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Mathematical Programming Problems on an Infinite Network
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School of Engineering,
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§ 1. Introduction and network definitions

In the present papér, we shall study the following mathematical
programming problems on an infinite network: (1) Min-work problem;
(2) Max-potential problem, (3) Max-flow problem, (4) Min-cut problem,
(5) Extremal distance, (6) Extremal width. We shall discuss some
duality relatiéns of those problems. In relation to those problems,
we shall classify the set of all infinite networks into parabolic
‘nétworks anﬁ hyperbolié netwérks of order)p and define a parabolic
index of an iﬂfinite network.

Most of the results in this paper are extracted from [6], [7],
(9] énd.[loj.

We begin With some network definitions.

Let X and Y be countable (infinite) sets and K be a function
on X x Y satiéfying the following conditions:
(N. 1) The range of K is {- 1, 0, 1}.

(N. 2) For each y e Y, e(y) = {x ¢ X; K(x, y) # 0} consists of .

exactly two points x;, x, and K(Xl, y)K(xg, v) - 1.
(N. 3) For each x e X, Y(x) = {y ¢ Y; K(x, y) # 0} is a nonempty
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finite set.

“(N. 4) PFor any x, x' ¢ X, there are Xysenes X € X and Yyserns
Yo41 € Y such that e(yj) = {Xj_l, xj}, J=1,..., n+ 1with xy=x
and x = x',

n+l
Let r be a strictly positive function on Y. Then N = {X, Y,

K, rl is called an infinite network.

Let X' and Y' be subsets of X and Y respectively and let K!'
and r' be the restrictions of K and r onto X' x Y' and Y' respec-
tively. Then N' = {X', Y', K', r'} is called a subnetwork of the
network N if conditions (N. 2) - (N. 4) are fulfilled replacing |
X, Y and K by X', Y' and K' respectively. Let us put for simpli-
city <X', Y'> = N'. 1In case X' (or Y') is a finite set, <X', Y'>:
is a finite subnetwork.

A sequence {<Xn, Yn>} of finite subnetworks of N is called an

exhaustion of N if X = v X, ¥ =
=] n

Il c8§

Y and Y(x) < Y
n n

for all’
1 . ,

+1
X € X .

n ;

A path P from x ¢ X to x' e X is the triple (Cy(P), C (P), p)

of a finite ordered set CX(P) = {xo, Xisenens Xn+1} of X, a finiteg

. :

ordered set CY(P) = {yl, Yoseees yn+1} of Y and a function p on Y%

called the index of P such that , V .

3t

= = ' i 5 =
X Xy Xppq = X', Xy # x, if 1 £k, e(yj) {Xj_l, X

(P) N .
P(yj) = - K(xj_l, yj) and p(y) = 0 if y £ Cy(P).

A path P from x ¢ X to the ideal boundary « of N is the triple

(CX(P), CY(P), p) of an infinite ordered set CX(P) = {XO, xl,...ﬁ

3

of X, an infinite ordered set CY(P) = {yl, y2,...} of Y and a

function p on Y which satisfies condition (P) except the terminaf
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condition X 41 = x'.
Denote by PX X! (resp. PX °°) the set of all paths from x to
3 3

x! (resp. ®). Note that condition (N. 4) means P # @ for any

X, X!
x, X' € X. For mutually disjoint nonempty subsets A and B of X,
denote by PA,B the set of all paths P such that P e Px,x" CX(P) n A
= {x} and CX(P) n B = {x'} for some x ¢ A and x' € B. Let A be a

nonempty finite subset of X and let P be the set of all paths P

A,
such that P ¢ P, and Cy(P) n A = {x} for some x ¢ A.

Let A and B be mutually disjoint nonempty subsets of X. We say
that a subset Q of Y is a cut between A and B if there exist mutually
disjoint subsets Q(A) and Q(B) of X such that A < Q(A), B < Q(B),

X = Q(A) v Q(B) and the set ’

Q(A) © Q(B) = {y ¢ ¥; e(y) n Q(A) # # and e(y) n Q(B) # g}
is equal to Q.

