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Abstract

In the mﬁlti-objective mathematical programming problems, we
usualiy need to consider compromise of several objective functions
pecause they are often conflictiﬁg each other. While the concept
of combromise is défined by'several ways, the way of compromise due to
J.F. Nash in the bargaining games seems to be interesting and
introduced to the multi-objective programming theory in this paﬁer.
For this purpose we construct one composite objective function
composed of several different objective functions, in which all
objectives are treated imparfially. Cur result shows that thé‘

Nash concept éeems to have a wide applicéﬁility beyond the current

scope of the bargaining game theory.
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1.  INTRODUCTION

In the multi-objective mathematical programming problems, it
is required“that seVeréi éifféfent objective functions are simuitaneously
optimized in some‘sense. ‘But as the objecfives are often conflicting
each other, e usually need to con31der compromise of them in order to
get an’optlmum solution. This concept of compromise is deflned by
several different ways in the literature: By giving a hierarchy to
the objectives, by methodsvof utility measurement or by method# of
heuristic aﬁalysés, etc;‘ o

On the other hand, the céncept of compromlse hés been extens:vely
studied in game theory. Especlally the way of compromise due to
J.F. HNash [5] in the bargaining games seems to be most 1nterest1nm
and basic in the multi-objective programming problems. Motivated by
this we introduce the Nash-type solution to the multi-objective
programming theory. For this purpose we will consiruct one composite
objective function which is composed of several different objective
functions. In the composition, in which our way of compromise is
reflected, we restrict ourselves to the case in which all objectives
are treated impartially, viz., we will construct a well balanced
composite objective function. This case seems to be fundamental
to the multi-objective programming theory. Then the compromise |
solution will be qbtained as a maximum,solution of the composite
objective function. Conséquéntly we have a utility function integrating

several objective functions, but our approach is quité different
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grom the methods of utility measurement mentioned above.

Let us consider a multi-objective mathematical progré?i-ﬁg problem.
pet X i)e .5 nonempty compact and convex set in ‘euclidean space " 6f appropriate
dimensions m, which means the constraint for the problem and is usually
given by a2 system of linear or nonlinear inequalities.  An element of X is
‘said to be an alternative. There are n different objective functions fi ( i
2z 1yeesnd ), each of which is continuous and concave on K. Here we
assume n=2. A value of an objective function is said to be an outcome.
fle wvant to maximize these objective functions on K. We denote
f= (fl""’fn)' Any order relation for vectors is considered to be .
coordinate-wise. Each fi(x)_ is measured with each unit of measurement.
These units of measurement are various and need not to have a common unit
of measurement. Even when there exists a common unit of mea_surement
for some objective functions fi(x), the sum of them may not be used by
some‘reason. Indeed if the sum v;rere possible to use, we could reduce
the number of objective functions originallye. Thus we may say that
we consider the case in which no direct comparison of the units of
neasurement is admitted.

When K and f are given, it is natural to assume that the decision
meker sets a floor peRn, below which the outcome of final alternatives
should not be fallen. the floor is considered‘as a minimal requiremen‘b.
It is not so difficult to give the floor because we usually put it as

-2 status-guo point. Then we assume that p is given a priori and



that there is an x €K such that fi(x)g_ p, for all i = 1,..0,n. Here
if‘the_ equality always holds for some j, then fj becomes unnecessary
and may be removed from the first. Then we assume without loss of
generality thats

There is an x €K such that f(x)> pe (1.1)
As we consider an optimum solution which balances the several objectivés
impartially, it may be reasonable to restrict K' to the following set of
- alternatives: Kp = {XEK' S f(x)>p } .

‘ We also assume that the decision maker sets a goal gERn, which
indicates an ideal outcome of the progr;%nfr{g problem. Whereas a floor
is determined rather easily, it may be difficult to set V/a goal a priori.
léecaus.e the realization of fhe goal belongs to future evenis and the
determination of 1t directly influences optimum solutions, Then we
only assume an appropriate region to which a goal belongs and we will
investigate an optimum solution which is invarian’g under the selection
of a goal.

Let m, be the maximum value of fi(x) on Kp, and we call m = (ml,...,mn)
an ideal point. This is often adopted as a candidate for a goal in the
literature, though it is usually infeasible. Let E(X,f,p) be the set of
efficient points of Kp’ i.e., the set of alternatives xGKp for which there
is no y €K, with £(y)> f(x) and f(y) # f(x)s  An efficient point is
naturally considered as a candidate for a goal. Let us defirie a goal set by

6(K,fyp) = {geRn ‘ f(x) £ g&<m for sobme x €E(X,f,p) } .
In fact we can use any goal set G(K,f,p) with the property that f(x) € G(X,f,p),

if xGE(K,f,p). In this case, the results in this paper remain true.



e will measure a degree of accomplishment of fi(x), xEKp, by dg(x)ERn,

where
fi(x) - p )
d (x) = ’ i= 1,..,1‘1. (1.2)
&5

€ - Py

We say that a quardruple (X,f,p,g) is a problem, if (1.1) is
satisfiede For a given problem A = (K,f,p,g), X and y in Kp are said
ko be equivalent if f(x) = f(y)s This equivalence relation partitions

K into the equivalence sets, each of which is denoted by {X]A.
p .

