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A PICTURE BOOK OF STOCHASTICITY*
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ABSTRACT

Once upon a time, not so long ago, the Hamiltonian H(Q,P) =
H (P) + eV(Q P) was regarded as a very unpredictable fellow --

somet1mes nice and integrable but more often violently stochastic.
This is the story of how he got that way and why it matters. It
all involves resonances in his personality and how they interact,
so lets begin with them ...

INTRODUCTION

At this Christmas season conference on non-linear dynamics,
it is perhaps quite appropriate to introduce the following pic-
torial review with the above fable-like title and abstract. But
the analogy lies much deeper; for the story we present here,
treating non-linear resonances as the source of chaotic trajectory
behavior in Hamiltonian system, is a highly valuable but nonethe-
less intuitive "fable" which will eventually be replaced by a
more rigorous, if less picturesque, general theory. Even so,
this "fable" will 1ikely serve as a convenient introduction to
an incredibly comp]ex subject for many years to come. Various

ver510ns] of this story have appeared frequently in the recent
literature, and many in this audience will be quite familiar with
it. For them, it is hoped that this retelling of the tale con-
tains at least a few interesting dev1at1ons from time to time.

HAMILTONIAN SYSTEMS

In order to introduce the notation in our most ‘general

Hamiltonian systems, let us begin with the oscillator system.
AN 2. 22

H = i-kzl (Pk +wy Qk ) + V3(Q,P) + V4(Q,P) + ...,‘_‘1)
where the Qk and Pk denote coordinates and momenta respectivé]y,
where Wy > 0 are the positive frequencies of the harmonic approx-
.imation, and where V3, V4, ‘- denote cubic, quartic, ... poly-
nominals in the Qk and Pk We now canonically change variables
from the "rectangular” (Qk,P ) coordinates to the "polar" coordi-
nates (¢k, k) via
*This work supported in part by the National Science Foundat1on
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Q = (Z.Jl;/mk)”2 cos ¢, P = -(Zkak)]/z sin ¢k.( )
: 2

In these "polar" coordinates, Hamiltonian (1) reads

H= Hy(dpseendy) + € V(3paeinsoy)s (3)

where all the pure J-terms are included in HO’ where V involves

only angle dependent terms, and where € is a perturbation para-
meter introduced so that we may regard’'V as a perturbation on the
obviously solvable (integrable) Hy- Independent of its origin,

we regard Eq. (3) as specifying our most general conservative
Hamz]tgnian system. Generalizing slightly, we permit V to depend
periodically on the time variable T = Qt + T and write

H=H J]""’JN) + €V(J],...JPN, ). (4)

of
Expanding Hamiltonian (4) in a "double" Fourier series, we may

write

H= HO(J],...,JN) +€) vmn(d)cos (m-¢+nt), (5)

where m-$ = X mk¢k. We shall regard Hamiltonian (5) as our most

general Hamiltonian system. Equation (5) has several virtues:
1. H0 is obviously integrable,

2. The resonant terms are "obvious",
3. HO plus any single angle dependent term is integrable.

The equations of motion for the unperturbed Hamiltonian H0
read

5 =0 and &

) (= Mg/ad, = 0, (9), (6)

where the dot superscfipt denotes time derivative. Equations
(6) have the immediate solution

J and ¢k = mk(J)t + ¢k0’ (7)

R

where JkO and ¢k0 denote initial values and where, in general,
w, = wk(J]""’JN)' We have thus shown that Hy is integrable

(§o]vab1e) by the simple device of directly integrating its equa-
tions of motion. More generally, any Hamiltonian which can be
canonically transformed by an analytic, single-valued change of
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variables to read H= HO(JI""’JN) is said to be integrable.2
Such a transformation will exist when a Hamiltonian H(Q,,...Py)

has N independent, analytic, single-valued constants of @he
motion. Trajectories for such integrable systems must lie on
the smooth, N-dimensional surfaces defined by the constant Jk.

For bounded motion, these surfaces are tori.z We may regard the
Jy as specifying the constant "radii" of the tori with the ¢,

providing the angular positions. In Fig. 1, we show a cross-
sectional view of a torusfor the case N = 2. Quite generally

for any integrable system, its trajectories 1ie on one or another
of a set of nested tori with each torus bearing quasi-periodic
(or strictly periodic) motion having the constant frequencies

W, = u)k(J] ,...JN).

Fig. 1. A cross-sectional view of a two-dimensional torus or
doughnut. The variables are those which appear in eq.
(7) when N = 2.

