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§1. Introduction

The higher order‘approximations in the reductive perturbation
method are studied for the weakly dispersive nonlinear system.
It is shown that the secﬁlar terms appearing in the higher order
terms are eliminated by adding to the Korteweg-de Vries equaﬁion
the derivatives of the higher-order cénserﬁed densities, so that
a general nonlinear dispersi?e system of equations can be approx-

imated by the equation of the form,

r - *u,, + + AL : | | = ’ .

Wy - ButWt U + L6 J)vﬁrjﬂ(u),(E 0 (1.1)
: jz22

in which,4 is the j+1 th conserved density. It is shown

j+1
further that the coefficients ij can be determined by the linear
dispersion relation of the original system. The equation (1l.1)
is the so-called generalized KdV equation, which is completely
integrable and physical effects of the conserved densities in
this equatidn afe given by the renormalizationbof the velocities
of the KdV solitons. Also, eq.(l.1) is rewritten in terms of the
conserved quantities, the form of which is’more general in the
sense that for the strongly dispersive system the nénlinear
SchrBdinqer equation is not modified by £he conserved densities
but by the conserved quantitics.
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§2. Reductive Perturbation Method for Weakly Dispersive Systems

In this paper, we consider the following system of equations

for a column vector U with n (real) components, Uy s Uy 00, 0y }'m

U,, + AU,x + Kl[K2(1<3U,x),x],x =0 . (2.1)

t

Extension to a more general system was done in Ref.l. See

also examples. in §5.

Bere A is a n Xn real matrix function of C, and its eigenvalues;
Ai (i=1,2,-++,n), are assumed real and distinct, so that the
corresponding n eigenvectors R, (i=1,2,---,n) are linearly
independent; K, ,K2 and K3 are also (real) n xn matrix functions
of U. 1In what follows the neccessary analiticities of A, {Ai};
{Ri}.and Ka(a=i,2,3) with respect to U will be assumed in a domain
of the U space, say Q. Let U(O) be a constant vector in §, which
is a trivial solution of eqg.(2.1). Then a neighboring solution

U is expanded as

(1) 2.(2)

(0) + e2ul® 4., (2.2)

U=10 + €U

where € is a small (positive) parameter, Consequently the

matrices A and K, are also expanded as-
A= J efam _ a0 EU(I)'VUA(O) + EZIU(Z)-VUA(O)

=0

1 .,(1) (1), (0)
+ 507U VoA }o+ (2.3)

- 2-—
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in which the notations are the same as are used in Ref.l) and 2)

ie. a®2aw'?), v =(a/0u, , +o0, 3/0u), v AP =@ ) (0) ete.

l 14
The linear dispersion relation for the frequency w and the wave-

number k is detl—wI+kA(0)—k3K{0)Kéo)Kéo)I=O, where I is the unit

matrix, and it yields the expansion in terms of small k

o =2V - ux?+ .o (2.4)
where w= (@l OO (0000, (000 2 (1a=ra) .

We now assume that the i-th mode is genuinely weakly-dispersive

2) that is,

2)

as well as genuinely nonlinear, 150{ R£°)¢o, u#0, for

Vu:L

which the Gardner-Morikawa transformation is introduced by

1/2

£ t) , (2.5a)

oy
Il

T=e3/2 ¢, (2.5b)

in which and in what follows the subscript to specify the i-th

mode is omitted. Under the boundary condition

(0)

U->U for X > o j,e. for § » o,

following the standard procedure of the reductive perturbation

method, we get in the order 33/2

(0) . (1) _
W U,E =0
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i.e. U(l) = R(o)u(l)(E,T) .

(0) _; (0) 1, (0) (1)

is a scalar function of & and T to

/2y,

Here W I+A and u

be determined in the next order, O(e5 in which we have

(0)..(2) (1)

(1), (0),,(1) (0) (1) _
W U'g + 0,7 +U VuA U'g + K U'ggg 0, (2.6)
where K(0)=K{O)K£O)Ké3). Multiplying this equation by L(O) from

(1)

the left yields the KAV equation for u ‘as the compatibility

condition,

(D). (1) (1) (1) . (1) _
K @'t =u) - euMup) vugl =0, (2.7)

(0) (0)

in which R is normalized by VuA(Q)°R =-6 and u(or eq.(2.4))

is assumed equal to unity. (If u is'—l,‘the'transformation

€3/2

T== t and the normalization Vux(o)-R(0)=6 gives (2.7).} On

the other hand, solving eq.(2.6), we have

g(2) g0 () | J’V(z)dg | (2.8a)
where

v - g 80 (12 4 g0, 11y (2.8b)
that is,

0@ L R0, L3O ()2, g0R00)

(0) (0)

in which R and K are given by
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14

2(0) _ p(0) .y (0)
u
w Oz _ ; _ x(0)

