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ARCHIMEDEAN CLASSES IN AN ORDERED SEMIGROUP IV )

T6ru Saitd
By an ordered semigroup we mean a semigroup S with a simple
order < which satisfies
for x, y, 2z €S, x <y imples xz ¢ yz and zx £ 2Y.
The archimedean equivalence 4 on an ordered semigroup S is defined
by:
for x, ye S, x Ay if and only if there exist natural
numbers p, q,‘r and s such that xF < yq and yr < xs.
The difficulty occurs because of the fact that the archimedean equi-
valence is not necessarily a congruence relation. In our previous
papers [3], [4] and [5], we discussed the behavior of set products of
two archimedean classes of an ordered semigroup. The purpose of the
present paper is to give some supplementary properties to preceding
papers and also some applications.
We use the terminology and notations in our previous papers [3],

[4] and [5] freely.

1. 1In this section, we give some properties of archimedean

classes which will be needed in the following discussion.

LEMMA 1. Suppose A, Be ¢, B§ <A§ and BS§ 1is periodic of

L-type. Let g be the idempotent of A * B and f the idempotent
of B. Then |
(1) ag =g for every a e A;
(2) if BS < A§, then af = g for every a € A.
*)
In the seminar, we gave a talk which covers our papers "Archi-
medean classes in an ordered semigroup I-IV". But Part I-III was

published recently and, accordingly, we publish here only Part IV.



PROOF. Since (A * B)S§ AS

archimedean class and so really c
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A BS B§, A * B is a periodic

ontains the unique idempotent g.

In the proof, we only consider the case when A < B. Then A < A * B
< B. First supposé that BS = AS. Then
A*B=min{ Xe (¢ ; A<X<B and X e A§ ABS = A§ } = A.
gince g 1is the zero element of A * B = A, we have ag = g for
every a € A. Next suppose that BS§ < AS§. Let a € A and put
h = ag. Let D be the archimedean class containing the element h.
Then, by [3] Lemma 5.2, h is an idempotent and
D=min{ Xe ¢ ; A <X and X e B§ }.
Since A <A *B and (A * B)§ = A6 A BS = B§, we have D < A *VB.
On the other hand, h = ag g f2 =f and so A <D < B and also \
De BS§ =A§ AN BS. Hence A * B <D and so D =A * B. Hence h =g
and so ag = g. Moreover, since A < A ¥ B, we have a < g. Hence
g=ag af cgf =g
and so af = g.

THEOREM 2. Suppose that A, B e ¢, AS§ ABS< AS and AS, BS
is periodic of L-type. Then

(1) if A < B, then ABc (A * B);

(2) if B < A, then ABC (A * B)_.

PROOF. Here we only show the assertion (l). Suppose A < B.
Since A8 A B§ < A§, we have A < A * B < B. Since (A * B)&= A8 5 BS,
A * B is a periodic archimedean. class. We denote by g the idehpo—
tent of A * B. Let ae€ A and b e B. First suppose g < b. Then,
since a < g, we have ab < gb = g. On the other hand, (A * B)¢§
= A§ A BS§ < AS and, by [3] Lemma 5.10, A * (A * B) = A * B. Hence,

g = ag £ ab. Hence

Then we have B < A * B
periodic archimedean class with i
Hence if

some natural number n.

ab =g e (A * B)+. Next suppose that

and so B A * B, Hence B 1is a

n

dempotent g and so b

g9

ab < ba, then, by Lemma 1,
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g = an+lg _ an+1bn+1 < (ab)n+l < ab®ap = aganb = ag = g,
and if ba < ab, then

g = ag = aganb = ab”a’p < (ab)n+l < an+lbn+l = an+lg = g.
Thus we have (ab)n+l =g and so ab € A * B. Also, since A <

A * B, we have ab < gb =g and so ab e (A * B)+.
In the proof of Theorem 2, we incidentally proved

COROLLARY 3. Suppose that A, B e ¢, A8 N BS < A§, A8 BS

is periodic of L-type and A < B. Let g be the idempotent of

A * B. Then ab =g for every a ¢ A and b € B such that g < b.
In particular, if A * B # B, then ab =g for every a € A and

b ¢ B.

2. Let S Dbe an ordered semigroup. S is called a-regular

if the archimedean equivalence on S 1is a congruence relation.

S 1is called nonnegatively ordered if a < a2 for every a € A.

A criterion of a-regularity for a nonnegatively ordered semigroup
was given in [2] Theorem 2.8. The purpose of this section is to give
a criterion of a-regularity for a general ordered semigroﬁp.