Let A be a nonempty finite subset of X. We say that a subset
Qof Y is a cut between A and the ideal boundary <« of N if there
exist mutually disjoint subsets Q(A) and Q(~) of X such th@t A
<), X = a(A) v Q(=), Q(A) is a finite set and Q = Q(A) © Q(=).

1Denote by QA,B (resp. QA’w) the set of all cuts between A and B

() _ . .
AB = {Q € QA,B’ Q is a finite set}.

- (resp. =) and put Q
Let L(X) and L(Y) be the sets of all real functions on X and

'Y respectively, let LO(X) and LO(Y) be the subsets of L(X) and L(Y)

' respectively which consist of functions with finite support and
' let L*(Y) be the subset of L(Y) which consists of non-negative

functions.
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§ 2. Min-work problem and max-potential problem

Let ¢ € LY¥(Y) and let A and B be mutually disjoint nonempty
subsets of X. Let us consider the following mathematical programming
problems on N:
(MP. 1) (Min-work problem) Find

N(A, By c) = inf{) c(y); P « P, B}'
P b

(MP. 2) (Max-potential problem) Find

N*¥(A, By ¢) = sup{inf u(x) - sup u(x); u ¢ S¥},
XeB Xeh

where S¥ = {u e L(X); | ] K(x, yJu(x)| < c(y) on Y}.
xeX

We proved in [9]

Theorem 1. N(A, B; c¢) = N¥(A, B; c¢) holds and there exists an

optimal solution u of (MP. 2) such that u = 0 on A.

Remark 1. There is no optimal solution of (MP. 1) in general.

§ 3. Max-flow problem and min-cut problem
Let A and B be mutually disjoint nonempty finite subsets of X.
We say that w ¢ L(Y) is a flow from A to B of strength I(w) if

) K(x, y)w(y) = 0 for x « X - A - B,
yeY

I(w) = - § 7 Kx, pwly) = § 7 Kx, wly). 7
xeA ye¥Y xeB ye¥Y

o
- RE

o

A

T

g

Denote by F(A, B) the set of all flows from A to B and put G(A, B)-

ks

R

&

= F(A, B) n LO(Y). The spaces of flows on an infinite network haV%

i,
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peen analyzed by H. Flanders [2] and A. H. Zemanian [11].
Let W e LT(Y) and consider the following mathematical prégrém—
ming problems:
(MP. 3) (Méx-flow probiem) Find
M(W; G(A, B)) = Sup{I(w§; w ¢ G(A, B) and |w| £ W on Y}.
(MP. 4)‘(Min-cut problem)” Find ‘ o

-M*?wi“QA’B? = ;nf{%”W(y); Q € QA,B}'
Je can define M(W; F(A, B)) and M¥(W; ngé) similarly.
We proved in [9]

Theorem 2. M(W; G(A, B)) = M¥(W; Q, B) holds and there exists
B ‘ 3

an optimal solution of (MP. 4).

Proof. We only prove the inequality M(W; G(A, B)) 2 M¥(W; Q, )

. \ - - s

Let {<Xn, Yn>} be an exhaustion of N such that A v B < X1 and define
W eL(Y) by W =WonY and W =0onY - 7Y . By awell-known
n n n n : - n o S 5
result which states that max-flow equals min-cut in a finite network
(ef. [3]), we have

CM(W; G(A, B)) 2 M(W_ 3 G(A, B)) = M*(W 5 Q ).

. . % . . % ; : : . ‘ . -
Since iiﬁ M (Wn, QA,B) > M¥(W; QA,B) (cf. [9]), we obtain the ine

quality.

Notice that M(W; G(A, B)) < M(W; F(A, B)) and M*(W;“QA B)
‘ ‘ ,

HA

M¥ (W3 Qéf%) and the equalities do not hold in general. To give
5 :
a sufficient condition for the equalities, we consider‘the value

M¥ (W, Qg ) of a mathematical programming problem similar to (MP. 4).
>

. 3 + . N *
Definition 1. We say that W ¢ L (Y) satisfies condition (=)
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if M¥(W; Q ) = 0 for all nonempty finite subsets F of X.