Whenever one or another of the perturbing terms in Eq. (5)
"drives" the Ho—motion at one of the natural frequencies occurring

on one of its tori, then one expects a resonant response in which
the affected trajectory departs the confines of its Ho-torus.

But how.do we recognize such a resonant term in Eq. (5)? Let
us consider a single perturbing term and write

H= HO(J) + € an(J) cos {m-¢+nt) + ... . (8)

Then the equations of motion are
J = em an(J) sin (m-¢+nt), (9a)_
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ék = * e(avmn/aak) cos (m-¢+nt) . (9b)

When € is small, we may use Jk = Jko and ¢k = wkt + ¢k0 on the
right hand side of Eq. (9a) to obtain

em V_ cos (m-¢+nt)

k0~ T [m-w(3)Fa] (10)

=J

Iy

valid to first order in e. Thus, we immediately see that a given
term cos (m-¢+nt) is resonant at first order in e provided that.

[m-p(J)+nQ] <e (11)

for some values of J, where w(Jd) = aHO/aJ. In particular, a
term cos (m-¢+nt) for which n > 0 and all m, > 0 can never be

resonant, at least to first order in e..

Finally, if the sum in Hamiltonian (5) is replaced by any
single one if its terms, then Hamiltonian (5) becomes integrable
as we show via several examples in the following.

RESONANCE IN SIMPLE ONE DEGREE OF FREEDOM SYSTEMS

To see what all this Tooks like for a simple examp]e; Tet us
begin with the driven harmonic oscillator described by

g=- wozq + ¢ Acos T , - (12)

where T = Qt + o The associated Hamiltonian is
2q2) - eAq cos T . - (13)
1/2

H = (1/2)(% + u

)1/2 - cos ¢, we find

Then using q = (2.]/«»0 cos ¢ and p = -(Zon)

)

1/2
H =w0J - EA (%%) [cos (¢-T) + cos (¢+1)] (14)

where here HO =m0J Let us now note that the driven solution

of Eq. (12) [or Hamiltonian (14)] may be written

ehcos 1 _eA cost €A cosct (15)
mg'- 92 Zmo (wo - Q) 2w0 (NO + Q)

Moreover, it is straightforward to show that [eA cos r/2ub(m -0)]
is the driven solution of the harmonic (linear) oscillator Hgmil-
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tonian

1/2
H = uy -_EA fTJ cos (¢-t) . (16)
0
while [eA cos T/Zwo(abfﬂ)] is the driven solution for the harmonic

1/2
H = “’o""‘%A(%) cos (¢+1) . (17)

Thus, as anticipated, Hamiltonian (16) retains all the essential

resonant behavior of Hamiltonian (14).
Let us now slightly modify Hamiltonian (16) to obtain the

non-linear oscillator Hamiltonian

H=wd + an _ A

0 2 W

1/2 ‘
(gg) cos (¢-1) , (18)

where now w(J) = BHO/BJ = (mo + 2&3)~depends on J when o # 0.

Then, by introducing the time-dependent, canonical change of vari-
ables J = J and © = ¢-1, we may obtain the time-independent Hamil-
tonian

1/2
H= (wo-Q)J + ajz - %?-(%é) - cos O . (19)

In Eq. (19), # is a constant of the motion and we may graph its
trajectories just as we graph the elliptical orbits for H = (1/2) x

(p2 + wozqz). In this way, we may easily visualize ¢ertain differ-

ences between linear and non-linear resonances.
When a = 0, we typically obtain the graph shown in Fig. 2,

_where Q =03J/m0)]/2 cos © and P = -(ZJwOf/Zsin 0. Here we note

that the driving resonance displaces the unperturbed €= 0 orbits
laterally along the Q-axis. The equilibrium point on the Q-axis
corresponds to the periodic driven sclution of Eq. (15). As @
tends to wy> this equilibrium point tends to infinity. Thus

at precise resonance Q = wy> all the orbits diverge as vertical
straight lines to infinity. Moreover even near resonance Q < Wy

the orbit initially passing through the origin J(0) = 0
[Q(0) = P(0) = 0] is unstable and departs arbitrarily far from
the origin as @ tends toward Wy -

For a # 0, the non-linear dependence of w on J, given by
W= wy t 2aJ, stabilizes this resonance, and the orbit passing

-5



16

‘through J(0) = 0, for example, is always bounded even at Q = wg-

©)

Fig. 2. A graph of orbits for Hamiltonian (19) with o = 0. Here
Q# w,. :
0

Indeed, set Q = Wy in Eq. (19). Then for J{0) = 0, we have that
H = 0. Solving Eq. (19) for J then yields the bounded orbit

P-E (—?—> [1 + cos 20] , (20)

4a W

where we have discarded the solution J = 0. But the dependence

of w on J has another equally significant effect, for now we
always have a resonant J-value near which w(J) = Q. In particular
when Q # Wy and IQ—mO( >> 1, we have the picture shown in Fig. 3.