The next Lemma was given in our Lecture Note [6]. But, for

the sake of convenience we give it with proof.

w

LEMMA 4. Let a be an element of finite order n of an ordered

semigroup S. If there exists an idempotent g of S such that

a™ DE g and a lies between a" and g, then n < 2.

PROOF. Suppose n < 1. We consider only the case when a is

positive, that is, a < a2. Then we have g < a < a2 < al. By

[3] Lemmas 1.6 and 1.7, we have a? L g or a R g. For the sake
of definiteness, we assume a R g and so ang = g, gan = a".
Then g = g2 < ag 2 ang = g and so g = ag. Hence gaga = ga and
gazga2 = ga2 and so ga and ga2 are idempotents of S. We have
a < gaz, since ga2 < a would imply al' = gan < ... 2 ga2 < a,
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which is a contradiction. If a £ ga, then

a3 Y (ga)3 = ga <

A
V)
[[PAN
o)

and if ga < a, then

a3 < (gaz)3 = ga2 = (ga)a < a2 < a3.

. 2 3
Hence, in both cases, we have a“ = a”.

THEOREM 5. The archimedean equivalence in an ordered semigroup

S is not a congruence relation, if and only if either

(1) there exist torsion-free érchimedean classes A and B

ig S such that A # B and A § B, or

(2) S contains a subsemigroup'o—isomorphic to either one of

the ordered semigroups Kl’ K2, K3 and K4:

e £ é g e £ a g
e e e e e e e £ f g
Kl: £ b £ f £ K2: £ e f g g
a £ g g g a e £ g g
9,9 9 9 g g|le £ g g
e< f<ax<g e < f <a«<ag
g a £ e g a £ e
919 9 9 g g9 g £ e
K3: a g g g £ K4: a g g f e
£ £ £ f f f g g f e
e e e e e ’ e g f £ e
g<ac<fc<e g <a<f«<e.
PROOF. "Only if" part. Suppose that the archimedean equiva-

lence on S is not a congruence relation. Then there exist archi-
medean classes A and B such that AB ~is not contained in a single

archimedean class. First suppose that AS A BS is torsion-free.



Then, by [3] Corollary 6.2, we have A # B and A 8§ B. Then

AS§ = AS§ ANB§ = B§ and so A and B are torsion-free archimedean
classes. Hence we have the condition (1l). Next suppose that AS§ A B§
is periodic. First we consider the case when AS§ A BS 1is of L-type
and A < B. Then, by Theorem 2, we have AS§ = A§ ABS. We denote

by g and e the idempotents of the periodic archimedean classes

A and B * A, respectively. Then AS = A8 A BS = (B * A)S§ and,

by [3] Theorem 3.3, we have g DE e. Also, by [3] Lemma 6.7, there

exists an idempotent £ of S such that g < £f < e and g D £,

E
and also there exists a e A_\{g} such that ae = f. Since A is

a periodic archimedean class with idempotent g, we have al = g

for some natural number n > 1. Also g = a < a < f and, by Lemma 4,
we have a2 = g. Now we can verify that {g, a, f, e} forms a sub-
semigroup o-isomorphic to K3. In a similar way, if A§ A BS 1is of
L-type and B < A or A8 N BS 1is of R-type and A < B or AS ABS§
is of R-type and B < A, we can prove that S contains a subsemigroup
o-isomorphic to K, or 'K2 or K,.

"If" part. Suppose that there exist torsion-free archimedean
classes A and B in S such that A # B and A § B. Then,
by [3] Theorem 2.4, AB N A # U and ABMN B #O. Hence AB is not
contained in a single archimedean class and so the archimedean equi-
valence is not a congruence relation. If S contains a subsemigroup

o-isomorphic to Kl or K2 or K, or Ky» then clearly the archi-

medean equivalence is not a congruence relation.

3. As an application, in this section we give a result that
a finite product of elements of an ordered semigroup is archimedean
equivalent under certain conditions to a product of at most two of

these factors.
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LEMMA 6. In an ordered semigroup S, let a = Xqee Xy and

ll

tet Xy7 .. o X and A be archimedean classes containing x

cee 1 X and a, respectively. Then

X8 A.e. AX S < AS.

PROOF. If n = 1, the assertion is trivial. Suppose n = 2.

2
1 € Xl, a e A and X, € X2

_ 2 . 2 2
Xy S XX, T a3 xg with X, € X5, a €A and Xy

ﬂence, by [3] Lemma 5.6, we have X16 A XZG < AS. Suppose n > 2.