F,=

The following two theorems were proved in [T7].

Theorem 3. Let W ¢ L¥(Y). Then W satisfies condition () if

and only if there exists an exhaustion {<Xn’ Yn>} of N such that

(Y, = 2).

no® n -1

lim % W(y) = 0 with Zn =Y - Yn

n

Theorem 4. If W e L¥(Y) satisfies condition (=), then M*(W; Q, 5

b
= wra; ¢F)) = mow; Fea, B)).
A,B ‘

Let A be a nonempty finite subset of X. We say that w e L(Y)

is a flow from A to the ideal boundary ® of N of strength I(w) if

ZY K(x, y)w(y) = 0 for x € X - A,
y€

I(w) = - ) Y OK(x, y)w(y).
xXeA ye¥Y

Denote by F(A, ®) the set of all flows from A to «., We can define
M(W; F(A, «)) similarly to. (MP. 3).

We shall prove ~

Theorem 5. M(W; F(A, «)) = M¥(W; QA w) -
: 5
Proof. Let w € F(A, ®) such that |w| < W on Y and let Q
= Q(A) O Q(x») € QA w+ Define u e L(X) by u =1 on Q(A) and u = 0
- >

on Q(»). Then u e LO(X) and

I(w) = - } u(x) ] K(x, pw(y) = - § w(y) ] K(x, ylulx)
xeX yeY yeY = xeX
< IwnI I Kx, yIulx)] ¢ [ W(y),
yeyY xeX Q

‘so that M(W; F(A, =)) g M¥(W; @, ). Let {<X_, Y >} be an exhaustion
3

. o = M¥ (-
of N such that A ¢ X,. Then M(W; G(A, X ., - X)) = M¥(W; QA’Xn+1—Xn)
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> M¥(W; Q ) by Theorem 2. There exists w ¢ F(a, X - X_) such
Z A, n n n

+1
that Iwnl S Won Y and I(Wn) = M(W; G(A, Xn+1 - Xn)). We may assume
that wn(y) converges to Q(y) as n * ® for each y € Y. It follows that
A . : . . ’
§ e P4, =), |w| <Won Y and M*(w; QA’m) < %iﬂ M(W; G(A, X, - X))

= 1im I(w ) = I(W) g M(W; F(A, ®)), and hence M(W; F(A, =)) = M¥(W;

n>%

QA’OO) *
§ 4. Path-cut inequalities
We shall improve the path-cut inequalities in [9]. ’Let“V, W
¢ LY(Y) and let A and B be mutually disjoint nonempty finite subsets
of X. '

We shall prove
Theorem 6. N(A, B; V)M*(W; Q, ) < | V(y)u(y),
A,B7 = yeY :

or equivalently

(inf{] V(y); P « P, gh)(inf{] W(y); Q Q g1) 2 1 V(pWy).
P s Q > er

Proof. On account of Theorem 2, it suffices to show that

N(A, By VIM(W; G(A, B))

LLIPAN

Y V(y)W(y). By means of Theorem 1,
we can find v ¢ L(X) such Zggt v =0 on A, v = N(A, B; V) on B and
[ 1 XK(x, y)v(x)] S V(y) on Y. For any w « G(A, B) such that
|$?§)| S W(y) on Y, we have

] v(x) ] K(x, y)w(y)
XeB yeY

N(A, B; V)I(w)

1]

I ow(y) I K(x, y)v(zx) <} W(y)V(y),
yeY XeX ye¥Y

which leads to the desired inequality.