Here, we note that the non-linearity has introduced two new
equilibrium points on the Q-axis (one stable and one unstable)
in addition to the "linear" equilibrium point near the origin.
Had o been zero here, we would have had only ovals essentially
centered on the origin; but for o # 0, we find the bounded
non-linear resonant zone shown in Fig. 3 which has a finite

AJ width. Indeed, as o decreases or e increases, this width
can become rather large.
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Fig. 3. A graph of orbits for Hamiltonian (19) with o # 0

and |Q-w0|>>1. The zone of non-linear resonance is

cross-hatched.

RESONANCE IN SIMPLE, CONSERVATIVE TWO DEGREES OF FREEDOM
SYSTEM

In order to obtain some typical pictures of resonant zones
for conservative systems with two degrees of freedom, let us first
consider the system

- 2 2 .
H = J]+J2-J] -3 J]J2+J2 +€ J]Jz cos 2(¢1 ¢2), (21)

_ 2 2 .
where Ho = J1+J2_J1 -3 J]J2+J2 . Recall now that the HO orbits

lie on two-dimensional tori, one of which is drawn in Fig. 1.
Each torus bears orbits having frequencies given by
w = 1-2 J,-3 J, and w, = 1-3 J,+2 J,. MWe thus expect the small

1 3 2 1 1
perturbation cos (2¢]-2¢?) to resonantly distort a zone of un-
perturbed tori "centered" about the torus having wl(Jl’JZ) =
mZ(J]’JZ)' |
.We now note that Hamiltonian (21), itself a constant of the
motion, has the additional constant I = J]+J2. Thus Hamiltonian

(21) is integrable, yielding motion 1lying on perturbed tori.
We thus wish to determine here the distortion of the ¢ = 0 tori
when € # 0. If we use I = J;+J, to eliminate J; from Eq. (21),

we obtain

H = 1-1%+[2-€ cos 2(¢,-6,)10,7-[1-¢ cos 2(¢-¢,)119,, (22)
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which defines the two-dimensional perturbed tori lying in the
three-space (J2,¢],¢2). If we now set ¢, = 3n/2 in Eq. (22),

we obtain the intersection of the tori with the plane ¢y = 3n/2.

In short, we obtain a two-dimensional, cross-sectional view of the
perturbed tori. In the (J2,¢2) plane, the cross-sectional curves

are given by

H = 1-12+[2+¢ cos 20,10.2-[1+e cos 24,11J, . (23)
2°72 2-°%2
In Fig. 4, we present a typical cross-sectional view of the per-
turbed tori, where Q2 = (2J2)1/2 cos ¢, and P2 = -(ZJZ)V2 sin ¢5-

Here we note that the unperturbed € = 0 tori (given by Jz = con-

stant) are only slightly distorted except in the crescent shaped
resonant zones for which wl(J]’JZ) = wé(J],Jz). Alsq let us note

that the positions and widths of these resonant zones vary as €
or the energy H = E change.
Next , let us consider the integrable resonance

2
2.30,0,40,%4e3,3,%/% cos (26,-30,)  (24)

H = J]+J2-J] |
which has the additional constant I = 3J]+2J2. Note that HO

is the same for both Eq. (21) and Eq. (24). Equation (21) perturbs
HO with a so-called 2-2 resonance while Eq. (24) involves the

2-3 resonance. MWe expect cos (2¢]-3¢2) to distort the unperturbed
€ = 0 tori bearing frequencies 2m](J],J2) ~ 3w2(J],J2). The equa-
tion for the cross-sectional curves of perturbed tori here reads

2 |
L (15 ), 232, 2,52 (1), v
W=l 9+(3 91)J2+9J2+e[3dz (3)J2 ]c053¢2.
(25)

Typical curves generated by Eqg. (25)‘are shown in Fig. 5.



Fig. 4.

)]

A cross-sectional view of the perturbed tori for the
integrable Hamiltonian (21). The crescent shaped regions
are the resonant regions.

