THE ENDOMORPHISM SEMIGROUP OF A SEMIGROUP

AND ITS APPLICATION

Sizuo Nakajima

An endomorphism of a semigroup is one of important tools in the study of semigroups. In this paper, we represent the endomorphism semigroup by means of a wreath product and the greatest semilattice homomorphic image. And we apply to a left inverse extension of certain left regular band by a semilattice of groups.

1. The endomorphism semigroup of semigroups.

Let S be a semigroup. The set End(S) of all endomorphisms of S is a semigroup under the composition. The set Aut(S) of all automorphisms of S is a subgroup of End(S). End(S) [Aut(S)] is called the endomorphism semigroup [the automorphism group] of S. Now, let $S=\bigcup\{S_\alpha\colon \alpha\in\Gamma\}$ be the greatest semilattice decomposition of S. Let $H(S)=\bigcup\{Hom(S_\alpha,S_\beta)\colon \alpha,\beta\in\Gamma\}\bigcup\{\Omega\}$ be a semigroup under composition , where $Hom(S_\alpha,S_\beta)$ is the set of all homomorphisms of S_α to S_β and Ω is the empty mapping. Consider the set H(S) wr $End(\Gamma)=\{(k,\theta)\colon k\colon\Gamma\longrightarrow H(S),\theta\in End(\Gamma)\}$ and define a multiplication in H(S) wr $End(\Gamma)$ as follows:

$$(k,\theta)(k'',\theta') = (k\cdot\theta k',\theta\theta')$$
,

where $\gamma k = k_{\gamma}$ and $(k \cdot \theta k') = k_{\gamma} k'_{\gamma \theta}$ for all $\gamma \in \Gamma$. Then H(S) wr End(Γ) is a semigroup and we call it the wreath product of H(S) and End(Γ).

For each $\emptyset \in End(S)$, we define mappings $k: \Gamma \longrightarrow H(S)$ and $\theta: \Gamma \longrightarrow \Gamma$ as follows:

$$k_{\alpha} = \emptyset_{|S_{\alpha}}$$
, $S_{\alpha} \emptyset \subseteq S_{\alpha \Theta}$ for all $\alpha \in \Gamma$.

Then a mapping $f: \phi \longmapsto (k, \theta)$ is an isomorphism of End(S) into H(S) wr End(\bigcirc). Thus we have the following lemma.

Lemma 1. End(S) $\cong_{in} H(S)$ wr End(Γ).

Next, we shall consider the condition that $(k,\theta) \in H(S)$ wrEnd(Γ) is contained in the image Im(f) of f.

Lemma 2. Let $(k,\theta) \in H(S)$ wr End(Γ). Then $(k,\theta) \in Im(f)$ if and only if

- (i) $k_{\alpha} \in \text{Hom}(S_{\alpha}, S_{\alpha \Theta})$ for all $\alpha \in \Gamma$,
- (ii) $(xy) \cdot k_{\alpha\beta} = [x \cdot k_{\alpha}][y \cdot k_{\beta}]$ for all $x \in S_{\alpha}$, $y \in S_{\beta}$.

Now , we shall call this condition an H-property and let H(S) wr $End(\Gamma) = \{(k,\theta) \in H(S) \text{ wr } End(\Gamma): (k,\theta) \text{ has an H-property}\}$. By above lemmas we obtain the following theorem.

Theorem 3. Let $S = \bigcup \{S_{\alpha} : \alpha \in \Gamma \}$ be the greatest semilattice decomposition of a semigroup S. Then

$$\operatorname{End}(S) \cong \operatorname{H}(S) \ \widetilde{\operatorname{wr}} \ \operatorname{End}(\Gamma).$$

From now on, we identity elements of End(S) with elements of H(S) Wr $End(\Gamma)$.

Remark 1. Since H(S) wr \mathcal{J}_{Γ} is isomorphic with the semigroup of all row monomial $\Gamma_{\times}\Gamma$ -matrices over H(S), End(S) can represent by row monomial matrices.