-7 -



By Theorem 4, we can similarly prove

Theorem 7. If W satisfies condition («), then

N(a, B; Vnrw; o{f)) < I V).
. 3 y €

Let A be a nonempty finite subset of X and let {<Xn,=Yn>} be

‘an exhaustion of N such that A < X,. Then N(A, X - X 5 V)
1 n+l n

= N(A, X = X_3 V) » N(A, ©; V) as n > « (Lemma 2. 4 in [6]) and

) (cf. Lemma 5.3 in [67). We'have

A 3

® . ¥ .

by Theorem 6 with the understanding that 0« = 0

Theorem 8. N(A, «; V)M¥(W; Q W) <) V(yw(y).
s =
yeY
§ 5. Extremal distance and extremal width v
Hereafter let 1 < p < @ and 1/p + 1/qg = 1 (1 < p < =), For

‘w e L(Y), its energy Hp(w) of order p is defined by~

Hp(W) = 7 rmMIwWEmI® (1 <p <),
ye¥Y

Hw(w} = sup |w(y)|.
yeY

Denote by Lp(Y; r) the set of all w ¢ L(Y) such that Hp(w) < « and
by L;(Y; r) the subset of Lp(Y; r) which ‘consists of non—negative
functions. For u e L(X), its Dirichlet integral Db(u) of ordef  
is defined by

D (u) = H (r(y)™7 ¥ K(x, y)u(x)).
b ‘p X§X

Denote by D(p>(N) the set of all u e L(X) such that Dp(u) < o,

Let A and B be mutually disjoint nonempty subsets of X and

_ 8 -
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consider the following mathematical programming problems:

. _ -1 _ . .
(Mp. 5) Find EL (A, B) " = 1nf{Hp(w), W oe Ep(PA,B)},

here Ep<PA,B) = W e L;(Y; r)? g r(y)W(y) 2 1 for all Pve'PA’B};
. -1 , '
(up. 6) Find EW (4, B)"" = inf{H (W) W < BR(Q, g},

¥ = + .
where EX(Q) 5) v e L, r){v% W(y) z 1 for all Q'EVQA,B}.
Here we use the convention that the infimum of a real fupction_on

the empty set @ is equal to «.

Notice that Ep(P ) = {W e L (Y r); N(A, B; W) > 1} and

A,B
Y = + . ® (1 -
Eé(QA’B) W e Lq(Y, r); M¥(W; QA’B) > 1}

In case A is a nonempty finite subset of X, ELp(A, ©) and
qu(A, ) are defined as above replacing PA,B and QA,B by PA’w and
Q, , respectively. '

A,

We call EL (A, B) (resp. EL (A, @)) the extremal distance of
order p of N relatlve to A and B (resp A and 00) and Ew (A, B)
(resp. EWq(A, ©)) the extremal width of order q of N relatlve to
A and B (resp. A and «). *

We proved in [8]

Theorem 9. Let A and B be mutually disjoint nonempty subsets.
of X and let {<X » Y >} be an exhaustion of N such that A n X # g
and B n X # ﬂ and put A = An X and B = B n X Denote by
EL (A ,.B 5 N ) and EW (A . Bn; N ) the values of (MP 5) and (MP 6)

n
rep1a01ng A, B and N by A , B, and N = <Xn, Y >. Then BL, (A,

n)

Nn) > ELp(A, B) and qu(An’ Bn; N ) > EW (A B) as n - m,-

The following three theorems were proved in [61].

-9 -
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Theorem 10. Let A be a nonempty finite subset of X and let

{<Xn, Yn>} be an exhaustion of N such that A c X,. Then

ELp(A, X - Xn) > ELp(A, @) and EWq(A, X - Xn) > EWq(A, ®) as n > o,

By the aid of Theorem 1, we have

Theorem 11. ELp(A, B)"l = inf{Dp(u); ue L(X), u=20 on A and
\_ :

u = 1 on Bl}.

By the aid of Theorem 2, we have

Theorem 12, Let A and B be mutually disjoint’nonempty finite

subsets of X. Then

EW, (4, B)71 = inflH (w)5 w ¢ G(A, B) and I(w) = 1}.

We have

Theorem 13. Let A and B be mutuallly disjoint nonempty sub-
sets of X. Then [EL_ (A, B)]l/p[qu(A, B)1Y/% = 1.
Proof. We proved this theorem in [6] in the case where A and

B are finite sets. Our assertion follows from Theorem 9.

Remark 2. R. J. Duffin [1] proved Theorem 13 in the case

where p = 2 and N is a finite network.