E,Xl°
Put Y = Xy X, and let Y be the archimedean class containing vy.
Then, by induction hypothesis,

Xo8 A el A X 8 2 VS

i = XoXene.o = we have
and, since a 1%5 X, XY,

X[ 8 A X8 A ... A X 8L X8 A YS X AS.

THEOREM 7. 1In an ordered semigroup S, let a = XqeooX and

let Xy, ..., X, and A be archimedean classes containing xl;

... o+ %, and a, respectively. If XlG ANo.. NX § =A8 and

—— n s,

a is an element of infinite order, then a 4 X, for some 1 < i

A

n.

PROOF. If n =1, then the assertion is trivial. Suppose

= = = = w2 ‘
n=2, If X, = X,, then a = X X, € XX, = Xl ©X; and so a 4 X -
If Xl # X2 and Xl6 = X26, then AS§ ='X167\ X26 = XlG = X26 and,
or

by [3] Theorem 3.5, A = X1 or A = X2. Hence we have a 4 Xy

a i Xy If X16 # XZG, then, since X16 A X26 = AS§ 1is a torsion-

free §-class, it follows from [3] Theorem 6.1 that either a = X 1%,
1 °or a A Xy

o =
€ XX, < X, or a X%, € XX, ¢ X, and so a 4 x

Finally suppose n > 2. Let Y be the archimedean class containing

the element y = XKyee X o Then, since a = X Xye. X = Xy, We

< Y§ by Lemma 6. Hence

have XlG A ¥§ £ AS  and X26 A eee A Xn6

= <
A8 = X8 A X8 A .. A X 8T X 8 A Y8 AS
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and so Xlﬁ N Y8 AS. Also we have. a = X1y and so a 4 Xy or
ady. But, if a 4 y, then we have A=Y and so

Y8 = AS = X;6 A X8 A ... A X 8 2 X8 A ... A X S < V6.

Hence Y§ X26 AN Xn6 and, by induction hypothesis, we have

adylA X, for some 2 £1i<n. This éompletes the proof.

LEMMA 8. Let A, B and C be archimedean classes in an

ordered semigroup S such that AB < C. Then we have C = A * B
and C§ = AS A BS.

PROOF. If A =B, then AB = A2 C A and so C = A. Hence,
[}

' ;
by [3] Lemma 5.8, C=A=A* A=A*pB and also CS§ = A§ =

AS N BS. Next suppose that A # B and AS N B§ is torsion-free.
Then, by [3] Corollary 6.2, A § B does'not hold. Hence, by [3]
Theorem 6.1, we have either A y B or B y A. Also, if A vy B,
then, since ABS A=A * B, we have C=A=A* B and C§ = A§
= A§ A BS, and if B y A, then, since AB < B = A * B, we have
C=B=A%*B and C§ = BS§ = A§ A B§. Finally suppose that A # B
and A§ N BS 1is periodic. For the sake of definiteness we assume
A < B and AS N BS 1is of L-type. Let a € A and b e B. Then,
since A < B, we have a < b and so a2 < ab g b2 ‘with a2 € A,
ab e C and b’ ¢ B. Hence A < C < B and, by [3] Lemma 5.6, we
have AS§ N BS§ 2 C8. On the cher hane( we have a2b = a(ab) € C n AC
and ab? = (ab)b ¢ C N CB. Hence C YyA and C y B and so

B

A

C§ £ A§ A BS. Hence we have CS§ = AS N BS. Also, since A < C
and C e AS A BS§, we have | ‘ |
A*B=min{DeC; A<D<B and De A ABS } < C.
On the other hand, since A *’B £ A6_A BS, A * B 1is a periodic
archimedean class and so contains an idempotent, say g. Then,
since A < A * B, we have a; < g for some a, e A. Since

