goooboooogn
0 3010 19770 80-92

80

c %u% (Hashi»\g) £ %o v

R R Rk K-
(A B A 2 44)

1 MEBEEBEA 22 T 0 |

FaoRRost Gtz 270 @ n- Foz P, vt
TP aonwihaomrl Y, BG4 E 9’7@'5%5@?(#{
VRERRANUTME R 2% 2 v 3, FORTRAN “HET I
BHBIEM B ¢ "BEY, T BER AT L oto
THVENE T WRABIAIMEE (27 0 5 2™ | oA 43¢
W16, 32, 48, 645t 9M < F > 2 B13) o BEL 08
Bed it . "BE « GARMEAEERLL B
T3 T583 4%, RmﬂMNr,&%%ﬁééﬁiﬁﬁg
Yed b e XM (Systactic Sugan B) B < UEBu 7
CI’77L~a b&itAh. 40188 ¢ K=I+J, K= IXJHCE
Codza-B)otkatao4 71~ F> Call o 1rE¢
akty o, ﬂﬁ%@%ﬁ@ﬂ\'\ﬁ@ﬁﬁ% It?f} LT U)yatt 5
L3¥E FORTRAN Brecompiler (4113 ¢ 17*'5322’0""\ "BE <o

/

81

WTEER AN Y o HEL R REG Bl v tau,
 AEREEERS A0 @I HF AT 0w L2 @, B
L7270 (1,245 . >hid, Zi=x+Y LK
%X eV 0B, AL RREEREE AR BT A
fb 2T RERE LAY b TEY. 20 <
LAltsB e L "BEL A ELCRBRBTATR LAY
RLMV. B Hearn o REDUCE2 > 25 4@ g3t Gk
Blo #3en B s). FEkbn7iL- rrakroR%q
KA RE T nof2T s FER L v Do, "BEL
¢ GUI L 0 BARIE w B v TUBBA @2 0 A%
Pdghltu. ¥<B% ik FORTRAN ¢ ALGOL &
LISP o udnaddok@itsrL. Lov "B8° @
n%%%ﬁ%zuh%?%ﬁ?(v7k)MATs L%
Ute. (7] Lo &) RGEFEHBEERLERE V> V7 F
LT ZRT T, @ﬁ" B YR FAB < B4R 1§ 2
7, BRI V7 P RAGHRATL 07 3t ERA
GG, CHBEELTHRIF, €9 L2 b7 - 9% (B
1) B RAGoREE N- EFOL 7T 20 BReHY), %
N=oaRAAL (BIcRLK. ¥R &I N- FOHL
Th#n BLATS $tE#% izt Butcb% 4 L.
IREE REGFTHE, "BE A RBEO0 A I § (Lo

82

752 v, BRoHBE Ao -F ey TR TATEEL L
YRR E R THS .

2. BRIE (Hashing) € Zoicd
TRLZ (Be) R FEEL 2 2 Hh3 T - 9 eend
2725805 FE L, T-908%, >hulBed
X, oAl T2 R ORE § 5 5ES PR RGE |
(Associative Memory Z ¢ Content Addressed Memory)
tfdn vy, Arhlioe T- 9 - N- 2 q AR GER
B BRI B E T A % (. BRI 1
7 (o RBRGALECRINZ 0D, L L D08y
2 & | @ost & LPARL TR0 T CZET R UA
s (Ol &= %, &¢mﬂfﬁ%z%hwmalwﬁ
Bl @ebzazd) <, vh%mﬁﬁzﬁﬁﬁ%h~‘
-7 2T (Time Complexity mﬁ«%? @%?C}t?%ﬂr{@ﬁn |
<ERGR o)bk Hashmg e v FND Y 7k *7,',
L PHA (HER BHEF TR 00) thohh2 s,
Hashing oV 7 k- Dz 7 ¢ n- P T—'T&ﬁ\tt?ﬁ]p‘& \?
Bk (9] mzz%mu#ﬁ<zuz,:;rd%mﬁmh;
AR I N H . j
Hashmg l?fﬁfﬂﬂ SIRAFXTE>T 7T T}t N ﬂ:ﬂ'l%@

- 83

RENOEMN 0 BREET 2. - iBA okt %y &b
T3F8v0s . FELTnualak L, @AM ndd 8
RAA@R, (AR &A1 nd - 1hdo kit GTE&
R R L) B v fuic Hash,'ng AR RN |
S ottt - ZAAN, BANCE BV ol AT
L) R oo R RMeHr e irFm L. (5,6
~@) e 7T el o g &) B 0 ER (MAE) ZHR
G XtY+Z=YtX+Z=Z2+tYtX .. £ B
BHEBR 5. :m,ém%i%oﬁi\’?&t‘ﬂ% 2F 4T 0F <
BE 200 Ko QB oRE 9K 0FBEHE L LA,
Az, nilloEkofTHhs2nao REEREGE T, &
B BOUBAT 0 (n?); Sorting KAIAF 2 £
| Sorting 1< O(ﬂfogm), Wiz 0(n) T B . LM,
X+Y+Zs%k ix, Y, 2} vEATHE,

{x, Y, Z} = {Y, x,z} %, 7)- ’%/é":?‘a‘u‘z
G~ @0 WlREA L Eonoo ((5.6] %%, of
~ 2B 0 ERERF nehA L 060) 2480 2 0B
EoRBEF2M oA o 9 owlk I, 158 0() T %A,
NELLRO A, 2 oWREH AEA