Remark 3. Even in the case where N is not locally finite,
Theorem 13 also holds (cf. [8]). (MP. 5) and (MP. 6) can be
defined even in the case where p = 1 and q = 1, © respectively.
We have EL (A, B) = EW_(A, B)™" and EL_(A, B) = EW (4, B)™L (ef. [81).

By Theorems 10 and 13, we have

Theorem 14. Let A be a nonempty finite subset of X. Then

- 10 -
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0 = oo l-p
ELp(A, ) [EWq(A, )] .

Remark 4. 1In the cése where N is not locally finite, Theoremns
10 and 14 do not hold in general. We proved in [8] that they hold

if N is p-almost locally finite, i.e., ) r(y)l_p < » for all
yeY(x)
x€X(l<p<°°).

We shall prove

Theorem 15. EW (4, oy=1 - inf{H (w); w ¢ F(A, =) and I(w) = 1}.

Proof. Put qu = qu(A, ®) and dé = inf{Hq(w); w e F(A, =)

and I(w) = 1}. To prove the inequality EW&1 < d;, we may assume

that d* < ©, i.e., there is w « F(A, ©) such that I(w) = 1 and

-1
H W < oo, Ihell W = W € E* Q,_‘ and EW

1

< Hq(W) = Hq(W),

< d¥. To prove the converse inequality, we may

that EW_
SO q

suppose that EW_© < =, i.e., there is W ¢ Lg(Y;'r) such that

M¥* (W, Q ) 2 1. On account of Theorem 5, we can find w ¢ F(A, =)
b .

Q

such that |w| < W on Y and I(w) > 1. Writing w' = w/I(w), we have

w' € F(A, ), I(w') = 1 and d¥ < H (w') < H (w) < H (W). Thus

- a=-qg = q =.q .

-1

q ,

For a nonempty finite subset A of X, let us consider the fol-

#
dq < EW
lowing mathematical programming problem:

(MP. 7) Find dp(A, ®) = inf{Dp(u); u e Ly(X) and u = 1 on Al.

By Theorems 10 and 11, we have
Theorem 16. 4 (A, =) = EL (A, ©)71.
§ 6. Parabolic and hyperbolic infinite networks

Let A and A' be nonempty finite subsets of X. Then dp(A, ©) =
’ - 11 -
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if and only if dp(A', ©) = 0 (cf. [10]). Thus we can classify the

set of all infinite networks as follows:

Definition 2. We say that an infinite network N = {X, Y, K, r}
iéyof parabblic type of order p if there exists a nonempty finite
subset A of X such that dp(A, ©) = 0, We say that«Nvis of hyper-
bolic type of order p if it is not of parabolic type of order D.

For a fixed x, ¢ X, we define Hunp by

”u”p [Db(u) + lu(xo)]p]l/p (1 < p < w),“

Ml = D (w) + Julx) |

Lemma 1. For every finite subset F of X, there exlists a

constant M(F) such that

Lo lux)| g M@l
xeF )

for all u « D(p)(N).;

" We can prove by Lemma 1 and a standard argument that D(p>(N)
is a Banach space with respect to the norm‘HuHD. Denote by Dép)(N)
the closure of LO(X) in D(p)(N) with respect t; the norm{' NOtige'
that Dép)(N) does not depend on the choice bf Xp - :

By Theorems 14, 15 and 16 and Theorem 3.2 in [IOj,‘we have

Theorem 17. Let 1 < p < = ahd let A be a nonempty finite
subset of X. An infinite network N is of parabolic type of order
o} if and only if any one of\fhe following cbnditioﬁs is fﬁlfilled:
(C. 1) 1 e Dép)(N).

(c. 2) p®an =P,

- 12 -
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]

(c. 3) EL (A, =) ==

(C_ L‘) qu(A’ °°) O, ‘i.e._, ES(QA,OO) = g.

(c. 5) There is no w e F(A, «) such that I(w) = 1 and Hq(w) <,
Corollary 1. ‘'Let 1 <'p < o, 1If there exists an exhaustion

(<X, Yn>} of N such that

y [uép)]l—q = ® with ur(lp) - 3 r(y) P,
n=1 Y _-Y

then N is of parabolic type of order p.