1
A§ A BS < B§, we have (A *‘B) Y B and so, by [3] Theorem

(A * B)S

2.7, alb

A

gb = g. Hence we have C <A * B and thus C = A * B.
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LEMMA 9. In a nonnegatively ordered semigroup S, suppose

that a = X;...x,. Let X;, ..., X and A be archimedean classes

n
containing Xyr -+« 4, %, and a, respéctively. Then X16 A eae
contalining ana

= AS.
A xn6

PROOF. If n =1, the assertion is trivial. Suppose n = 2.
If XlXZ is contained in a single archimedean class, then, by Lemma 8,
we have Xlé A X26 = Ad. Next consider the case when XlXZ is not
contained in a single archimedean class. If X1 < X2, then, since
S. is nonnegatively ordered, it follows from [3] Lemma 1.8 that
X, is a periodic archimedean class of R-type with idempotent, say e,
and there exists an idempotent f such that f R e and XiX2 <
{£y U X,. We denote by Y the archimedean class containing the
element f. Then, by [3] Theorem 3.3, we have Y§ = X26. Since
a =x;x, e {f} U Xy, we have AS§ = X,§. On the other hand,

xje = xy(x5e) = x;x,e ¢ ({£f} U X,) {e} = {fe} u X,{e} = {e}

and so e = x,e ¢ XlX2 N X2. Hence X2 Y X1 and so X26 = XlG.

Hence we have AS§ = XZG = X16 A X,6. If X, £ X we can similarly

ll
prove that AS§ = Xlé A X26.

Now suppose n > 2. We put vy = KoeeoX, and denote by 2
the archimedean class containing y. Then, by induction hypothesis,
Z§ = X26 ANosed A Xné. Also, since a = Xy¥Xy.--X, = X;y, we have

AS

Il

x16 AN Z8. Hence

A§ = XlG A X26 AN Xné.

COROLLARY 10. I a nonnegatively ordered semigroup S, suppose

that a = Xjee0 X an a is an element of infinite order. Then

n ——

a4 X, for some 1 < i < n.
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LEMMA 11. 1In an ordered semigroup S, let a = X X Xq and

1 X%pr X3 and A be archimedean classes containing x

let X

1r %)

Xq and a, respectively. 1If- AS 1is periodic of L-type and

X16 A X26 A X36 = A§ < Xlé A X26, then a 4 X{X3 or a A XyXge

PROOF. Put y = X ¥y and let Y be the archimedean class

containing y. Then, by Lemma 6, Xlé A x,86 < ¥Y§ and, since

a = § A X,6

2
X XyXy = YX3, We also have Y§ A X36 < Ad = Xlé A X2 3

A

YS A X36. Hence

Y§ A X36 = AS§ < XlG A X26 < Y§.

Hence, by Theorem 2, a = yX3 € Y * X3. Now, by way of contradiction,

we assume that X3 lies between Xy and Xy that is, either

X3 < X, Or X, < X3 < Xy Then we have either Xl <X

2
Xl‘ Hence, by [3] Lemma 5.6, we have X16 A X26 < X

A

and so X16 A X26 A X36 = de A X26, which is a contradiction.

Hence either X lies between X, and X3 Or X, lies between

Xq and X3. For the sake of definiteness, we assume

A
A

X X X3.
§ < de

Then X Xl < X3 and, by [3] Lemma 5.6, we have X26 AN X

A

2 3

and so X26 A X36 = Xlé A de A X36 = AS < Xlé A X26 < X26. Hence,

* .
2 X3. Now, since X, < Xy, we have

by Theorem 2, Xy X5 € X

xg 2 X%, £ xi and so X, £ Y < X

such that X

X

A

1 3- Also, for every 2 e C

5 2 Z <Y, we have X2 L2 Y

A
1IN

Xl and, again by

[3] Lemma 5.6, X26 A X36 = A§ < X, 8 A X26 < Z8. Hence

Y* X, =min{f UeC; Y

3 and U e AS }

1
U<

A

X3
=min{ U e ¢ ; X X

A

U < and U e A§ } = X, * X,.

3 2 3

2 * X3 and so a 4 x2x3. In

the remaining cases, we can similarly prove that either a 4 X Xy OF

2
. . . _
Thus we obtain a, XyX4 € Y X3 X

a i X2x3.
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LEMMS 12. In a nonnegatively ordered semigroup S, suppose
that A, B € ¢ such that A§ < B§ and AS is periodic of L-type
a— — R S ——————  v—

and a € A, beB and e and g are idempotents of the periodic

archimedean classes A and B * 3, respectively. Then ab ¢ A

if and only if ag = e.