Iz Kot Kidet Ket2 + Ko 2™ GERNEZ (S n4E
(Ko, Ky Kno) ovE~2B45@ 2138, 2 8o FEE

4

84

OB " it T=T thn " @d¥%R 0W) TTT3.
(g FR<CL e 0 1Ny, RBF, uﬁ~%;ﬁmm
Han]ﬁ o(m). N o

of RNERZR &« U T - 7/1%5;1977"!3 75 08F BT
LI hotdke #tiL 2, SHBEMABTH ey
. (MBesl o). L hw#ELL, FEod,
HLISP = 2 7 6 c B3 Bt @ A, (FLATS «
VENAFR) BB e F e R LR
ML, - AL ARG HashZitbkL., 20 R
?EE%@R%&@ﬂt&%;(%MA%mm%z£M%:
Lbhatt, LaoBettd, BBeAr.) 2axtEis
&%z.ﬂwﬁm£m£§< recursive 1P ILT) R LN
TaT 6 RMbE e NS T e a BbIE9 R BRM TS,
AL AG B LR ()¢, to#tBAryas nt
Fibo nace; ﬂt-}ﬁ@ﬁmﬁ%ﬂﬂﬁ%nﬁ ‘“L/J’\ LY, o
Sr-AledmoLibe,

MABEGREIDE T 502 BIBRARIEL Fn,m (BEL
nel & mxl &@w»'%&omm&hmmﬂ)
FRAHMNTLHE T TS,

It = Fiom = | |

mzn>l WhiE Fam= 1+ Gnnn

S

85

| <mdn RHE Gnym = Foomym t B, me)

:Qiﬁﬁbﬂlﬁiﬂﬁinff’/z“ recursive TJTU’7"7/'\
R13%. (3] LU, BH Ramanujan - Hardy offif
Lie) o(e"W) ey . L?—,,os Bote@) cme
G 00 € 000 o8, KOG 00) £ 0. dhve
wE AR < 8 19 a3t bR L 2 v ke
79 %r»—émzzfaérﬂm%f\wqumz éﬁs’rsﬁl
BRRM IS . Brkabdr . RAKEH Hke: 2
-» HLISP 2 :qn@ins&'ﬂ%%ﬁ%%uf,u .

86

A 2 W

(1] The Mathlab Group : “MACSYMA Manual’,
-MIT; Cambridge Mass 1974, 1976

@) A.C. Hearn: "REDUCE-2 User's Manual,
Uriversity of Utsh, Salt Lake City, Vteh, 1973,

(3] D.W. Barron * " Recursive Technigues in
Progmmming" Macdonald, London and Elsevier,
New York (1968
WHRED 52,

@] W.T. Wyatt, P.W. Lozier and RJ, Orser :
“A Portable Extended Precision Arithmetic
Package and L.‘bmr)/ with FortFan Precompiler’,
ACM . Trans . Mathematical Software wol 2
(19%6> pp 207 -23]

5] M- Sassa and E.Croto : A I'/ash.‘ng Method
for Fast Set Operations ', Inf . Roc. Letters
5 (197¢) 31- 34

6) E. Groto and Y. Kaneda : “Hashing Lewmas or
Time Comlolex;t.‘eg with Applications to Forwula
Mam%pul&‘tiovx"’, ACM~ SYMSAC 76,

~

87

Yorktown Heights N - Y’(Aug. 4976

S-S }
(7 MRk~ © "2 RLATS « SP3&H "

WHEE B4 3R -9RE.

@btk — A% 7 - 9B Ty -EB,
TRAEL o GRFRRAL, HREY/Z
POl el 40 52'% lF]

@) ok - s a¥HE - "1 -,/./,?“7,'0@_‘7 o (F% 8"
ERRI2E A3k 8% 395-40] (977)

(0] E. Groto, T.Ida awd T. Gunji : " Parelle] Hdslu'uy
Algorithus *, Inf. Proc. Letters. vol 6 (1227) 8-13

(1 T. Ida and E. Goto : " Performance of a Pavallel

Ho.siniug with Ke/ Délef;‘ov\ “ To apear f-n Proc.

[RFTP Congress 77, Toronto Auwg . 1977,

(@ G o b R 5 R AR i

(PR3 HRRHT AR IR T

x) FhS%EL) BERENBRXFLLIS FIVKER T3 RLATTH IS
Swis BT s HAN SRR B o=t o UsY, NF o REENEE
LR BEELTE, S (T E e RV E ERFLARY £V,

y

88

e

Hashing Lemmas on Time Complexities
with Applications to Formula Manipulation -

- s % * wa
EricHr Goto “

AND YASUMASA KANADA '

.

* DEPARTMENT OF INFORMATION SCIENCE, UNIVERSITY OF TOKYO, TOKYO, 113 JAPAN
** INSTITUTE FOR PHYsIcAL AND CHEMICAL RESEARCH, HAkosHI, SArTama, 351, Japan. -

I. Introduction and Summa¥ry-

Johnson{l] and Horowitz{2] applied sorting to
improve time complexity of multiplication.of uni-
variate polynomials. Their results may be regarded
as applications of the following LEMMA:

Sorting LEMMA. The tﬁhe complexity: of sorting of N
items is O(Nlog.N) and that of binary search of
sorted N items is O(logaN).

In this paper, time éomp;exities ofyopération’on

“sets" and “"ordered n-tuples" based on a hashing
table search technique are presented as "Hashing
LEMMAs" and ;are applled to -formula manipulation.

Unique normal ‘forms for multivariate symbolic formu-

las resultlng in 0(1) time complexity for identity
checks are presented.
characteristic to sorting algorithms, is shown to
all disappear from time complexities of polynomial

manipulations.:. Actual implementation of the hashing

technique is outlined and actual timing data are
presented in the appendix.

II. Hashing LEMMAs on Sets and n-Tuples.

(2.0) Denotations and Conventions.