2. Let $S = \bigcup \{S_{\alpha} : \alpha \in \Gamma \}$ be a strong semilattice of semigroups S_{α} determined by a transtive system $\{\phi_{\alpha,\beta} : \alpha \geq \beta \}$ of homomorphisms. If each S_{α} satisfy certain conditions (e.g., S_{α} has an identity and no other idempotent or S_{α} is weakly cancellative), then an H-property is equivalent to that the following diagram is commutative: $S_{\alpha} \xrightarrow{k} S_{\alpha} S_{\alpha}$

2. The endomorphism semigroup of a successively annihilating chain of semigroups.

To each α in a chain Y assign a pairwise disjoint semigroup S_{α} , and on $S = \bigcup \{S_{\alpha} \colon \alpha \in Y\}$ define a multiplication \circ by $a \cdot b = b \cdot a = b \quad \text{if } a \in S_{\alpha}, \ b \in S_{\beta}, \ \alpha > \beta,$ $a \cdot b = ab \qquad \text{if } a, b \in S_{\alpha} \ .$

Then an semigroup $S(\cdot)$ is called <u>a successively annihilating</u> chain Y of semigroups S_{α} (c.f., Petrich [2]).

We shall first consider an endomorphism of a successively annihilating chain of completely simple semigroups.

Let Y be a chain. To each $\alpha \in Y$ assign a pairwise disjoint completely simple semigroup $S_{\alpha} = \mathbb{M}(G_{\alpha}:I_{\alpha}, \bigwedge_{\alpha}:P_{\alpha})$ where $P_{\alpha} = (p_{\lambda,i}^{(\alpha)})$ has been normalized. Let $S = \bigcup \{S_{\alpha}: \alpha \in Y\}$ be a successively annihilating chain of S_{α} .

Theorem 4. Let θ be an endomorphism of Y(i.e.,an isotone transformation of Y). We define a mapping k:Y \longrightarrow H(S) as follows:

(i) The case $|\alpha\theta\theta^{-1}| > 1$.

Let i_0 and λ_0 be fixed elements of $I_{\alpha\theta}$ and $\bigwedge_{\alpha\theta}$, respectively. Let β be an element of Y such that $\beta\theta=\alpha\theta$. Let β be a homomorphism of $G_{\alpha\theta}$ in $G_{\alpha\theta}$ such that $P_{\lambda,i}^{(\beta)} = e_{\alpha\theta}$, the identity element of $G_{\alpha\theta}$, for all $i \in I_{\beta}$ and $\lambda \in \bigwedge_{\beta}$. Define $k_{\beta}: S_{\beta} \longrightarrow S_{\alpha\theta}$ by, for all $i_{\beta} \in I_{\beta}$, $\lambda_{\beta} \in \bigwedge_{\beta}$ and $g_{\beta} \in G_{\beta}$,

 $(i_{\beta}, g_{\beta}, \lambda_{\beta}) \cdot k_{\beta} = \begin{cases} (i_{o}, (g_{\beta} w)(p_{\lambda_{o}, i_{o}}^{(\alpha \theta)})^{1}, \lambda_{o}) & \text{if } \beta \text{ is the least element} \\ & \text{in } \alpha \theta \theta^{1}, \\ (i_{o}, (p_{\lambda_{o}, i_{o}}^{(\alpha \theta)})^{1}, \lambda_{o}) & \text{otherwise.} \end{cases}$

(ii) Other case (i.e., $|\alpha\theta\theta^{-1}| = 1$).

Define k_{α} by any homomorphism of S_{α} in $S_{\alpha\theta}$ (c.f.,[1]). Then $(k,\theta)\in End(S)=H(S)$ wr End(Y) and conversely every endo-

morphism of () can be obtained in this fashion.

We shall use the following corollary in next section.

Corollary 5. Let $L = \bigcup \{L_{\alpha} : \alpha \in Y\}$ be a successively annihilating chain Y of left zero semigroups L_{α} . Let θ be an endomorphism of Y. We define a mapping $k:Y \longrightarrow H(L)$ as follows:

(i) Case $|\alpha\theta\theta^{-1}| > 1$.