PROOF. First suppose that AB € A. Then we have ab ¢ A for
every a € A and b ¢ B. On the other hand, if A =B * A, then
we have ag = ae = e. Also, if A # B * A, then, since B * A lies
between A and B, the element g in B * A lies between a and

b' for some b' € B. Hence ag 1lies between a2 and ab' with

a2 e A and ab' € ABS A. Hence ag € A and, since (B * A)S§

= A8 NBS = A§, we have ga =g by [3] Theorem 2.7 and so ag is
an idempotent of A. Hence ag = e. Next suppose that AB is not
contained in A. Since eb =e € ABN A, AB is not contained in
a single archimedean class. Hence, by [3] Lemma 1.8, B < A and
ABC {f} U A, where f is an idémpdtent of S such that f < e
and f L e. Again by [3] Lemma 1.8, BA is contained in a single
archimedean class and, by Lemma 8, BA C B * A. Since be is

an idempotent and also be ¢ BA S B * A, we have be = g. Now

we suppose ab € A. Then ag = a(be) = (ab)e = e. Next we suppose

ab ¢ A. Then, since ab ¢ AB S {f} UA, we have ab = f. Hence

ag = a(be) = (ab)e ‘fe = f # e.

LEMMA 13. In a nonnegatively ordered semigroup S, let

a = and let X X2’ X3 and A be archimedean classes

X1X2X3

containing x

l’
27 %3 and a, respectively. If A8 1is periodic,

1’ %

then a 4 X1X, or a A x2x3 or a = X1X3'

PROOF. For the sake of definiteness we assume AS§ is of L-type.

By Lemma 9, we have A6 = Xlé A X26 A X36. If AS < XlG.A X26, then

the assertion follows from Lemma 11. In what follows, we assume
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AS§ = XlS A X26. We denote by Y the archimedean claés containing

X;X,. By Lemma 9, Y§ = X16 A X26 = A8 and so Y is a periodic

archimedean class with idempotent, say e. If X1Xy,X3 € Y, then

we clearly have 'a = xlxz}%3 A XXy Suppose XX X5 £ Y. Then,

since e = exs ¢ Y N YX3, YX3 does not contained in a single
archimedean class. Hence, by [3] Lemma 1.8, we have X3 <Y, every
element of Y is of order at most two, there exists an idempotent £
of S such that f < e, fLe and e and f are consecutive

in eL, there exists a peribdic archimedean class U wigh idempotent
g which satisfies g L e, g < e, Xy £ U, XU, UX; €U, Yg-= {f, e}

and YX, < {f} U Y. Since x € YX; and X X,X3 £ Y, we have

3 1%2%3 3
X1XyXq = f.

(a) The case: x1 < Xz.

Since de A X26 = A§ is of L-type, XX, is contained in

a single archimedean class by [3] Lemma 1.8. Hence, by Lemma 8,

*
1 "X

* X, = min{ X € ¢ ; X; 2 X <X and X ¢ Xls N X,8 = A8 },

X, £ Y¥Y=X 2 £ X,. Since

1

Xy

there is no archimedean class X € A§ such that X, £ X < Y.. Since

e e Y and Y$§ = XlG»A X26§ de, we have ex, = e “and so x;e is

an idempotent and’ xle’L e. Since S is nonnegatively ordered,

e is the greatest element of Y and so x; < e. Hence xi S xe e
and so the archimedean class c¢ontaining x,e belongs to AS§ and
lies between Xy and Y. Hence it coincides with Y and so x,e = e.

Now, since g L e, we have US§ = Y§ = AS : X36 and so gx3 = g

by [3] Lemma 2.7. Hence X39 is an idempotent and also x3g's X3U < u.
Hence X39 = g and so X1X,9 = x1x2x3g\= fg=f < e = x,e. Hence

X,g < e = eg and so X, < e. Hence X2 LY X2 and so we obtain

X, = Y. since X0 < U, it follows from Lemma 8 that U = X5 * U.
Also, since X3 < U < Y = X5, U8 = A§ and (x3 * xz)a = X36 A X,8

= AS,
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yU X

3 * U =min{ X e C ; X3 £X U and X € AS }

Il

min{ X € ¢ i X and X £ A§ } = X, * X

3 2 3 2

and so g 1is the idempotent of X3 * X2. Now e 1is the idempotent

<X <X

of X2 and X59 # e, it follows from Lemma 12 that XoX3 £ X2.
Hence X2X3 'is not contained in a singie archimedean class and,
by [3] Lemma 1.8, we have ’ XyXq = f and so XyXg = f = X X, X4y = a.