19
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O

Fig. 5. A cross-sectional view of the perturbed tori for Hamil-
tonian (24). The 2-3 resonant zone appears as the triple
crescent region.

It must be noted here that the unperturbed Zm] = 3w2 torus does

no% occur for E < 0.16; thus, Fig. 5 is for an energy above this
value.

Finally let us note that we could have obtained Figs. 4
and 5 by direct numerical integration of the equations of motion.
Here one would merely integrate orbits and plot those (J2,¢2)
values for orbit points at which ¢] = 3n/2.

RESONANCE OVERLAP AND STOCHASTIC BEHAVIOR

We now inquire about the effect on the HO motion of the previous

section when both the 2-2 and the 2-3 resonances act simultaneously.
In particular, we ask what occurs when the individual resonant zones
as computed in the previous section are predicted to overlap. Thus,
we now consider

_ 2 2 -
H= J]+J2-J] —3J]J2+J2 +eJ]J2 cos (2¢] 2¢2)
+ eJ]J23/2 cos (26,-30,) - ‘ (26)

Using Eqs. (23) and (25) of the previous section, we first obtain
Fig. 6 which graphs the positive Qz—axis intercept of the inner

edge of the 2-2 resonant zone and the outer edge of the 2-3 resonant
zone as a function of energy H = E for fixed € = 0.02. Overlap is
predicted to occur at E = 0.2095. Using direct numerical

-10-
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0.40

0.05 0.10 0.15
ENERGY

Fig. 6. Qz-axis intercepts of the inner edge of the 2-2 zone

and the outer edge of the 2-3 zone as a function of
energy.

Fig. 7. Directly integrated cross-sectional view of Hamiltonian
(26) at energy E = 0.056.

-11-
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integration of Hamiltonian (26) at energy E = 0.056, we obtain the
(QZ,PZ)-plane cross-sectional view shown in Fig. 7. Here the

2-3 resonance zone has not yet appeared. In Fig. 8, we show
the directly integrated curves at energy E = 0.18 where now the
well separated 2-2 and 2-3 zones both appear. In Fig. 9, we

P2 E=0.18000000
Scale: 1 Tic=0.l()

Fig. 8 A (QZ,PZ)-p]ane cross-sectional view for Hamiltonian

(26) at energy E = 0.18.

P E=0. 20950000
2 Scale: 1 T, =0.10

Fig. 9 The (QZ,P2)~p1ane at the energy predicted to yield

resonance overlap.

-12-



23

show the appearance of the (QZ,PZ)-p1ane cross-section at the pre-

dicted overlap energy of E = 0.2095. Here the chaotic set of
dots was generated by a single orbit. The region of "overlap"
thus appears to give rise to a so-called stochastic zone in which
orbits are extremely erratic.

In order to gain further insight into the source of this
chaotic region, let us examine Fig. 10 which shows the (QZ,PZ)-

plane at the slightly lower energy E = 0.20. Here we observe

a previously unexpected narrow resonant zone containing five
crescent regions which lie between the 2-2 and the 2-3 zones;

in additicn, a very narrow resonant zone (not shown) containing
seven crescents has also been detected. These secondary reso-
nances arise because of the interaction between the two explicitly
appearing primary resonances in Hamiltonian (26). Indeed canonical

E=0.20000000
2 Scale: 1
T. =0.10
icC

Fig. 10. At energy E = 0.20 an additional secondary resonant
zone containing five narrow crescents appears between
the primary 2-2 and 2-3 zones.

perturbation theory1 may be used to show that a host of secondary
and higher order resonances occur in the "overlap" region. As

a consequence, orbits in this region move under the influence

of many competing resonances and therefore develop acute vertigo,
wandering aimlessly through phase space. Moreover as the energy

increases, the size of this chaotic stochastic region increases,

in many cases completely filling the allowed phase space.

~13-
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If one initially starts two orbits very close together in
a curve bearing region of the‘(Qz,Pz)—plane, one obtains the typ-

ical linear separation shown in Fig. 11. On the other hand,

two initially close orbits started in the chaotic region separate
exponentially with a typical case being shown in Fig. 12. It is
this sensitive exponential "forgetting" of initial conditions that
leads one to label the chaotic regions as stochastic since here
the final system state depends as sensitively on initial condi-
tions as does a dice roll. Moreover, computer experiments indi-
cate that the chaotic regions contain a dense set of unstable
periodic orbits; thus one may regard the aperiodic orbits as
stochastically diffusing among the dense set of scattering orbits.
Further insights into the nature of these stochastic regions

will be provided in later sections. :

450

4000

STANCE ¥ 10~/

ei

SEPARRATIAN DI

) T i IR f R
U 100 2z0dd ZCo 400 500
TINELSECS)

Fig. 11. This figure shows the growth of separation distance

between two trajectories initially started about 10

apart in the full sphase space. Separation distance
versus time is plotted for four distinct orbit-pairs.