In case x represents a set or an n—tuple, x|
means the number of elements.

Sets are denoted by underscored capltal 1etter(s)
Specially,

INT is the set of (all) integers;
INTO = INT - {0}, i.e., integers except 0;
INT+ is the set of positive integers. !

A BNF metaobject is denoted by embracketing a set
in the underscoring notation between “<" and ">",
with optional commentary un-underscored letters.
This convention enables us to use both BNF and set
notations. E.g., BIT ={0,1} and <Binary digIT> ::=
0l1 , are equivalent definitions, where " " means
the end of a BNF definition.

In order to present algorithms precisely and
concisely, Lisp with three additional data types
<ordered n-TUPle>, <SET> "and <AsSociator> are used
in this paper. <INTeger>, <SYMbol, i.e., nonnumeric
atoms> and <CONS, i.e., data created by Lisp func-
tions "cons" or "list"> are the three data types of
ordinary Lisps. (Floating point numbers and arrays
are omitted because of irrelevance to this paper.)
Since the time complexity of high precision arithme-
tic is not the theme of this paper, the time com-
plexities of arithmetic operations on <INT>'s are
assumed to be O(l) for the sake of simplicity.

<IDentifiables> are defined as:

ID = INT u SYM U TUP u SET u ASS; (<CONS> ¢ ID).

fabcl

where "

The logarithmic factor logs¥N, .

. of any type, to <ASS>, a. The value is assignla;vi=

" ‘While <ASS>'s are denoted’as <ASS>:i= (.<ID3),,
‘<TUP>'s and <SET>'s are denoted in accordance with

ordinary mathematical notations:
<TUP> ::i= (KID>,40,)0i <SET> :3= {<ID>, . ,},,
rooo" Means nonzero repetition of the same
metaobject. Specially the O-tuple () and the null
set {} are regarded . eqguivalent to NIL, i. ey
= {} = NIL.

<c0Ns> is printed as cons{A; ()] = (¥AY) with extra

blanks (B's) at both ends to dlscrlmlnate them fron -

a <TUP> printed as (R).0 S

(2.1) A function "tcons" appends an <ID> t6 a
<TUP>, e.9-,
teons [A; () 1=(R), tcons{{A B}; (C)]=({A B} o).
Lisp functions "car", "cdr", "cadr" etc. work on' .
<TUB>'s as on <Lisp LIST>'s, e.9., !
. car[(a,B)]1=a, cdr[(A,B)]=(B), cadr[(A B)]=B.
<TUP>'s are uniquely represented in the machine by
making use of hashing for speed: .

LEMMA 1. -The time complexities of functions -
“tcons", "car" and "cdr" on <TUP> are all O(l).

(2.2) A function "settup" transforms a <TUP> into
a <SET> with the corresponding elements; "tupset"
does the converse, e€.g.,
settup((a,B)1={a,B} or {B,A};
settup[(a,B,B)]1={A,B} or {B,A};
tupset [{A,B}]=(A,B) or (B,A).
Specially for t e TUP, tupsetlt]=t (a coercion

+rule). Although the ordering of elements of a <SE£'Q

is irrelevant to its identity, the ordering of the
elements of the <TUP> used first to define a <SET>
establishes a "canonical order” among the elements
of the <SET>. Whenever the canonical order is
needed, it can be retrieved by performing tupset
[<SET>]. <SET>'s are represented uniquely in the
machine by making use of hashing for speed:

LEMMA 2. For t ¢ TUP, s € (SET U TUP), the time
complexities of settup[t] and tupset[s] are O(lt“
and O(1), respectively.

(2.3) For x e ID the function "ass" yields an <ASS> .
: ass[x]=(.x*). (* means actual datum represented
by the variable). Conversely, for a=ass[x] € ASS
the function "key" gives the <ID>, x: keylal= x and
the pseudo-function assignla; v] assigns a value V.

v and the asslgned value can be retrieved as the
value of the function value[a]=v. The‘initial vabm
of an <ASS$> is (). Similarly to Lisp, property
functions are defined as putix;y;vl= a551gn[ass[tw’
Ix;y11:v], getlx:yl=valuelass{tupix;yl]] and
remprop [x;y]=put[x;y; ()], where x, y € ID and v isa
datum of any type. These functions are 1mp1emented‘

7

by making use of hashing for speed:

LEMMA 3. The timé complexities of "ass", "key",
"assign”, "value", "put", "get" and "remprop" are
all o(1).

Note in ordinary Lisps that properties are more
restrictive: x ¢ SYM and y ¢ (INT v SYM), and that
in case m prOPEIC1ES are used on a SYM the time
complexity may increase as O(m) due to to list imple~
mentation of properties.

(2.4) For x, y € ID, the predicate function eqlx;yl
checks the equality of x, y in accordance with the
mathematical common sense. Namely, in case x and y
are of different types, eqlx;yl=(); for x, y ¢ INT,
eqlx;yl=T iff x and y are numerically equal; for x,
Y € SYM, eq[x;y]=T iff x and y have the same spell-
ing; for x, y € ASS, eqlx;yl=T iff key[xl=keyl[yl:
for x, y € TUP y SET, eqlx;yl=T iff x and y repre-
sent the same n-<TUP1e> or <SET> mathematically.
E.g.,

eql(A,B); (B,A)1=0), eql{a,B};{B,a}]=T,

eql{a,B};{B,B,A}]=T, eq[(.(a)); (.{a})1=0).

LEMMA 4. The time complexity of "eq" is 0(1).

Note that for the equality checking of Lisp data
<CONS>, the time consuming function "equal” has to
be used[3]. <TUPle>'s essentially differ from
<LIST>'s in this regard.

