € I xI,. Thus, the NFDE(D(r),L(s)) is u.a.s.

for all (r,s) e IxI, and the NFDE(D(r),L(s)) is s.1l.d. at

(r, s). Using this fact and Lemma 3,1, we have

Theorem 5. 1. The NFDE(D(r), L(s)) 1is s.l.d. at (r, s) if and

only if Do(r) is s.1.d4. at r.

Conjecture. Consider the NFDE(D(r), f(s)) where D(r) 1is the

same linear operator as before and
-0
£(5)6 = B(6(-51),...» #(=5.), | B(6)0(0)a0)
s
0
and g is nonlinear. Then the NFDE(D(r), f(s)) 1is s.l.d. at

14
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(r, s) 1if and only if Do(r) is s.1.d. at r.

§6. Stability globally in the delays for NFDE(D(r), L(s)).

The following problem is discussed in this section.

Problem. Find necessary and sufficient conditions on the
coefficients in (Do(r), Lo(s)) defined in Relation(3.1) in
order to have u.a.s. of the NFDE(DO(r), Lo(s)) for all values
of r, s. .

Let us first conslcer the scalar equation. One can show
that there can never be u.a.s. for all r, s unless LO(S)

has the form,
M
(6.1) Ly(s)é = Be(0) - kglsk(p(-sk), B # 0.

Therefore, we consider Do(r) as in (3.1) and Lo(s) as in

(6.1). If we write
(6.2) - Ly(s)¢ = -BD;(s)¢
then the following result is true.

Theorem 6.1L[8]. The scalar NFDE(DO(r), Lo(s)) with Do(r) in

(3.1) and Lo(s) in (6.2) is stable for all values of r, s if

and only if B > 0 and the difference operators Do(r), Dl(s)

15



are u.a.s. for r, s.
we prove a more general theorem below. First, we try to
make some extensions to the matrix case. For the matrix case,

one can prove the following sufficiency condition for stability.

Theorem 6. 2. TFor the vector NFDE(DO(r), Lo(s)), suppose Do(r)

is given as in (3.1) and Ly(s) as in (6.1), (6.2) with B a
nonsingular nxn matrix and suppose r, s are fixed nonnegative
integer combinations of given numbers (Bl’ v ens Bq) € (R+)q,

ry = Zakjsé, Sk = Zyk B,j for ndnnegative integers Oy s Y -
Then we may write Do(r) = DO(B), Dl(s) = Dl(B). If DO(B), Dl(B)
are s.1.d. at B and ReAB < 0, then the NFDE(DO(ﬁ), LO(B)) is

stable for all B € (R+)q.

Proof: The characteristic equation is given as

A(B, ) 9&F det[ADO(B)e*' - BDl(B)eA.] = 0.

We shall prove that there is a § > 0 such that Red < - & <0

for a11 B e (RT)Y 1if A(B, A) = 0. If there exists a B e (R")Y

and a A(B) such that ReA(B) > 0, then the fact that RelAB < 0

and DO(B) is s.l.d. implies there is a B € (R+)q and a A(B)

such that ReA(B) = 0. Therefore, if the statement in the theorem

1s not true, it is enough to show that the following statement

is false: There exists a B e_(R+)q and a sequence ‘{Xj} of roots of

5(B, \) = 0 such that ReAd —» 0 as J —— ». If this statement

16



bt

is true, then the almost periodicity of DO(B)eA . Dl(e)ex‘

in B on any 1line Rel=constant implies there is a sequence of
IE aj real and — O
as j — «. But this contradicts the fact that D;(8) 1is s.l.d.

roots A(BY) = aj + iwj with w, >0, w

and the theorem is proved.

Theorem 6.2 together with Theorem 4.1 can now be used to
obtain a region in the parameter space for which one has u.a.s.
for all values of r, s. It should be noted that this sufficiency
condition does not require that (r, s) vary independently over
(R+)NX(R+)M but only that B € (Y9 is allowed to vary. For
difference equations, one could always transform to a higher
order system to obtain an equation involving only the independent
delays B. For NFDE(DO(r), LO(S)), this does not seem to be
possible and, therefore, 1t is necessary to obtain results in
the form stated in Theorem 6.2.