Each orbit-pair starts in a smooth level-curve region

and the linear growth of separation distance with time
is apparent.

7
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Log,, D
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0 50 100 150 200 250
TIME (COMPUTER UNITS)

Fig. 12. Graph showing a typical curve of exponential growth
in separation distance. Here, a curve of 109100 VS,
time is plotted. :

THE CHIRIKQVvRESONANCE OVERLAP CRITERION

In the last two sections, we have illustrated that one may ob-
tain an estimate of the critical parameter values at which a macro-
scopically visible stochastic zone first appears by computing
the conditions for primary resonance overlap. Here, each primary
resonance zone is computed as if that resonance were acting

alone. In this section we discuss Chirikov's procedure3 for com-
puting this estimate. In particular, we shall illustrate his
method as applied to one specific example system.

First, Chirikov computes the location and resonant width
of an isolated resonance. As an example, let us consider the one
degree of freedom driven oscillator

H= Hy(d) + e V(3) cos (0 - 1) , (27)
where T = Qt+10. The J-value Jr at the center of the rescnant
zone is determined using

w(Jr) = aHo/aJ =Q . (28)

J=Jr

Let us now introduce the time-dependent canonical change of var-
iables P = J—Jr and ¢ = O-t. Hamiltonian (27) then becomes

—15-
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w'(J.)

= rt 52
5 P™ + gV(Jr) cos , (29)

where we have expanded HO(Jr+P) in powers of P retaining terms
only through order Pz, where we have neglected HO<Jr)’ where we
have retained only the lowest order term V(Jr) in the expansion
for V(Jr+P), where the term linear in P vanishes since m(Jr) = Q,

and where w'(J_) = dw/dJ
r BREN
r

Hamiltonian (29) has placed its origin at the “center" of
the resonance zone resulting in what Chirikov terms the pendulum
~approximation since Eq. (29) is formally identical to a simple

pendulum Hamiltonian. Chirikov now assumes that Hamiltonian
(29) 1is valid out to the edge of the resonance zone. The phase
plane diagram is shown in Fig. 13.

-
g

=
S

Fig. 13. The phase plane for Hamiltonian (29).

The pendulum resonant zone is bounded by the so-called separatrix
curve passing through the unstable equilibrium points at y = 0,77
On the separatrix H = eV, its value at y = 0. Thus, on the sep-
aratrix, we have

w'P2/2 = V(1 - cos p) = 26V sin 2(v/2), (30a)
or

1/2

P =+ 2(eV/w') /2 sin (y/2). (30b)

s
In original variables, the value of J on the separatrix curve is

J =3+ (a9), sin [(e-1)/2], (31)

where the resonance half-width (AJ)r is given by

~16-
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(a9),. = 2 [eV(3 ) w” (3 )1V2. k)

Chirikov now further approximates by taking the resonance half-
width in frequency (Aw)r to be given by

(8), = w'(3,) (a0),, (322)
or
(&), = 2 [ew' (9 V(3 )72 (32b)

gquation (32b) is Chirikov's estimate for the resonant half-width
in terms of the frequency w and it is valid for Hamiltonian (27).
Let us now apply these formulas to the Hamiltonian

H=a0Y3 - (e/2)(380)/3 [cos (0-1y) + cos (6-1,)1, (33)

containing two explicit, primary driving resonances. Here A
and B are constants. Now let Q denote either Q] or Q,. Then

the pendulum approximation for either resonance acting alone
yields a resonance centered at

3, = 36, (34)
with an w half-width given by
(), = 82 (2e/2)'/% . (35)

Following Chirikov, we now define A2 = |2,-Q,| and we assume that
80 << 2y . In essence we are assuming that 2 is close to but
not identical with 92. In terms of frequencies the two resonances
are centered at Q = w(Jr]) and Q, = w(JrZ); moreover the two res-

onant widths are approximately equal. Thus , the independent reso-
nant zones will touch when

2(aw) . = 20, - (36)

where (Am)r is given by Eq. (35). Equation (36) is Chirikov's
overlap criterion. Putting Eq. (35) into Eq. (36), we find