Let l_o be a fixed element of $L_{\alpha\theta}$. Let β be an element of Y such that $\beta\theta=\alpha\theta$. Define $k_{\beta}\colon L_{\beta}\longrightarrow L_{\alpha\theta}$ by

$$xk_{\beta} = l_{o}$$
 for all $x \in L_{\beta}$.

(ii) Case $|\alpha\theta\theta^{-1}| = 1$.

Define k_{α} by any mapping of L_{α} in $L_{\alpha\theta}$.

Then $(k,\theta) \in End(L) = H(L)$ wr End(Y) and conversely every endomorphism of L can be constructed in this manner.

Under some condition we next show that the endomorphism semi-group is a direct product of endomorphism semigroups of subsemi-groups.

Let $\Gamma = \bigcup \{ \Gamma_i \colon i \in Y \}$ be a semilattice which is a chain Y of semilattice Γ_i . Let $\{T_i \colon i \in Y \}$ be a family of semilattice indecomposable semigroups T_i such that $\text{Hom}(T_i,T_j) = \bigcup \{T_i \not\equiv T_j\}$ for all $i \neq j \in Y$. Let $S = \bigcup \{S_\alpha \colon \alpha \in \Gamma \}$ be a semigroup such that Γ is the structure semilattice of S and $S_\alpha \cong T_i$ if $\alpha \in \Gamma_i$. In Proposition 6 and Corollary 7, let $S = \bigcup \{S_i \colon i \in Y \}$ be a chain of semigroups S_i where $S_i = \bigcup \{S_\alpha \colon \alpha \in \Gamma_i \}$, and assume that T_i 's satisfy conditions in the brackets for a statement on an automorphism group .

Proposition 6. End(S)
$$\cong \inf_{i \in Y} \mathbb{I}_{i \in Y} \mathbb{E}_{nd}(S_{i})$$
.

[Aut(S) $\cong \inf_{i \in Y} \mathbb{I}_{i \in Y} \mathbb{A}_{nd}(S_{i})$].

, [{]

Corollary 7. Moreover, let S be a successively annihilating chain Y of semigroups S_i . Then

End(S)
$$\cong \prod_{i \in Y} \text{End}(S_i)$$
.

[Aut(S) $\cong \prod_{i \in Y} \text{Aut}(S_i)$].

By the above result we need to consider the endomorphism semigroup as follows. Let S be a semigroup such that S = $\bigcup \{S_\alpha \colon \alpha \in \Gamma \} \text{ and } \phi_\alpha \colon S_\alpha \cong S_0 \text{ for all } \alpha \in \Gamma \text{, where } S_0 \text{ is a semi-lattice indecomposable semigroup.}$

Let k be a mapping of Γ into End(S₀) and let $\theta \in \text{End}(\Gamma)$. Then we say that (k,θ) has an H-property if (k,θ) satisfy the following condition:

Proposition 8. Let S be the above semigroup. Then $\operatorname{End}(S) \cong \operatorname{End}(S_o) \ \overline{\operatorname{wr}} \ \operatorname{End}(\Gamma) \ \operatorname{and}$ $\operatorname{Aut}(S) \cong \operatorname{Aut}(S_o) \ \overline{\operatorname{wr}} \ \operatorname{Aut}(\Gamma).$

Corollary 9. Let S_0 be a weakly cancellative semigroup or S_0 has an identity and no other idempotent. Then

$$\operatorname{End}(S_o \times \Gamma) \cong \operatorname{End}(S_o) \times \operatorname{End}(\Gamma)$$
 and $\operatorname{Aut}(S_o \times \Gamma) \cong \operatorname{Aut}(S_o) \times \operatorname{Aut}(\Gamma)$.