Corollary 2. Assume that N is .of parabolic type of order p.

W e LY(Y; r), then W satisfies condition ().
If q

Remark 5. For u e L(X), its p-Laplacian B, (W) e L(X) is
. defined by

[B,(WIx) = = T Kx, y)e (r(1)™T T K(z, yulz)),
yeY p zeX

where gp(t) = |t|p‘lsign(t)ift}e R)! We saj‘that u e L(X) ;S“TC’:
p—superharmonic’on X if Bp(u) < 0 on X. Denote by sEt(N) the set
bf all non—negative functionsron~Xiwhich are p—superharmonic‘on X.
| An infinite network N is of parabolic type of order p (1 ; p < ®)
if and only if SHY(N) consists only of constant functions (ef. [5]).
i In case p = 2, this is a disérete 5nalogy of a well-known result
'in‘the classification theory of Riemann surfaces.

We proved in [10]

Theorem 18. An infinite network N is of parabolic type of
:order o if and only if there exists a nonempty finite subset‘A ,

~of X such that ) r(y) = = for all P ¢ P

B A,

- 13 =
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Corollary. If N 1s of hyperbolic type of order «, then it ig

of hyperbolic type of order p for all p > 1.

§ 7. Parabolic index of an infinite network

We proved in [10]

Theorem 19. Let 1 < Py < Ps- If N is of hyperbolic type of
order Py then N 1s of hyperbolic type of order Dy -

By this fact, we can define a parabolic index ind N of an
infinite network N which is of parabolic type of order «:

ind N = inf{p > 1; N is of parabolic type of order p}.

A geometric_meaming of ind N may be seen'by the following

examples:

Example 1. Let {tn} be a sequence of pésitive integers and

denote by J the set of all positive integers. Let us take

X = {xn; ned}, Y= {yin), yén),..., yén); nedl,
‘ n
K(xn, yin)),= — K(xn, yén)) = -1 forned,
n
K(Xn+1’ yin)) = = K(Xn+1’ yéi)) =1 forned,

K(x, y) = 0 for any other pair (x, y).
Let r =1 on Y. Then N = {X, Y, K, r} is an infinite network. Let

o be a non-negative number and let tn be the greatest integer less

than or equal to n%. Then we have ind N = a + 1. In case tn = 2n,
ind N = o,
Example 2. Let X = U C_and Y = U Z_, where C_ =
, n n n
n=0 n=1
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. n _ (1’1)
{Xén); i=1, 2,..., 2"} and z, = {yi 5

For each n ¢ J, we define

K(x§n),‘y§n)) =1fori=1, 2,..., 2%,

K(xgn'l), yén)) = K(xgn—l) (n) )

g —1fori=1,2,...,2
i i ? on l+i ; .

For any other pair (x, y), we set K(x, y) 0. Let {rn;‘n e J} be

a set of positive numbers and define r ¢ L(Y) by r(y) r_ on Zn

n
for each n ¢ J. Then N = {X, Y, K, r} is an infinite network which
may be called a binary tree stemmed from xﬁo). It is shown that N

is of parabolic type of order p (1 < p < «) if and only if

) 2n(1—q)rn = o, Thus we can calculate ‘ind N for several choices
n=1

of {rn; n e J}. In case r, = 1l forne d, ind N = «, 1In case ro

='2n/a (o >0) forn e J, ind N = o + 1 and N is of parabolic type.

n"22"% (4 > 0) forn e J, ind N = a

of order ind N. In case r, = ;
2

+ 1 and N is of hyperbolic type of order ind N. In case rn = ol

forn e J, ind N = 1.

Remark 6. F-Y. Maeda [4] proved that the infinite network
formed by the lattice points and the segments pafallel to coordi-
nate axes in the d-dimensional euclidean space has parabolic index
equal to the dimension. This result implies‘that the dimension

of a general infinite network may be defined by its parabolic index.
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