%?-: 83/2‘(28/9)]/2, (37)

-17-
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where the Q on the right is set equal to (Q 0, )/2. Equation
(37) then predicts a critical e value € given by

= a(a0)/883. | | (385

For €2 €., We expect that Hamiltonian (33) has a stochastic

zone.
Chirikov now numerically integrates the equations of motion

using 9 =0.217, 9, = 0.251&/g = 0.?34, (35J)01/3 = 0.276,
B = 0.8472, and A = (38/2/2)""" Equation (38) yields e, * 5.76 x
10 “,while the numerical experiments described below yield

= 2.55 x 107,

As he numerically integrates an orbit, Chirikov ca]cu1ates
what he calls a diffusion coefficient given by

= [(aM)?/at]. (39)

Here, the total 1ntegkation interval t is divided into many sub-
intervals (Atn). The time varying total energy H is time averaged

over each (Atn) sub-interval ‘to yield H. AH is then the difference
in H between any two sub-intervals (Atn) separated by a time in-
terval At. The final average in Eq. (39) then involves averaging
[(AH)Z/At] over all possible pairs of sub-intervals. For g < €c>
all orbits should yield D, values which tend to zero as the total
time interval t becomes ]arge.’ On the other hand, for € > €., an

orbit started in the chaotic zone would be expected to yield a
non-zero D due to an expected "random walk" of H. In essence,

Chirikov ant1c1pates a fast exponential separation of the phase
w for a group of initially close orbits followed by a much slower
"random phase" diffusion of H itself. We shall make this "random
walk" type behavior more transparent using some simple models which
we discuss later. In any event, a graph of Chirikov's results
is sketched in Fig. 14. Here one notes, as anticipated, an in-
crease in D by many powers of ten as e increases through €

=z e =0 0° °
U .

o # )

- B .

Log D

o
0c® o

v 2" A €

. 7. 35 4 0 % 20w .
Fig. 14. A sketch of log Dn vs. € for Hamiltonian (33).

-18~
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THE BAKER'S TRANSFORMATION

We may illustrate the random walk character of the stochastic

zones using a simple, rigorously ergodic2 area preserving mapping
of the unit square upon itself. Here the unit square is stretched

)4}

0 - T
Fig. 15. A drawing of the baker's transformation.

xy

to twice its original length and one-half its original height.

This rectangle is then cut vertically and the right half placed

on top of the left to reform the unit square as shown in Fig. 15.

In essence, each iteration maps the point (x,y) into (2x, y/2). -
Let us now develop an arithmetic representation of the.paker's

transformation by writing the x and y coordinates of an ini?Jal‘

point in binary, and then writing x to the right of the decimal

in the usual order, but writing y backward to the left of the same

decimal. We then typically have :

_+++11010001-0011101-- - (40)
¥ *0” |

Now we observe that moving the decimal to the right gives the
forward iterates of the point (xo,yo) while moving the decimal

to the left provides backward iterates. Clearly each movement
of the decimal to the right doubles x and halves y as required;
less obviously, it also properly accounts for the cutting and
folding. Initially, close points clearly separate exponentially
for this model; moreover it may be shown to have an everywhere
dense set of unstable periodic orbits. Thus this mapping mimics
the stochastic zones previously discussed. :

Now let us observe that on each forward iteration or rightward
movement of the decimal in representation (40), the first digit
to the right of the decimal determines whether the new iterate
lies to the left or the right of x = 1/2. But in general, the
sequente of zeroes and ones in these binary representations is
as random as a coin toss. Thus quite clearly, the iterated
points for the baker's transformation random walks between the

-19-



30

right and left sides of the unit square. Indeed, if we define
an initial probability density wo(x) on the unit square, then

we obtain a random walk type diffusion equation

Wy () = (172)[W (x/2) + W ((x+1)/2)] , (41)

whose derivation is immediately obvious since the point x on the
(n+1) iteration can only be reached from the points (x/2) and
(x+1)/2 on the previous iteration. It is to be hoped that the
m?croscopic consequences of the stochastic zones are now becoming
clearer.