2, _THE GCOMPOSITION

HWe now would like to construct a composite objective funciion -
vhich gives a unigque optimum solution [x*j A to a given problem A.
Let us define a composition rule G as a mapping which carries a problem
A to a real-valued function GA(x) defined on xGKp. This function is
called 2 composite objective function. “If once the composition rule
G is determined, we seek to maximize GA(x) subject to x¢ Kp‘ for a given

problem A = (K,f,p,g). If the maximum is attained at an [x*jA R

13
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we call it a solution for A with respect to GA'

In order to have our desired composition rule, we impose some
reasonable coﬁditions which the rule should satisfy.

The first condition guarantees tﬁat our composition rulevmust
solve any problem in such a manner that the outcome of optimum alternatives

is uniquely determined.

Condition I (Existence and Uniqueness): For each problem A = (K,f,p,g),

a solution [x*]A always exists and unicue.

The second condition states that our composite objective funciion

must respond positively to an increase of an outcome.

Condition II (Monotonicity): Let a problem A = (K,f,p,g) be given. If,

for x and y in Kp, f(x) and f(y) satisfy f(x)2 f(y) and f(x) £ £(y), then

¢,(x) > ¢, (y).

As we mentioned earlier that we would seek to get an optimum
solution which was invariant under the selection of goals, we impose

the following condition.
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Condition III (Invariance under the selection of goals): If A = (K,fypyg)
and B = (Kyfypyh) are two problems such that g and h belong to G(K,f,p),

then, for x and y in Kp, GA(x) > GA(y) if and only if GB(X) > GB(y)."

By condition IV, we want to represent that all objectives are
treated impartially. Let 7c be a permutation of (1ly...yn) and let d
denote a vector those i-th component is d, « For a problem A = (K,f,D,8),
i ;
we put

n ’ N - B -
D, = ideR ] d—dg(x) fqr §0m§ #GKP} .

DA is said to be symmetric, if d,,te DA for any 4 e_D-A and. any permutation 7C ..
Vhen the decision maker faces a given problem with symmetric DA,,he may. .-
naturally evaluate that 4 and d,. are the same, if he treats the objectives.

impartially. Then for d and d, in D fa= dg(x) and d,. = @g(y),

a3
¢,(x) = G,(y)s The decision maker is also considered to pursue a well

A A v

balanced evaluation of the objectives. Then if there is a zeKPfor which

‘dg(z‘) is a convex combination of d and d,. , it is natural to assume that

6 (z) 2 ¢, (x) (=0,(r) ).

Condition IV (Impartiality): Let A = (K,f,p,g) be a problem with symmetric

D, and let 7¢ be any permutation of (1l,..,n)s For d and d, in Dys
¢, (x) = G,(y),

vhere 4 = dg(x) and dTC= dg(y), and
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¢,(2) 2 ¢,(x) (=6, ),

where dg(z) = O(dg(x) + (1~ Q()dg(y) ( o<al< ] e

Let us considef two different problems A and B, and let us Supﬁose
that we get the identical graphic representation, if we draw the outcomes,
the floors and the goals of each problem. Then we naturally consider that
the outcomes of the solutions for two problems are the same. T.eey if
f er® gives the outcome of the solution for A, then it also gives the
outcome of the solution for B.

By generalizing this consideration slightly,iwe give the final condition.
We define an inclusive copy of a problem. Let A = (Xy,fypyg) and B = (K',f",
p'y,e') be two problems. If p'=p ;nd g' = g, and if there exists a

mapping © from Kp into K'p, such that

f(x) = f*(e(x)) for all xer,

then B is said to be an inclusive copy of A.

Condition V {Independence of inclusive copies): Let A = (K,f,p,g) and

"B = (X',f',p'yg') be two problems, and let B be an inclusive copy of A,

Then GA(x) = GB(e(x)) for all xEI\p.
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Now we wili show that a. composition rule satisfying the conditions
1, 11, III, IV and‘V exists and unique in the following sense. Let G
and G' be two compositﬂiqn rules. They are said to be equivalent if
they give the. same solution to each problem (K,f,p,g_). kile will show
that a2ll cohposition rules satisfying the conditions I, II, III, IV and

V are equivalent.