(2.5) Outline of an Implementation called HLISP
{(Hashed LISP).

Each <HLISP'CELL> in the FSA (Free Storage Area)
consists of three fields: <CELL> ::= [<TAG>,<CAR
field>,<CDR field>], Besides for GBC (GarBage
Collection) marking, the <TAG> is used to specify
the data type of the cell. Similarly to Lisp 1.5,

a <CONS CELL> ::= [CONS,x*,y*]_ is created in the
FSA as the result of cons{x;y]. The FSA itself is
used as the (only one) hash table with the size
being a prime p. For tuplx;yl, a hash search (in-
sert iff absent) is made for a <TUP CELL> ::=
{TUP,x*,y*],, using Knuth's algorithm D[4, p521],
thereby ensuring uniqueness of the resultant <TUP>.
For ass[x], a hash search is made for an <ASS CELL>
::= [ASS,"don't care”,x*],, using Knuth's algorithm
U2[4, p539]. The value of the <ASS> is placed in
the <CAR field>, which is not used as the key of the
hash search. A <Short_INTeger> is represented as a
pointer (placed in <CAR> or <CDR> field) to a non
existing memory address. An E:E}ecision <INT> is
uniquely represented like a <TUP> of <Short t INT>'s
(iy, iz, ..., in) with the head cell being changed
to an <INT CELL> ::= [INT,i,,t],, where t is a
<TUPle>, (iz, ..., in). A <SYM CELL>, corresponding
to an atom header cell of Lisp 1.5, is the same as
an <IN CELL>, except the head cell <SYM CELL> ::=
[S¥YM,i,,t] with <Short INT>'s i,, ..., in being an
unique encoding of the character string which iden-
tifies the <SYM>. For settup[t], t=(e,*, ..., em*),
a <8YSl CELL> ::= [SYSl, "don't care", "don't
care"], is made first, where SYSl is a system data
tag. Secondly, a <TUP> t'=(e,'*, ..., en'*), free
of duplicating elements is made from t by using hash
searches for <SYS2 CELLs> ::= {SYS2, "pointer to the
SYS1 cell", ei*], for removing duplications with
time complexity O(1) per element of t. Thirdly,
using a symmetric (in respect to permutation of
arguments) hash sequence hi(e;'*,
3, ... (e.g., hy=mod (e, '*+ ... + en'*,p-1)+1, hi=
mod (i*h;,p) with time complexity O(n+i); Algorithm
U2[ibid]}, [5]), hash search is made for a cell
s=[SET,h,, "don't care"™]. If unsuccessful, a new

wee, en'*) i=1, 2,

89

<SET CELL>, <SET CELL> ::= [SET,h,,[sS¥sl,]|s|,t']],,
is created. If successful, s = settup[t] (redefined
<SET>) or # (hash conflicting <SET>'s) is checked by
utilizing the <SYS2 CELL>'s of t. (Time complexity
o(|t'|) at the most.) The hash search is resumed in
the latter case. The load factor o of the FSA is
limit to asom<l (e.g., oM=80%). When o2aM the GBC
is called. A trioccupancy ("occupied" (i.e., a zell
in use), "deleted" (not in use but in hash conflict)
and "empty” (neither in use nor in conflict)) scheme
is used to reclaim the garbage <CELL>'s without w=ell
relocations and without using secondary storage. (A
detailed analysis is given in [6]; McCarthy [7],
proposed a scheme essentially the same as the pras-
ent uniquely represented n-<TUPles>. However, he
stated a difficulty in GBC: the neccesity of the use
of secondary storage.) ' If the result of GBC does
not satisfy a<om (e.g., on=60%), GGBC (Grand GBC;
more details are given in 1IV) is called. If a<om is
still not satisfied the job is terminated because of
insufficient storage. Note that the condition om<am<
1 ensures the time complexities as claimed in LEMMAs
1-4. If am=oM=1 were used, the FSA would be usable
up to the very last one cell, but the LEMMAs would
not be valid.

III. Application to Formula Manipulation.

Let IP be the set of polynomials with integer
coefficients and positive integer exponents.

(3.1) The <Sum of Product> Normal Form.
Polynomials of IP can be expressed as sum of
products (terms), e.g.,
pl = 20v? + 3x3Y", p2 = 3v*x? + vuv + uv?.
These expressions represent the same polynomial, &nd
they can be faithfully represented in terms of
<TUP>'s as follows:
<SP*form>::=((<TERM ID*>,<COEFficient>),,,,), and
<TERM ID*>::=((<VARiable_ID>,<EXPonent>),,,.)o:
where <COEF> ¢ INTO, <VAR ID> ¢ SYM and <EXP> ¢
INT+. E.g.,
sp* (pl)={((((v,2),(u,1)),2), (((X,3),(Y,4)),3))
sp* (p2)=((((¥,4),(X,3)),3), (((V, 1).(U 1), (v,1)),1},
(((w,1),(v,2)),1)).
These SP* forms can be transformed into a: unique 52
normal form in the following way {a program is given
later): (1) Combine duplicating <VAR ID>'s in a
<TERM ID*> as in VUV=vV2U. (2) Absorb the commutative
nature of multiplications into a SET: <TERM ID> ::=:
{(<VAR ID>,<EXP>),g40}e- E.g., V2U=UV? is absorbed
as {(v,2), (U, 1) }={(u,1),(v,2)}. (3) Combine dupli-
cating <TERM ID>'s as in V2U+V2U=2v?U. (4) Absorb
the commutative nature of additions into a SET: <Sp>
::= {(<TERM ID>,<COEF>), .o0}o. E.g.,
splpll=splp21={({(v,2),(u,1)},2), ({(x,3),(¥,4)},3) }.
We now define two data structures, in order to
formalize the definition of the <SP> form:
A <CLUB> is a <SET> of 2-<TUPle>'s s of <ID>'s (1nfor‘
mally, <CLUB> ::= {..., (mi, gil, ...},) such that
all of the first element, to be called the (club-)
"member"”, of the 2-<TUPle>'s are distinct (mi#mj for
i#j). The second elements (gi's) of the 2-<TUPle>s
are called "grade"s. A <MULTISET> is a special
<CLUB> of which the grades are restricted to posi-
tive integers. (This agrees with the "multiset” of
Knuth[4] by regarding the “multiplicity" as the
grade.) Thus, we can now state: "An <SP> is a
<CLUB> of <TERM ID>'s with non-zero integer grades,
called <COEF>; a <TERM ID> is a <MULTISET> of <SYM>'
s, called <VAR ID>'s; specially, for the null and