(b) The case: X, 2 X and X X, is contained in a single
archimedean class.

o . _ .
We have X2 < Xl * X2 < Xl and, by Lemma 8, Y Xl .X2.
f

Also XXXy = < e = ex,X4 and so X4 < e. Hence we haYe

* = * -
Xl < X1~ X2 and so Xl Xl Xz. If X, < X3, then

_ 2
f = fx2 <

2 _
XXq L xlxzx3 = £

2 _ . _ ' _ < :
and so XX, = f ¢,Xl' Since XlG = (Xl * X2)6 = de A X26 2 X,6,

2
it follows from Lemma 12 that th # e, where h 1is the idempotent
of Xz‘# Xl' Hence, again by Lemma 12, we have X1X, Fi Xl; But,

by [3] Lemma 1.8, X;X, < {f+ U Xy and so . XX,

X,, We can prove in a similar way that a = X1X3.

= f = X X Xq = a.

If

A

%3
(c) The case: X, 2 Xl and X1X2 is not contained in a single
archimedean class.
By [3] Lemma 1.8, Xl is a periodic archimedean class with
idempotént,vsay ey there exists an idempotent fl of S such

that f f,. L e and £ and e

1 <€ i 1 1

there exists a periodic archimedean class T with idempotent k

1 are consecutive in elL,

such that k L e X, £ T, TX,, X,TC T and X;X,S {f;} Ux,.

172
1X9 = fl, then fl is an

1’ 2 2" 72
Hence x;X, € X;X, C {fl} Ux,. If x

idempotent of Y and so XXy = fl = e. Hence a = XX Xy = € # £,

which is a contradiction. Hence XX, € Xl‘ Then we have Xl =Y

and so e; =-e, fl = f£. Since X2T ST, we have T = X2 * T by

Lemma 8 and so, since T¢§ = de = Y§ = A§ = X16 A X26 and X, < T <X

2 1,



32

T=X, *¥T=min{-Xe C; <X<T and X e A§ }

X
min{ X € C ; X, £X 2% and X e AS§ } =X

2 * Xl.

Hence k is the idempotent of X2 * Xl and, since XXy € Xl,
we have xlk = e by Lemma 12. Hence, again by Lemma 12,

xlxg € Xl = Y and so X1X2X3 = f < x x2 Hence we have x3 < X,

172
2 . . :
and so X1X3 Y XX Xy = f < e. Since X16= Al £<X36, it follows
from [3] Theorem 2.7 that exy = e € Xlx3 N Xl’ Hence X1X3 is not

contained in a single archimedean class and so, by [3] Lemma 1.8,
X,X3 S {f} U X,. Since xlxg < £, we have xlxg £ X, and so

x,h # e by Lemma 12, where h is the idempotent of Xy * Xy.

Hence, again by Lemma 12, x;x%; £ X;. Since X Xy € X;X3 {£} U Xy

we have X X3 = f = X1X2x3 = a.

THEOREM 14. 1In a nonnegatively ordered semigroup @S, let

a=xy...x, with n > 2 and let X;, ..., X ~and A be archimedean

1

classes containing x

17 eee 0 X and a, respectively. If a is

an -element of finite order, then a 4 xixj. for éome i, j such

A

that 1 i < j n.

- PROOF. If n = 2, the assertion is trivial. If n = 3, then
the assertion is given by Lemma 13. If n > 3, then put y = XyeooXp o
Then a = X1X,¥ and, by Lemma 13, a 4 XX, or a A Xo¥ = XgXge. X,

or a = X,y = X;Xj...X . Now we obtain the assertion by induction

hypothesis.

COROLLARY 15 ([l] Théoréme 1). In an ordered idempotent semi-

group S, the product of a finite number of elements gg S is equal

to a product of at most two of these factors. _ ;

PROOF. If S 1is an ordered idempotent semigroup, each element

~

is of finite order and each archimedean class is constituted by a

single element. Hence the corollary follows from Theorem 14.



COROLLARY 16. In a nonnegatively ordered semigroup S, the

product of a finite number of elements of S is archimedean equi-

PROOF. The corollary follows from Corollary 10 and Theorem 14.

Example 17. Let S be an ordered semigroup consisting of
seven elements e < a < u < g < v <Db< f with the multiplication

table:

In S, A= 1{e, a}, U= {u}, G={g}, Vv=1{v} and B = {b, f}
are archimedean classes and A8 = G§ = BS§, AS§ <U§, AS < VS.

Since ab = u, Lemma 9 does not hold in general without the assump-
tion that S is nonnegatively ordered. Also we have ab2 = g but
neither ab = u 4 Q nor b2 = f A g. Hence Lemma 13 does not hold

in general without the assumptién that S is nonnegatively ordered.

4. 1In [7] Yofikafvili and Loginov proved that in an ordered
semigroup S which'satisfies the conditions (1) for x, y, 2 € S,
X <y implies xz < yz and zx < zy, and (2) xz > x and. zx >.X
for every x, z € § such that 2z is not the identity of S, the
subsemigroup generated by a well-ordered subset 6f S 1is also

a well-ordered subset of S.