‘Theorem 2.1 Let H be a composition rule which carries a problem

A = (X,fypyg) to the following function

HA(x) = Z_; log
;l"' : gi pi
n ,
= Z:: log d (x)y (2.1)
i=1 - Pi .

| where xer. Then H satisfies the conditions I, II, III, IV and V.

. n
Proof. If we note that H(u) = Z:log ui is continuous and strictly concave

i=1

~on u>0, then +the assertion immediately follows. ~ Q.E.D.
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Theorem 2.2, Let G be a composition rule satisfying the conditions

I, 11, 111, IV and V. Then G is equivalent to H.

To prove the theorem, we use three lemmas. The first lemma is an

~ immediate consequence of condition II,

Lemma 2.3. Let us assume condition II and let a problem A = (Kyfypyg)

be given. If dg(x) and dg(y) satisfy.dg(x);; dg(y) and»dg(x) # dg(y),

then GA(x)‘>-GA(y).

Lemma 2.4, Let us assume conditions I, II, and IV. Let A = (K,f,p,g)
be a problem with symmetric DA such that
D, = {deRnl d> 0, Zri'd._é_,n}.
A < i
. ' i=1
Suppose that an‘QGEKp satisfies dg (R) =1 for i = 1,eee,me Then [Q]A

i

is the solution for A.

Proof. By condition I, let [x*]A be the solution for A and let x* € [x*]A;
We prove that all dg (x*) are idéntical with 1. Suppose without loss of

i .
generality that dg (x*) £ dg (x*¥)s Let 5z be a2 permutation such that
2 .

1
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g =2y, 7, =1and 7C. =i foralli# 1, 2. lLet a* = dg(x*). Since
0, is symmetric, d?rGDA” where ¥ = dg(y) for y€ Kp. If we put b = (1/2)a*
+ (1/2)a%  , then bED;. let b = dg(z) for €K . By condition IV, we
have GA(I*) = GA(y) and GA(z); GA(X*). By condition I, we have ze[x*]A. |

Then (1/2)&%{ + (1/2)d§ = d¥, so df = d%. This is a contradiction.

: n
Then all dg (x*) are identical. From lemma 2.2, ng (x*) = n, so

i i=1 i
4 (x*) = 1 for all i. Then x*€[%], or [x*]; = [%], +  @QE.D. .
i R
Lemma 2e5e Let us assume conditions I, II, IV and V. TLet A = (K,f,p,8)

be a problem such that
» g = £(&)  for some R€E(K,f,p) -

n _ ‘
and ] .4 (x)&n for all xeK . (2.2)
i-1 8 P

Then [/JE]A is the solution for A.
Proof. We construct an inclusive copy of A. Let mZ n and let K' be -

. . . . . 0 1 n .
an n-dimensional simplex with the vertecies X, X joeey X o We define

for each k = 1,...,1’1,
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k '
| s o -
fk(x ) = n + (1 n)pk

Sk
. k . '
f{(x ) = P, for 211 i # k,
P 0 : L
and f{(x ) = p; for all i.

]
For x€ K , we have a unique expression
n Lk
X = E x(k)x",
k=0
where x(k) is a weight of < ( k = Oyeeeyn )e Then we define

n .
£21(x) = D =x(x) £1(x5) £or i = lyeee,ne (2.3)
i i } ~
k=0 4

They are affine functions on X', We put p*' = p and g' = g. Here we
must prove g'eG(K',f‘,p'), but for the convenience we give the proof
later. ‘ We define a2 reguired mapping from © from KP into KI'), e Let
xe Kp‘. ‘From (2.2), we have a unique expression °

: n X :

a(z) = 7, A (ne"), (2.4)

. & k=0
where e0 = 0 and ek igs a uwnit vector those k-th component is 1. We note

that dg'Cﬁ) =1 for i = lyeessns Then we define

1 n k )
o(x) = ) N ¥ o
- k=0
Clearly 6(x)EK's We have

£16(x)) = £ T 5
k=0 Xk



n
k
= ) g T
k=0
= nx; 8 o+ (l-n'/\.i)pi.