. constant polynomials,

< sp(0)={}, sp(n)={({},n)}, where n ¢ INTO."

70

Since the SP form obviously represents IP polynomi-
als uniquely, i.e., for p, q € IP,

sp(p) = sp(q) (set equality) iff p-q = O,
by LEMMA 4 we obtain: :

PROPOSITION 1. Given two IP polynomials in the SP
form, the time complexity for identity checking of
the two is 0(1). ’

(3.2) Polynomial Manipulation in The SP Form:
A Property Adding Auxiliary Function:

addproplg; x;v;r]l = progllyl:;y:=get[g;x];
[nullly]} + prog2{putlg;x;v];r:=tconsix;rl}};
T - putlg;x;v+yll:return(r]].

'Given g, x € ID, v ¢ INT and r ¢ TUP, if the G-
property (i.e., the value of getlg;x]) is (),
"addprop" puts v on the property and appends x to r
in the result, otherwise, v is added into the prop-
erty. By LEMMAs 1 and 3, the time complexity is
O(l). Similarly, we define:

subproplg;x;v; r] =addprop[g;‘x; -v;rl.
A Property into Club-Grade Function:

clubpropO[g;rl=prog{lc;y;wl;w:=x;
A [nullw] - return[settupfcll]iy:=get[g;car[wll;
{y20 + c:=tcons[tcons[car[w];tcons{y;()1l:cl] ;
) remprop[g;cariw]];w:=cdrw];go[a]].

Given g ¢ ID and r, a <TUPle> of distinct <IDs>,
"clubpropQ” yields a club of the <IDs> with making
the respective G-properties into grades and exclud-
ing O-grade members. By LEMMAs 1, 2 and 3 and since
loop A is executed |r| times, the time complexity is
o(lr} + 1). 1 is added to account the time 0O(1)
needed in case |r| =0, i.e., r = (). :

A Club Union. and Grade-Adding Function:

addclub{p:ql=progllg;r:w];g:=gensym[];w:=tupset[pl;
A [null[w] -+ prog2fw:=tupset[ql;go[Bl]]); ~
r:=addprop(g; caar{w] ;cadar[w] ;r] ;w:=cdr [w] ;go[A];
B [null{w] - return[clubpropOlg;rll];
r:=addproplg;caar[w] ;cadar[w];r};w:=cdr[wl;go[Bl].

Given clubs p, g with numerical grades, "“addclub"
yields a club of the union of members of p and gq
with the grades of common members being added in and
O~grade members being excluded from the result. A
“"gensym" (i.e., a unique <SYM> generated by the
system) is used to avoid possible confusions of
properties in the auxiliary functions. Similarly,
subclub[p;ql is defined by replacing the "addprop"
*in the last line only by "subprop". Since loop A is
repeated |p| times and loop B, |q| times and by
LEMMAs 1, 2 and 3, the time complexity is O(|pl|+|q|
+1). 1In case p, g € SP "addclub" adds the two and
gives the result in the SP normal form. Hence,

PROPOSITION 2. The time complexity of adding two
polynomials p and q in the SP form is O(|pl+iql+1).
(Multivariateness has no effect.)

A Polynomial Multiplier Function:

mulsp[p;ql=progllg;r;u;v];g:=gensym[];u:=tupset(pl;
A [null[u] - return[clubpropO[r]]];v:=tupset[q];
B [nullv] + prog2{u:=cdr{u]l:golalll:;
r:=addprop[g;addclubl[caar[u);caar{vl];
cadar[u) *cadar([v];rx];v:=cdr[v];go[B]].

Given p, q € SP, "mulsp" yields the product in the
SP form. Note that "addclub" is used to multiply
two <TERM ID>'s as in addclub[{(a,1),(B,2)};
{(8,3),(c,4)}1={(A,1),(B,5),(C,4)}. For s ¢ sP,
let T(s) = |s|+ (total number of elements in

<TERM ID>'s of s). The dominating term (clubpropO]r]

is o(lpllql}) at the most) in the time complexity of
"mulsp" is easily seen to be o(lq[T(p)+\p|T(q))'
which arises from repeating the "addclub" on :
«<TERM ID>s for |pl{g| times in the nested loops
and B. Hence, weé obtain:

PROPOSITION 3. The time complexity of mult.iplgjng
p, g € SP is O(|qiT(p)+iplT(g)); specially in case
each term is K-variate at the most, it is o(lpliq|
(k+1)) and in the univariate case it is O(|p||q|),
(Factors such as log,|p| or log,|q| are absent,
Sparseness of the result has no effect.)

An SP* into SP Transformation Function:
intosp[pl=mulsplp; {({},1) H,, where {({},1)}=sp(1},

This works correctly because of the "coercion ryul(*
in (2.2). Let T*(p)=|p|+(total number of elementg
in <TERM ID*>s of p ¢ SP*). We obtain: .