33
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As an application of the preceding section,vin this section
we extend the result of %oéikagvili and Loginov for ﬁonnegatively
ordered semigroups. The proof is carried out in a similar way to
that in [7].

In this section, we denote by S a nonnegatively ordered -

semigroup.

LEMMA 18. If M; and M, are well-ordered subsets of S,

then the set product Mle is also a well-ordered subset of s.

PROOF. By way of contradiction, we assume Ml 2 is not well

ordered. Then there exists an infinite sequence

xl > x2 > X3 > ee.
of elements of MlMZ' Since xi € Ml ar We have Xy = X;9X55 for
some X, € Ml and Xio € M2. Since Ml is well-ordered,
{ X5q i=1,2, 3, ... } has the least element y,- We put
I, = {1i; X1 V1 }. By way of contradiction, we assume I is

infinite and consists of lll < 112 < 113 < ¢ee.. Then
X. = x. X. = V.X. > X, = x, X. = y.X.

i 1111 1112 1 1112 i5 1121 1122 1 1122

A
> X, = x,. X, = y.X. > ey

113 Tipzliigg2 717452 |

whence we have an infinite sequence X 92Xy 5 2 X 50> e

11 12 13

of elements of M2, which contradicts the fact that M2 is well-

ordered. Hence Il is finite and so we can take n, = max Il.

1 then i # Il and so0 Xx., > Y- Also we have

Then if i > n il

X > X.. Hence
n 1
1
lenlz = Xnilxnlz = an > Xj.T X41%i0 2 Y1¥i

and so xn12 > Xio- Thus we have shown that xnlz ? Xi5 for every
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Now suppose that m is a natural number such that x > X

m2 i2

for every i > m. Since Ml is well-ordered, { Xiq § i>m+ 11}
has the least element yﬁ. We put
I ={ i; i>m+ 1 and xil = Y }.

By way of contradiction, we assume I, is infinite and consists of

elements i1 < i < i3 < e ‘Then

X. = X, X. = y_X. > x, . = x, X. =y X,
in1 lmll 1m12 m 1m12 i, 1m21 lm22 m lm22
> X, = x, X. =y _X. > ey
' n3 lm31,1m32 n lm32
whence we have.an infinite sequence X; 5 >\xi 5 2 Xi 9> -..
ml m2 m3

of elements of M2, which contradicts the fact that M2 is well-
ordered. ‘Hence Im is finite and so we can take ‘nm = max Im'

For i > no, we have i ¢ Im and also i >n_>m+ 1 and so

and so x.. > vy . Also we have x > xX.. Hence
il m n 1

X = x X = X > X, = X X.an > X.
Y¥n 2 n 1"n 2 n i i1¥i2 2 Yp*¥io
m m m m
and so x > X.,. Also, since n m, we have x > x .
i2 m m2 2

n_2 n
m . m

v
=]
+
~
v

Thus we have shown that there exists a natural number n. such that

n, > m, X0 > xnm2 andg Xp 0 > Xip for every i > n . Hence we
obtain an infinite sequence x > x > X > ... of elements
n,2 n,2 n,2
’ 1 2 3
of M2, which contradicts that M2 is well-ordered. This proves

that Mle is well-ordered.

From Lemma 18, we have, by induction

COROLLARY 19. If Ml' M2, cens o Mk .are well-ordered subsetsﬁ

of S, then M1M2"‘Mk igralso a well-ordered subset of s.

LEMMA gg; Let M Eg a well-ordered -subset of s, let L be

the subsemigroup generated by M and let B be the set of all

archimedean classes of the semigroup L. Then B is a well-ordered

set.
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PROOF. Let B' be a nonempty subset of B. Let B & B' and
letﬁdx € B. Then, since x € BS L, there exists a finite number
of elements Xyr Xgr eee 4 X of M Such that X = X Xge. X .

By Corollary 16, there exists y ¢ M U M2 such that X A y. Thus
we have shown that each archimedean class B in B' contaiﬁs

a repfesentative x(B) e M U Mz; Then X ={ x(B) ; Be B' } |is

a nonempty subset of M U M2. But M U M2 is a wéli—ordered subset
of S by Lemma 18 and‘sQ there exists B0 é B! sudh that

x(BO) = min -X. Then clearly B is the least element of B'. This

0
proves that B is well-ordered.