THE BOUNCING BALL MODEL

A physically more realistic “random walk" system and one
c!oser to the Chirikov Hamiltonian of the previous section is pro-
vided by the bouncing ball model. This example was originally de-

veloped by Fermi4 and U’lam5 as a highly simplified model of cosmic
ray acceleration. Consider a ball bouncing between two infinitely
heavy walls, one fixed and one oscillating as shown in Fig. 16.
The ball has instantaneous speed v and the moving wall oscillates
with amplitude a, period T, and instantaneous speed V(t), where
V(£) is a sawtooth function having the maximum value V. The
minimum distance between the walls is £. The exact difference
equations governing the motion of this system are presented in

a paper6 by Zaslavskii and Chirikov. Following Lieberman and
Lichtenberg7, we elect to consider an approximation to these
X(t)

v _
AN
] i i —t Y\ t
Fig. 16. Diagram of the Fermi-Ulam system used to model the
acceleration of cosmic rays.

exact difference equations. The approximating equations are

_ 1
Une1 = lun Yy, ?1 (42a)

M
wn+] f {wn + (Un+])} , (mod 1) (42b)
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‘where u, = vn[V, v, is the speed of the ball just before the

nth collision with the oscillating wall, wn(Oswngl) is the phase

of the oscillating wall at the nth collision, and M = (2/16a).
Equation (42) is a good approximation to the exact equations

of motion provided that M >> 1 and u >> 1; however, independent of
the goodness of these approximations, Eq. (42) yields the same
general type of behavior as do the much more complicated exact
equations. We therefore confine our attention to Eq. (42).

Our first observation is that Eq. (42) reduces our problem
to the study of a plane area-preserving mapping. However, this
mapping does not exhibit everywhere exponentially separating
orbits throughout the (y,u) plane; like the systems of the preced-
ing two sections, this system exhibits a so-called divided phase

space3.‘ Indeed, taking differentials of Eq. (42), we obtain

dun dun + dwn ,

M
by - (UZ ) dupn

n+i

+1]

dlpnﬂ

Now for the (y,u) region which shall interest us in these calcu-
lations, we have u, >> 1 and M >> u.s moreover, (42a) shows that

u, >> 1 varies s]ow]y‘with n. Thus, let us approximate in (43)

and set (M/uz) equal to a constant, b say. Equation (43) may then
be written

dun+] dun + dwn

(44)
d‘l’n+1 =-bdu + (1 - b)d\pn s
- where
0<b-= J%-. (45)
u
A linear change of variables now permits us to write Eq. (44)
in the form
= Y

dcn+] = A dgn, dnnH = A dnn & (46)
A= 5{2 - b) - (2 - b)? - 412, (47)

From Eq. (47), we see that X is real when b > 4 and is imaginary
when 0 < b < 4. Thus referring ¥?2Eq. (46), we see that iterates

of Eq. (44) oscillate when u > M'/“/2 and they exponentiate when
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u < M]/2/2. We thus expect stochastic behavior for the mapping
of Eq. (42) in that (y,u)-plane region for which

1/2
u<s | (48)

and smooth cukves for u > M]/ZIZ. In the stochastic region, each
small initial (d\pO duo) area-element grows exponentially in the

z-direction and shrinks exponentially in the n-direction. Further,
since the expanding z-direction has small but nonzero slope
(au/ap) = -(1/b) for b >> 1, both variables u and ¥ locally spread
exponentially, but ¢ spreads more rapidly than u.

In Fig. 17, we show a composite sketch of a typical Eq. (42)-
mapping based on several computer-generated figures presented by

Brahic8 and Lieberman and Lichtenberg7. In Brahic's paper espec-
ially, some of the mapping pictures represent.a striking form

of abstract art. 1In Fig. 17, we note that the boundary of the
stochastic behavior occurs at about the predicted value of u =

M]/Z/Z. For larger u-values, again as predicted, stable as well
as unstable fixed points appear. By direct substitution, one
easily finds that the mapping T of Eq. (42) has fixed points of

T itself at (y,u) = (1/2, M/k), where k i3 a positive integer, and

that these fixed points are stable when u > M]/Z/Z. The member
of this fixed point set having the largest associated stable re-
gion, as seen in Fig. 17, lies at (1/2,M), and physically corres-
ponds to the ball being reflected from the oscillating wall

(at v = 1/2 when the moving wall instantaneously has zero speed)

and then colliding again with the moving wall after the elapse

of precisely one wall period. Fixed points of T2, T3, etc.,

can also be determined through increasingly long and tedious
algebraic manipulations of Eq. (42). 1/2
For motion in the stochastic region where u < M/ 7/2, Lieb-

erman and Lichtenberg7 first establish that the relaxation times
for the u and y motion differ widely. They then use this fact

to obtain an irreversible rate equation which they validate
using a computer. In Eq. (42), let us start with a precise ini-
tial (wo,uo) state (a definite state and not a rectangle dy, duo)

for which M >> u >> 1. Then,as n increases, the sequential iterates
of wn will rapidly cover the whole interval 0 < ¢ < 1 in a "random"

manner much before (Z|au |)/u, becomes large. As a consequence,
the fractionally small, sequential jterates Aun generated by Eq.