3. An application to left inverse semigroup

A regular semigroup S is called a <u>left inverse semigroup</u> if the set E of all idempotents in S satisfy the identity xyx = xy. A structure theorem for left inverse semigroups have been given by M. Yamada [3] as follows:

Structure Theorem. Let Ω be an inverse semigroup and Y its

basic semilattice. Let $L=\bigcup\{L_\alpha\colon \alpha\in Y\}$ be a left legular band (i.e., L is a semilattice Y of left zero semigroups L_α). Let $\mathcal G$ be a mapping of Ω into End(L) such that the family $\{\mathcal G_\omega\colon \omega\in\Omega\}$, $\mathcal G_\omega=\mathcal G(\omega)$, satisfies the following (C1) and (C2):

(C₁) Each \mathcal{G}_{ω} is an endomorphism on L such that $\mathcal{G}_{\omega}(L_{\alpha}) \subseteq L_{\omega\alpha(\omega\alpha)^{-1}}$ for all $\alpha \in Y$. In particular, for $\tau \in Y$, \mathcal{G}_{τ} is an inner endomorphism on L.

(C₂) $\int_{e} \int_{f} \mathcal{I}_{\alpha} \mathcal{I}_{\beta} = \int_{e} \int_{f} \mathcal{I}_{\alpha\beta}$ for $e \in L_{\alpha\alpha^{-1}}$, $f \in L_{(\alpha\beta)(\alpha\beta)^{-1}}$, $\alpha, \beta \in \Omega$. (where \int_{e} is the inner endomorphism on L induced by e). Consider the set $L \otimes \Omega = \{(e, \omega) : \omega \in \Omega, e \in L_{\omega\omega^{-1}}\}$ and define multiplication in $L \otimes \Omega$ as follows:

$$(e, \omega)(f, \tau) = (e \mathcal{G}_{\omega}(f), \omega \tau)$$
.

Then L $\bigotimes \Omega$ is a left inverse semigroup and conversely every left inverse semigroup can be constructed in this manner.

We shall call this L\(\omega \) the left inverse extension of L by \(\Omega \) and a mapping \(\psi : \Omega \rightarrow \text{End(L)} \) which satisfies (C_1) and (C_2) is called a factor system of \(\Omega \) into L and we shall denote the set of all factor systems of \(\Omega \) into L by \(\omega (\Omega , L) \). We shall define a relation \(\sigma \) on \(\Omega (\Omega , L) \) as follows; let \(\mathcal{Y}_1 , \mathcal{Y}_2 \in \omega (\Omega , L) \),

 $\mathcal{G}_1 \sim \mathcal{G}_2$ if and only if L\&\Omega \Omega \approx L\&\Omega \Omega \omega \approx .

The purpose of this section is to investigate $\Phi(\Omega,L)/\sim$ in case Ω is a chain of groups and L is a successively annihilating chain of left zero semigroups .

Let $L = \bigcup \{ L_{\alpha} \colon \alpha \in Y \}$ be a successively annihilating chain Y of left zero semigroups L_{α} . Let $\Omega = \bigcup \{ G_{\alpha} \colon \alpha \in Y \}$ be a chain Y of groups G_{α} determined by a transitive system $\{ f_{\beta,\alpha} \colon \beta \leq \alpha \}$ of a homomorphism $f_{\beta,\alpha} \colon G_{\alpha} \longrightarrow G_{\beta}$.

First of all, we shall investigate a factor system of Ω in

Theorem 10. Let $k = (k_{\beta,\alpha})$ be an element of $\prod_{\beta < \alpha} \operatorname{Hom}(G_{\alpha}, S(L_{\beta}))$ such that if $\gamma < \beta < \alpha$ then $k_{\gamma,\beta}f_{\beta,\alpha} = k_{\gamma,\alpha}$ where $S(L_{\beta})$ is the symmetric group on L_{β} . Let \emptyset be a mapping of Ω in L such that $\emptyset(G_{\alpha}) \subseteq L_{\alpha}$ for all $\alpha \in Y$ where if α is the greatest element in Y then assume that $\emptyset(G_{\alpha}) \subseteq \mathcal{J}(L_{\alpha})$, the full transformation semigroup on L_{α} and $\emptyset(e_{\alpha})$ is a constant mapping (e_{α}) is an identity of G_{α}). Define $\mathcal{Y}: \Omega \longrightarrow \operatorname{End}(L)$ by