LEMMA 21. Let M be a Well—ordered subset of ﬁb and let L

be the subsemigroup generated by M. Then every archimedéan class

of the sémigroup L is a well-ordered subset of S.

PROOF. By way of contradiction, we assume that there exists
an archimedean class of L which is not well-ordered. Then, by
Lemma 20, there exists the least archimedean class X which is
not well-ordered. As above we denote by B the set of all archimedean
classes of the semigroup L. Thus, if 'Y € B and Y < X, then
Y is well-ordered.

Weput U=U{YeB; Y<X }.

(a) If U # 0O, then U is a subsemigroup of S.

In fact, let y, z € U. Then y €Y and 2z € Z for some
Y, Z e B such that Y < X and 2 < X. If y < 2z, then y? < 22 € Z
and so yz € W for some W e B such that W < 2 < X, whence yz ¢ U.
If z <y, then we can obtain yz ¢ U in a similar way.

Similarly we can prove‘

(b) X UU is a subsemigroup of s.

(c) If U #({d, then U is a well-ordered subset of Sf

In fact, let V be a nonempty subset of U and let
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B*'={BeB; BNV#LC]}. Then B' is a nonempty subset of B.
Hence, by ﬁemma 20, we can take B0 = min B'. Then B0 € B' and,
by the definition Of; U, By <X and so, by assumption, B, is
well-ordered. Hence we can take b0 = min(B0 N V). Now it is clear
that bo islthe least element of V.

Put T =M UUMUMI U uMu U M2 U oM® U M2U U oMU

(d). Every element x € X can be Wriften in’ the form
X = tjty...t with ¢, t,, ... , £ € TAH X '

~In fact, let x ¢ X. Then, since x ¢ X< L, x = xlxz..;xk

for some RINARSVIRERTIN STy M. By Corollary 16, there exists

y e MU M? such that x 4 y. Then y € X. Also, since S is
nonnegatively ordered, there exists a natural number s such that
x £ ys. We denote by Xi the archimedean class containing the

element X, Suppose X < Xi for some i. Then we have x £ ys < X

Putting p = x and q = Xiqe-%p (p or g may be the

1°°+%51
empty symbol), we have pPx;q = X

ordered, we have p < p2 and q < q2 and so

2 2 _ s .
PX,q £ P X;9 = pPXq £ PY 9 £ PX;d.

A

ys < x.. Since S 1is nonnegatively

Hence x = px;q = pysq. Applying this proceduré several times, we
obtain an expression x = Y1¥y: - ¥y with Yir Yor «o+ 0 ¥y
e (M U M2) N (XU U). Finally, by (a) and (b), we obtain an expression

X = tlté;..tm with t t2, ces tm e TN X.

1’
Now we return to the proof of the lemma. Since the archimedean

class X of L 1is not well-ordered, there exists an infinite sequence

zy < z, < Z, < ... of elements of X. Since X contains at most

one idempotent and, if X .contains an iaempotent, then the idempotent

is the greatest element of X, we can assume that each one of

211 Zyr Zgs o oee is not an idempotent.' Since U and M are well-

ordered subsets of S, it follows from Corollary 19 that T is
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well-ordered. Hence T n X contains the least element tO' Then,

since z is not an idempotent and =z and t0 are archimedean

1 1
equivalent, there exists a natural number k such that z, < tg.

By (d), for each Z;, there is a representation z; = tltZ"'tm

with tl' t2, cee 4 tm e Tn X. If k <m were true, then
k+1 m _ k . .
t0 < t0 < tltz"'tm = z; < z, < to, which contradicts the fact

that S 1is nonnegatively ordered. Hence m < k and so

z; € U§=l . But, by Corollary 19, T is well-ordered and so also
T} is well-ordered for every Jj such that 1 < j £ k. Hence

U §=1TJ is a well-ordered subset of S and also contains an infinite
sequence z, <z, < Z3 < ..., which is a contradiction. This proves

Lemma 21.

THEOREM 22. In a nonnegatively ordered semigroup S, let

M be a well-ordered subset and let L be the subsemigroup of S

generated by M. Then L 1is also a well-ordered subset of S.

PROOF. Suppose [ # Nc L. We denote by B the set of all
archimedean classes of the semigroup L. We put .
B'={XeB; XnN#[QO }.
Then, by Lemma 20, there exists Xo = min B' and X0 NN # . Also,
by Lemma 21, there exists Xy = miﬁ(X0 1 N). Then clearly X is

the least element of N. Hence I is well-ordered.
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