PROPOSITION 4. The time complexity of tzansformjr,g
an IP polynomial p in an SP* form into the SP norna}
form is O(T*(p)); specially in case the length of
each term of p is K at the most, it is O(Ipl-(K-l-l)).
(If <TERM ID*> and SP* were sorted into a sorted
normal form, the time complexity would be
o(|pl(log,|p|)(K+1)loga (K+1)).)

(3.3) The <Signed Absolute SP> form:
Let s=sp(p) be the SP form of a polynomial p ¢
IP. As a <SET>, s can be partitioned uniquely as
s = s+ y s—, wherein all grades of s+ are positive
and those of s-, negative. Let -s- be the <SpP>
obtained by reversing all signs of grades of s-.
Definition. The <Absolute SP> form asp(p) of p is
a <SET>: asp(p)={s+,-s-}; specially asp(0)={}.

PROPOSITION 5. For p, q ¢ IP,
asp(p) = asp(q) iff (p =gV p 3= ~q).
pefinition. The <SASP> normal form sasp(p) of p
is a 2-<TUPle>: sasp(pl=(asp{p), sign(p}), where
sign(p)=+1 in case the canonical order of the SET
, asp(p) is tupsetlasp(p)]=(s+,-s-), otherwise
sign(p)=-1 (c.f., (2.2)); specially, sasp(0)=().

PROPOSITION 6. For p, q ¢ IP,
sasp(p) = sasp(q) iff p = q.

(3.4) Unique Normal Forms for Rationals:

Let O be the set of (all) rational numbers.
Hereinafter, for q ¢ Q, we use the following obvi-
ously unique representation; if g ¢ INT c Q use the
integer g itself; otherwise use the 2-<TUPle>,
(a*,b*) such that a, b ¢ INT, b>2, g=a/b and a, b
are relative primes. .

SP, ASP and SASP forms can be easily generalized
to <QP, polynomials with rational coefficients and
positive integer exponents> by changing the condi~-
tion <COEF> ¢ INTQ for <IP>'s into <COEF> e {Q - {0}
).

Let QF be the set of raticnal functions with
rational coefficients and integer exponents, i.e.,
oF={x/y| x ¢ QP, ¥y ¢ (QP - {0})}. Any function r €
(QF - {0}) is known to be uniquely factorizable,
except the arbitrariness of signs on the factors, as
follows:

e e, e

r = eee ' 1." k
a Py A Py

wherein q ¢ (@ - {0, e, ¢ INTOG and p; ¢ (IR~ INT)
such that Py #s not factorizable into elements of

(e - {-1,1h. it
Definition. The <Factorized SASP> form fsasp(r) of
r ¢ (QF - {0}) is a 2~<TUPle>: :

/7

fsasp(r) = ({..., (asp(pi),ei), ...j, +q), where
el ei ek
+q = (sign(p,)) ‘e (sign(p.)) *+ (signip,)) “eqi
specially, fsasp(0)=().

PROPOSITION 7. For x, y € QF,
fsasp(x) = fsasp(y) iff x = y.

PROPOSITION 8. For x, y ¢ (QF - {0}),
car[fsasp(x)] = car[fsasp(y)] iff x/y € Q.

Proofs of PROPOSITIONs 5 to 8 have been omitted but
they would be easy. . .
A Multiplier for x, y ¢ (FSASP - {Oh:

mulfsasplx;y] = tcons [addclub [cax [x] ;car[yll;
tcons [mulq[cadr[x];cadrlyll: 11

where "mulg” is a multiplication function of ration-
al numbers. For a divider "divfsasp", replace
"addclub” by "subclub" and "mulg" by a rational
number divider "divq".

(3.5) Poisson series is a function as:

p = ;Aai cos(ui) + § bj 51n(vj),
where a,, u,, bj' vy € QF<

A unique normal form POIS for this series can be
obtained by absorbing the arbitrariness caused by
cos(u) = cos(-u) and sin(v) = ~sin(~v) into ASP

forms: <POIS> ::= (<POILS COS»>,<POIS SIN>),, wherein
<POIS COS> and <POIS SIN> are clubs:
<POIS COS> ::= {(asp(u),sp(a)),,e0}, and
<POIS SIN> ::= {(asp(v),sp(sign(v)b)),se00le

with u ¢ QF and a, b, v ¢ (QF - {0}). It would be
a matter of exercise to define Lisp functions to
perform addition, subtraction and multiplication on
POIS normal forms.

(3.6) The <Associator List SP> Form:

So far stress has been laid on unique normal forms
and on time complexities. However, for improvements
in actual speed of computation, constant factors
neglected in time complexities must be taken into
account. Although time complexities of cons [x;¥]
and tcons[x;yl are both 0(1), "cons" would actually
work faster than "tcons" because of extra hashing
overhead time needed in “tcons” to ensure unique-
ness. Similarly, "value", "key" and "assign" would
be faster than “ass" (c.f., (2.3)). The same would
hold for the O(n) complexity for listIx,; ,...ixnal
and settupl[t] with |t|=n. It would be a reasonable
strategy to use unique noxrmal forms only where they
are essentially needed. For example, in the manipu-
lation (add, sub and multiply) of <IP>'s in the SP
form, use of the unique normal forms for <TERM ID>'s
is essential but use of a <SET> for sum of terms is
not. Use of the following ALSP form would be better
for the sake of speed: <ALSP> ::= (B(.(g*,<TERM ip>
Y4000 Blo. For p € IP, alsp(p) is a <LIST> of
<ASSociator>'s of 2~-<TUPle>'s of a "gensym", g* and
a <TERM ID>. <COEF>'s of the sp(p) are given as G-
properties (i.e., get[g*;<i-th TERM ID>] = <i-th
COEF>). Rewriting functions for SP forms in (3.2)
into those for ALSP forms would be a matter of exer~
cise. The similar applies to Poisson series: Use ASP
forms for u's and v's and ALSP forms for a's and b's.