(42a) will be positive or negative with about equal frequency, and
u_will perform a relatively slow "random walk" away from the initial

n
region near u Alternatively, consider an ensemble of systems

0
with initial states spread uniformly over a small rectangle (dwoduo).
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Fig. 17. Sketch of a typical mapping generated by Eq. (42).

According to the discussion following Eq. (48), the small rectangle
will spread exponentially along the z-direction into an almost hori-
zontal filament with &y ~ 1 and (8ufu) << 1. Although each small
segment of this filament will continue locally to grow exponentially,
macroscopically the next iteration of this filament will split into
two or more new filaments, each hav1ng & ~ 1. Moreover, since
"~ the original filament had &y ~ 1, (42a) ensures that half of
the almost horizontal, new f11aments lie slightly above (along the
u-axis) the original filament and half slightly below. Similarly
one more iteration splits each of these new filaments into a newer
set, equally split above and below the original, new filament
position. Thus in the ensemble, the system phases ¢ "randomize"
on an exponential time scale followed, on a much Tonger time
scale, by a diffusive spread of the u-values.

On the basis of either of these arguments, one concludes
that Eq. (42b) causes the fine-grained density [(y,u,n) to mix
continually along the y-direction with exponential rapidity. :
Equation (42a) then ensures that the reduced probability distri-
bution W(u,n) spreads along the u-direction via a much slower

random walk process which is known9 to lead to a type of diffusion
equation. One therefore expects that W(u,n) satisfies the Fokker-

Planck equation9
2

M _ 3 1 9% o |
- " 3w (BW) + 2 g;f {DW) . | (49)

In order to verify the use of Eq. (49) for this system, B and D
are calculated using Eq. (42) in the Wang-Uhlenbeck formulasg.
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The results can then be compared with the computer-calculated
values for B and D. Starting from W(u,0) = &(u - uo), Eq. (49)

predicts that the width of W should grow like n]/z, which can
also be checked against computer calculations. Finally W(u,=)
should be a constant over the stochastic region. In all cases,
theory and computer experiment agree nicely. For example, in
Fig. 18, adapted from Ref. 7, we show a plot of W(u,») versus

u obtained by integrating Eq. (42) for an ensemble of systems.
Here W(u,=) is more or less constant up to the stochastic border

u=m"22 = 10322 = 16, above which W falls off quite rapidly.

7 4

64

5 10 15 20

Fig. 18. A graph of the probability density W(u,») as a function
of u. W is specified in arbitrary units.

A rigorous derivation of Eq. (49) from Eq. (42) lies in the
future. Nonetheless this example and the previous one point in
the direction of future progress10 in developing rate equations
for physical systems exhibiting stochastic behavior.

CONCLUDING REMARKS

Hamiltonian systems of the type H = HO(J) + eV(J,¢,r) exhibit

a complete spectrum of behavior ranging from complete integrability
to complete stochasticity. In this review, we have presented a
pictorial, intuitive discussion of this behavior in terms of
non-linear resonances and their overlap. In this view, Hamiltonian
systems whose non-linear resonances have negligible (or no) over-
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lap are either precisely integrable or else nearly integrable. On
the other hand, Hamiltonian systems whose non-linear resonances
increasingly overlap as some parameter is varied exhibit chaotic
orbits in increasingly large phase space regions. Indeed example

systems]] have recently been discovered in which one can observe
the full transition from compiete integrability to complete sto-
chasticity.

In the latter sections of this review, we have discussed ex-
ample systems which provide some insight into the macroscopic con-
sequences caused by the chaotic orbits of the underlying microscopic
dynamics. In a not too remote future, one anticipates that all
of equilibrium and non-equilibrium statistical mechanics will be
rigorously derivable from basic dynamics, either classical or quan-
tum. But already, practical applications are being developed in
astronomy, biology, chemistry and in many areas of physics, and
these developments will likely continue into the distant future.

Many people have been and are participating in this work, and
the author apologizes to those whose contributions are not directly
referenced here. Perhaps it suffices merely to publically state
that the present author's meager understanding of this subject has
been derived from a superior understanding possessed by a host of
non-linear scientists so large that even a partial listing would
be tediously long.
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