From (2.4), dgi(x) =n%; or fi(x) =nng + (1—n'>\.i)pi, which

implies

i}

£, (6(x))

fi(X) ( i= ].’ooo’n ),

and so 6(x) €K' , » Thus B = (K',f',p',g') is an inclusive copy of A, if
p' :

g' €G(K'yf'p') is known. From (2.3), we get for XGKI'J"

dg.(X) = nx(i) (i=1yeeeyn ), (2.5)
i

: n n
. . . n ) . k
wh;ch gives - D’B = {dER 1 a> 0, 12—1; di é.n} . Let z = zl(hl:(l/n)x e

Then 6(%)

"

z by (2.4) and zeKI‘), e From (2.5), dg, (z) = 1 for all i.
: i

Then g* ( = g ) = £'(z), which gives g'€G(K',£',p'), since zcE(K',£',p")
is easily known. Hence, by applying lemma 244 to B, z belongs to the

solution for B. Then GB(z);GB(G(x)) for all xer. Then, by condition V,

we have GA(Q)_?: (x) for all xGKp. Hence, by condition I, VJE]A is the

Gy

~solution for A. QeE.Ds
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Proof of theorem 2.2, Let A = (K,f,p,g) be an arbitrary problem ahd let

[x*]A be the solution for A with respect to G by condition I. = By theorem

2.1, HA(x) attains its maximum at 2 unigque [/JZ]A subject to x€E Kp. Let

g G{IJE]A and let us change a goal from g to h, where h = f(X). Here note
that % € B(X,f,p) and h€ G(K,fyp)e Then we have a problem B = (K,fypyh).

By theorem 2.1, HB(x) attains its maximum at % subject to xéKp, and

dh(/i) = e, vhere e, =1 (1i=1yeee9n )« We show that

o

C(x)< n for all xEK_. 2.6)
i=1 d-h:r.( ) - . P (

Suppose then that there is an EEKP such that

n
) :dh (%) > n. - (2.7)
i=1 i :

i
n | .
Let H{u) = E log w, + Then H,B(x) = H(d.h(x)). If we put z = (1-£)x
i=1 , .
+ £&X with 0<£<1, then zer. By the concavity of dh, we have

a4, (z)2 (1-2)q, (%) + &a (%)

= (1-€)e + £a,(3)

> 0. '

By the monotonicity and the differentiability of H(u), we have
H@, (=) Z B( (1-&)e + Ea (%)
= H(e + £(q,() ~e))
H(e) + VH(e){£(a, (%) - )}
+a(@)|| e (g, @ - ol

(1im a(8) =0 as £€—>0 )
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From (2-7): o ) i
1(a,(2)) > He) = H(ay (%))
for arsufficiently small € « Then HB(z) > HBG?‘)’ which is impossible.

Then we have (2.6).

Hence it follows from lemma 2.5 thatJEQJB is the solution for B.
Then GB(/:E) > GB(x) for all xEKP. Then, by condition III, we have
GA(/i),z Gq(x) for all xer. This implies that {x*]A = [%]A and

the theorem is demonstrated.

Theorem 2.1 and theorem 2.2 show that if a problem A is given, our
desired cémposi*te objective function is HA(x)f It is easy to see that
HA(X)> HA(y) if and only if NA(x)_> NA(y), where

n :
Wy (x) = 7 log{f,(x)~»}. (2.8)
, i=1 - & :
We know that if we admit the conditiohé I, II, 111, IV and V foz;
a composition rulevy G, the maximum ’solution for é pfot;lem A with respect
to G is alwayé given by maximizing NA(x). But thié does not necessarily
imply that GA and NA generate the same ordering on ‘Kp, i.e:, for x and ¥y in

Kp’ GA(x)> GA(y) if and only if NA(x)> NA(y). Thus we need to consider a
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relative ranking on Kp, there may exist an eligible composite objective
function whnich is different from NA or its appropriate transformation.
But judging from a mathematical regu_larity,'NA seems to be prominent
for practical purposes.

Then if a multi-objective programming problem with K, f and p

is given, we seek to maximigze

Z%: log {f;(x) - v}
i1

subject to ' (2.9)
x €KX

and fi(x) > p;  for i = lj.e.sme

This concave programming problem gives a unigque solution [x*]A . If one’
of'fi is strictly concave, it is easily known that [x*]A consists of a
unigue alternatives, As was mentioned, each fi(x) vas measured with its
ovn unit of measurement. Bven if we change the scale of unit to another,
our compromise solution should he invariant. This is eésily known by
observing that any linear transformation

L(f)

fl

f* = D(i fi 9 di> 0 ( i= 1,0-.,1’1 )

keeps the solution of (2.9) inveriant.
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3 CONCLUDING REMARKS

We have shown that the Nash concept of fairness is directly‘applicable
to the multiéobjéctive progrémming theory by deriving a co@pdsite objective
function of several objectives; Recently J. Bonnardeaux, 3. Dolait and
J.S. Dyer (2] nicely applied the Nash bargaining game‘to an,actual problem.
The Nash conceét seems to have a wide applicability beyond the current scope

of the bargaining game fheory.
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