IV. Computing Schemes. with Reclaimable Hash Tables

The choice between tabulation and recomputation
is a basic problem in programming. while (hashed)
tabulation provides the best time complexity of 0(1)
in many cases, extra storage space is needed to keep
the tables.

91

. In HLISP two features called tabulative and
associative computing are provided, which enable
Users to utilize the full advantages of computing
with hash tables. Moreover, in order to make a
compromise between the space and time reguirements
automatically, a.two staged garbage collection
scheme, GBC and GGBC of (2.5), is employed. The
<CELL>'s used for hash table entries in "tab-" ancl
"assoc-comp” schemes. are reclaimed by GGBC but not
by GBC. Hence, these entries. are termed "reclaim-
able". After having been reclaimed, the table
entries are reconstructed on.demand.

(4.1) "Tabcomp" is applied to member [x;s]=(x € s}
for x ¢ ID, 5 ¢ SET and to n-way switching and se-
lecting functions: tabaR[x;a;e*] with a € {a,d,q,w}
and B ¢ {q,9} . The value of a must be an n-<IUP.e>
of the form a={(..., {(mi*, gi*), ...) and e* must be
a constant <ID> datum. If x matches with mi (e

1iD), the resultant value is respectively cadr[(mi‘,
gi*)]=gi*, cdr[(mi*, gi*)]}=(gi*) or (mi*, gi*) for
o=a, 4 or q; for o=g the result is "GO TO gi*". Iif
no match, for B=g the resultant value is e* and for
f=g the result is "GO TO e*".

(4.2) "Assoccomp" effectively avoids the recomputa-
tion of the same function for the same argument (s

by inserting the results of the previous computat.on
in the reclaimable hash table entries. Evaluation
of a function is made in the "assoccomp" mode by so
specifying to the compiler or interpreter. By
vassoccomp", the time complexity of recursive algo-
rithms such as follows can be:improved automatically
without rewriting.

factoriall[nl=fc[nl=[n=0 » 1;T - n*fc(n-111,"
fibonacci [nl=fb{n]=[ngk > n;T > fb[n-11+£fb[n-211,
ncm=c[n;nd=fm=0 v m=n -+ 1;T » cln-1;ml+c[n-1;m-111}.

(4.3) LEMMA 5. Time Complexities of Tab- and

. Assoc~-comp features are as in the following table:

WITHOUT Tab-
and Assoc-comp

WITH Tab- or Assoc-comp

features. INITIAL REPEATED EXTRA
Function TIME TIME TIME CELLS
member[x,s] o(lsl) O(Jsl) o(1) Is|
taboBlx,a,e*] 0o(lal) o(lal) o(1) lal+l
factorialin] o(n) o(n) 0(1) 2n+3
fibonacci [n] o(1.618") o(n) 0(1) 2n+3
LCp=cln/m o(.c.) o(n?) o(1) 3n2/2

The initial time means the time complexity immg3i-
ately after a GGBC call.. Extra cells are the
number of <CELL>'s needed for reclaimable hash
entries. E.g., repeated evaluation of fb[21]=10916
runs 30,000 times faster in HLISP by merely feeding
a card "ASSOCCOMP ((FB))". clubmember[x;cl= tabgi
Ix;tupsetc]; ()] checks whether x is a member of the
<CLUB>, c. The time complexity of O(lsl|t]) in the
pure Lisp algorithms([3] for s u t and s n t of sets
s, t is greatly improved by applying "tabcomp" to
"member" (even immediately after a GGBC call):

LEMMA 6. Time complexity of s u t and s n t for s,
t ¢ SET is O(|sl|+ltl]).

(4.4) Outline of an HLISP Implementation:

For "member" <SYS2 CELL>'s of. (2.5) are utilized.
When <SYS2 CELL>'s are reclaimed by GGBC, the
<SYS1 CELL> is switched to a <SYS1* CELL> to indi-
cate the necessity of reconstruction of the <8YS2
CELL>'s. For "tabaB", initially (i.e., after GGBC)
@ <SYS3. CELL> ::= [S¥S3,a*,e*), is hash inserted (as
a result of an unsuccessful search) and then

/2

92

<SYS4 CELLs> ::= [SYS4, (mi*,gi*),[SYS3,a*,e*]], are
hash inserted by using a hash sequences determined
by mi's (not the <TUP> (mi, gi)) and the pointer to
the <SYS3 CELL>. Hash retrieval is made by utiliz-
ing these <SYS3 CELL> and <S¥S4 CELL>'s, which are
all reclaimed by GGBC. In the assoccomp mode, a
function fb[n}, say, is evaluated as: First, make a
hash search for <SYS5 CELL> ::= [SY¥S5, "don't care",
tl,, with t=tcons[n;FB], and if unsuccessful insert
a <CELL>, [SYsS5,1*,t], where 1* is a <SYStem_ SYMbol>
, then compute fb{n] and replace 1* by fb[n] for
future retrieval of fb[n]. Else if successful
retrieve the value from the <CAR field>. Specially,
in case the <CAR field> contains 1%, there must have
been a vicious circle in the algorithm such as
fbIn}=[n<l + n; T - fb[n]+ fbin-1]1}. Thus a message
"CIRCULAR DEFINITION ERROR IN FB ..,." is printed.
GGBC reclaims <SYS5 CELL>'s except those containing
1*. Hence,

LEMMA 7. '"Assoccomp" effectively checks circular
definitions at runtime.