$$\mathbf{x} \cdot \mathcal{Y}(\mathbf{g}_{\alpha}) = \begin{cases} \mathbf{x} \cdot \mathbf{k}_{\beta, \alpha}(\mathbf{g}_{\alpha}) & \text{if } \beta < \alpha, \\ \phi(\mathbf{g}_{\alpha}) & \text{if } \beta \geq \alpha, \alpha \text{ is not greatest,} \\ \mathbf{x} \cdot \phi(\mathbf{g}_{\alpha}) & \text{if } \beta = \alpha, \alpha \text{ is greatest,} \end{cases}$$

for all $x \in L_{\beta}$, $g_{\alpha} \in G_{\alpha}$, $\alpha, \beta \in \Omega$. Then \mathcal{G} is a factor system of Ω in L. Conversely any factor system of Ω in L can be obtained in this fashion.

Hence we shall denote a factor system \mathcal{G} by $\mathcal{G} = ((k, \emptyset))$. Theorem 11. Let $((k^{(1)}, \emptyset^{(1)}))$ and $((k^{(2)}, \emptyset^{(2)}))$ be factor systems of Ω in L. Then $((k^{(1)}, \emptyset^{(1)})) \sim ((k^{(2)}, \emptyset^{(2)}))$ if and only if there are an automorphism $(\psi, \theta) \in \operatorname{Aut}(\Omega)$ and bijections $p_{\beta}: L_{\beta} \longrightarrow L_{\beta\theta}$ $(\beta \in Y)$ such that $k_{\beta,\alpha}^{(1)} = \rho_{\beta} k_{\beta\theta,\alpha\theta}^{(2)} \psi_{\alpha}$ for any $\alpha,\beta \in Y$ such that $\beta < \alpha$, where $\rho_{\beta}: S(L_{\beta\theta}) \longrightarrow S(L_{\beta})$ is defined by $\rho_{\beta}(p) = p_{\beta}^{-1} p_{\beta}$.

Corollary 12. Let $\Omega = G \times Y$ be a direct product of a group G and a well-ordered chain Y. Let $L = \bigcup \{L_{\alpha} : \alpha \in Y\}$ be a successively annihilating chain Y of left zero semigroups L_{α} .

On the set $\bigcap_{\beta \in Y^*} \operatorname{Hom}(G,S(L_{\beta}))$, define a relation \approx by, $k^{(1)} \approx k^{(2)}$ if and only if there are an automorphism $\psi \in \operatorname{Aut}(G)$ and $p_{\beta} \in S(L_{\beta})$ ($\beta \in Y^*$) such that $k_{\beta}^{(1)} = \rho_{p_{\beta}} k_{\beta}^{(2)} \psi$ for all $\beta \in Y^*$

where $Y^* = Y \setminus \alpha_1$, α_1 is the greatest element of Y. Then there is a one-to-one correspondence between the classes of isomorphic left inverse extensions of L by Ω and the elements of $\prod_{\beta \in Y^*} \operatorname{Hom}(G, S(L_{\beta})) / \approx .$

Example. Let G be a cyclic group of order 2, Y = {0,1} and L = $L_0 \cup L_1$. If $|L_0| = 2n$, then $|\Xi(\Omega,L)/\sim| = n+1$. If $|L_0| = \infty$ then $|\Xi(\Omega,L)/\sim| = \infty$.

Corollary 13. Let Y be a dense chain(i.e., if $\alpha > \beta$, there is an element γ such that $\alpha > \gamma > \beta$). Let Ω and L be successively annihilating chains Y of groups G_{α} and left zero semigroups L_{α} , respectively. Then there exist the only one left inverse extension of L by Ω , up to isomorphism.

References

- A.H.Clifford and G.B.Preston, The algebraic theory of semigroups, Amer.Math.Soc., Providence, R.I., Vol.1(1961).
- [2] M.Petrich, Introduction to Semigroups, Charles E.Merrill, Columbus, Ohio, 1973.
- [3] M. Yamada, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum 6 (1973), 113-128.

Department of Mathematics
Ritsumeikan University
Kyoto