Suppose now that the NFDE(DO(B), LO(B)) is u.a.s. for all
B € (R+)q. Then necessarily DO(B) is s.1.d. at B and
therefore stable for all B8 € (R+)q. Therefore, there are
6, >0, 6§ > 0 such that |det Dy(8)e’ I| > 6, > 0 1if Rek > -6.

1
This implies that the characteristic equation is equivalent to

3 3 -1
AL = - BDl(B)(e I)[DO(B)e I]

Now let us suppose the equation is scalar and suppose Dl(B) is

not stable locally in the delays. Then for any up < 0, the set

17
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{D;(8)e ; 8 ¢ (RN} D a neighborhood V of 0 € R

and this neighborhood V may be :chosen independent of .
Therefore, we may always determine a B and a real solution of
the characteristic equation with real part as small as desired.
This contradicts the hypothesis and shows that 'DlCQ) must be
s.1.d. and, therefore, stable fdr all B e (R+)q. We now show
B> 0. Clearly B # 0. If B < 0, then for B = 0 we have the
solution
A= -8B E—:—EEK , C. = B "B

1 - zA)
But the fact that DO(B), Dl(B) are s.l1.d. implies the ratio
above is > 0. Therefore, we have a solution A >-0 which is
a contradiction and we have prbved the following generalization
of Theorem 6.1 to the case where the delays r, s may not vary

independently.

Theorem 6. 3. The scalar NFDE(DO(B), LO(B)) is u.a.s. for all

e (RN)Y if and only if D, (B), Dy(B) are s.1.d. and B > O.
It is natural to conjecture that this result will be true
for systems provided ReAB < 0, but Infante and Tsen have suggested

the following as a counterexample. Consider the‘equation

x(t) = = B[x(t) + pux(t-s)] 9&F _ BD (8)x., - 1 < u <1

18
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n

where x € R and B 1is an nxn matrix. Infante and Tsen

assert that a necessary and sufficient condition for u.a.s. for

all s € R 1is that
Re[A(B) exp (i tan—l uw/v 1 - uz)] > 0

that is, A(-B) 1is in the shaded region below in the complex

plane. This shows ReA(-B) < 0 is not enough.

For matrix systems with the delays r, s varying independently,

Infante and Tsen make the following assertion.

Theorem 6. 4. The vector NFDE(DO(P), Lo(s)) is u.a.s. for all
+)M

r € (R+)N, s € (R if and only if

(1) Dylr) is s.l.d.

(i1)  ReA(B(I - IC,) > 0

(1ii) i0, o,
det[1w(T - IAse Jy - B(I - e )1 #0

-1

for all w # 0 and all 6. ak , Where Ck = B Bk‘

J)

The next important problem is to find the analogue of

Theorem 6.4 for the NFDE(DO(B), LO(B)) with B € (R+)q defined

19
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in Theorem 6.2; that is, the case where 1r, s are allowed to
yary only over linear subspaces V C (R+)N, W C (R+)M. As
remarked before, for the difference operators, this created

no essential difficulties since the dimension of the system

could be increased to make the delays be exactly B. For

the NFDE, this is no longer the case. Some interesting problems

to discuss at the beginning would be scalar equations of the form.

n-1
4 0 d 1 . n _
EEH Do(r )xt + aldtn_lDl(r )xt + + anDr(r )xt 0

n

(6.3)

where each Dj(ra) is the usual type of difference operator and

each rJ is a vector of dimension mj. Take a solution to be
one with continuous derivatives up through order n-1 and the
nth derivative of Do(ro)xt continuous. By transforming (6.3)

to a system, the following conjecture is reasonable.

Conjecture: Equation (6.3) is u.a.s} for all delays if and only
if Do(ro), Dn(rn) are stable locally in delays and the roots
n-1

+ ..+ +a_ =0 have Re) < 0.

of the equation A? o+ ulk n

After analyzing system (6.3) in the spirit above, one should
able to make some connections with the singular perturbation

problems considered in [7], [9].
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