(4.5) For fclnl], fbin], cln,m] etc., "assoccomp” is
more convenient than "tabcomp" since the range of
argument(s) is generally not known in advance. Con-
versely, if “"assoccomp" were used for member[x;s],
say, a great number of wasteful hash entries for x

£ s would be created. Thus, "tab- and assoc-comp"
are complementary and each has its own raison d'étre.
V. Concluding Remarks

The first version of HLISP without the SET
feature has been in operation for two years[8], but
with the TUP feature alone little advantage in
fcrmula manipulation could be found. The combina-
tion of SETs and TUPs is believed to have provided a
really powerful tool for formula manipulation as
indicated in III. Tab~ and assoc~comp features
would also be useful. Since the implementation of
efficient hashing and garbage collection algorithms
is a very specialized art, it would be better to

separate them from the general users.

Therefore,

external specifications of such algorithms have been
given as LEMMAs in this paperx.

The following improvements are now in progress

to make the schemes presented in this paper into
truly useful tools for symbolic and algebraic
computations:

(1)
(2)

Writing of an efficient HLISP compiler{9].
Implementation of a language system called

"FLATS" which would enable us to absorb any existing
algorithm written in Fortran, Lisp or Algol 60; and

to write new algorithms with Tuples and Sets added
to any of the three languages F, L or A, whichever

the
(3)

user may prefer (HLISP FLATS) .
Design of hashing, GBC and runtime type check

hardware to improve the ultimate speed of "FLATS",
The authors acknowledge Messrs. M. Terashima[l0]

and

F. Motoyoshi{9] for their wvaluable contributions

in implementing HLISP.

VI.
[1]
[2]
3]
{41
5]

lel

[72

[8]
I91

References Inf . Proc. Letters 2(' 76) PP. 31~34
S.C. Johnson, SIGSAM Bulletin, 8, 3, p.63,
E. Horowitz, J. ACM, 22, 4, p.450, 1975.
J. McCarthy, et al., LISP 1.5 Programmer's
Manual, MIT press.

D.E. Knuth, The Art of Computer Programming,
vol. 3, Addison-Wesley, Reading, Mass., '73.

M. Sassa and E. Goto, & Hashing Method for Fast
Set Operations, Joptciet-be-ert publisation.

T. Gunji, Tech. Rep. 76-03, ISD (Information
Science Department, the University of Tokyo),
1976.

J. McCarthy, Page 151 of Symbol Manipulation
Languages and Technique, D. Bobrow, ed., North-~
Holland, 1971,

Y. Kanada, Tech. Rep. 75-01, ISD, 1975.

F. Motoyoshi, Tech. Rep. 76-05, ISD, 1976.

'73.

[10] M. Terashima, Tech. Rep. 75-03, ISD, 1975.
[11] A.C. Hearn, REDUCE2 User's Manual, 2nd. ed.,

Salt Lake City, Utah., 1973.

APPENDIX. Actual Timing Data for Polynomial and Poisson Series Manipulations.
REMARKS: (1) The machine used is HITAC 8800/8700 at the Computer Centre of the University of Tokyo.
’ (2) The same HLISP interpreter system was used as the host system for REDUCE 2[11]). The free
storage area was 75K cells in which 25K cells were reserved for <ID> objects.
(3) The data for polynomial multiplication were obtained to observe the dependence of time on n
(number of terms in polynomials) and multiplicity, K. Obserxved times were normalized by
n? (K+1) as PROPOSITION 3 predicate.. Unit of time is in msec. '*' means 'not measured'.
(4) The FORTRAN data of univariate case were taken by a program with explicit code for hashing.
The program is similar to the algorithm by Gustavson and Yun to be given at this SYMSAC '76.
The hash area was selected to 5011 (a prime) and the hash probe sequence was given by
Algorithm U2 of Knuth[4, p539].
(5) The programs in HLISP were written for the ALSP and ASP forms of (3.6).
Formulas \'n
t=resultant # of terms 4 8 16 32 4 8 16 32 16 32
n . n . 1.71 1.69 1.60 1.60 [1.85 1.73 1.71 1.67 |1.82 1.74 1.74 1.77|« HLISP
(3 ahy * (J ah) 4.42 2.95 3.97 5.45 [3.67 3.50 4.43 7.20 [4.65 4.04 5.54 9.10|+ REDUCE
i=1 =1 ' _ .025 .024 .020 .0l6 < FORTRAN
t=2n-1
n . LR 1.76 1.74 1.72 1.73 [1.98 1.78 1l.76 1.80 1.8 '1.80 1.79 1.84(+« HLISP
(§ ahy = (§ a7 5.50 6.08 15.4 51.3 [{4.33 7.37 21.6 * [4.40 8.48 * * |« REDUCE
i=1 j=1 _ .025 ,028 .020 .018 + FORTRAN
t=n*n
B .34 D -3+45 1.96 1.71 1.68 1.63 |1.88 1.82 1.73 1.74 |l.84 1.83 1.79 1.77|« HLISP
(] a)*(] A) |5.35 5.85 8.20 14.3 |{5.42 6.53 10.6 * [5.16 7.64 12.2 * |« REDUCE
i=1 =1 =Tn-12 .028 ,025 .020 .016 < FORTRAN
K-variate 1-variate (A=X) 2-variate (A=XY) 4-variate (A=XYZU)
Timing Data for Poisson Series Manipulation: HLISP REDUCE
(AL*COS (WT) +A3*COS (3*WT) +B1L*SIN (WT') +B3*SIN(3*WT)) **3 1587 msec 8077 msec

/3