7/2

The terms of the order ¢ are collected to give

(05(3) 4 4 @)R(0) 4 g(0) g 2(O)(0) (1) (@) y x(O)(0),(2)

+ Ureeg

W
= 52 1)y, (2.9)

in which S(z) is the column vector dependent on u(l) and‘its

£-derivatives only. Again, the compatibility condition of this
(2)

equation gives the equation for u

L)@ = 52, (1)) | (2.10)

Here Jﬂ(u(l)) is the linear operator defined by
Ly =2 g2 @, 2 5 11
(u )-—75? gg—u —3?_3- (.)

and s(z) (=L(O)S(2)/(L(0)'R(O)) is expressed by

s@ L @ W)2, D), @M, A @) D))

“'a‘ 2 "EEE 3 UYrg Yrgg
(2) (1) .
+ s4 1.1,5‘5‘5?;‘E R (2.12)

in which séz) (i=1,2,3,4) are constants. It should be noted that

the homogeneous equation associated with eq. (2.10), gz(u(l))w=0;
is the linearized KdV equation.
It is straightforward to write down the higher order equations,
n+3/2 (n)=R(0)u(n)+fV(n)(u(l),

namely in the order ¢ , assuming that U

-5 ~



42

“',u(n—l))dg, we have

(0) ,(n+1) (n) , (0) (0), (0),(0) , (1) (n) ,(0) 5 (0) (m)
W U,g + u, R + R VuA R (u u ),5 + K R u,EEE
=s®, (2.13)
where S(n) depends on u(l),"',u(n-l) and independent of u(n).
Hence the compatibility condition becomes the linear equation
for u(n), (n22)
, w7y (2.14)

(2) ...
£®yg@ _ g @, at?,

where s(n) (EL(O)S(n)/(L(O)R(O)) is known function of (&,Tt) whenever

u(l),'-',u(n—l) are known. On the other hand, eq.(2.13) gives

g(atl) _ p(0) (a*l), Jv‘n“,):dg , (2.15a)
where Vhﬁi)and §(n) are introduced by

y@tl) [ﬁ(O)u(l)u(n)‘*ﬁ(O)R(O)ufgé]'g + §(n) (2.15b)

w0g) _ o) _ () (0) (2.15¢)

-It is to be noted that eq.(2.14) has the same homogeneous part
for all n. We also remark that eq.(2.14) admits the secular

solution, if s(n) contains a term E(n) satisfying the homogeneous

(n) -(n)+f(n)

equation (the linearized KAV equation), e.g. u =Ts '

where f(n) is given bygﬁ(u(l))f(n)=s(n)—§(n). For example, if

u(l) is the one-soliton solution of the KAV equation (2.7),

u(l) = —2K2 sechzn ’ n = K(E~4K2T) + 6 , (2.16)
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(1)

2 . . . . .
then u,n *sech n tanhn satisfies the linearized KdV equation;

(n)

hence if s contains a term proportiohal to sechzn tanhn we have

the secular solution. ' This secular solution arises due to the

self-resonance in the way closely analogous to that in the non-
=(n) . (n)

linear oscillation. Hence the term s in s which gives rise

to the secular term will be called the resonance term.

§3.. Solution to the Linearized KAV Equation

Since the resonance term is a solution to the linearized
XKdV equation, it is required to examine the properties of solutions
of this equation. We first mention that the solution w to the

linearized KAV equation

L wMyw = o ' (3.1)

is exoressed by

——29"[1; 0.2 (£,7) exp-8¢,° T) + ) c (k) v2 (£,75k) exp-8ik> 1y dk] . (3.2)
V=3E L Ch¥m (&rT)expl=oK Y (&, Tik)expl-8ik™ T . .

Here c and c(k) are arbitrary constants and y is given by the

inverse scattering scheme for the KAV equation (2.7):

by +uty = K%y, (3.3a)

(1) (1)

' ' .. 3 ‘
w,T + 41};,Egg - 6u w,g - 3u,g Yy = 4ik7y , (3.3b)

(c.f. Appendix A). Eqg.(3.2) demonstrates that the solution to
the linearized KAV equation (3.1) is given by the superposition

-0f the derivative of the squared eigenfunction.' Eg. (3.2) is
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proved by direct substitution: assuming w=(<152),(S and substituting
this in eqg.(3.1) we find that the left hand side vanishes if ¢
satisfies egs.(3.3), i.e. ¢=wexpﬁﬁik3T). However, as will be
shown in Appendix B, the set of functions (ll)n?),g (m=1,2,***,N)
and-(wz(k)),€ (—=<k<=) is not complete. Therefore the expression
(3.2) does not give all the solutions of eq. (3.1), but it covers
the set of the solutions of eq. (3.1l) which are bounded for 1>«

{see Appendix B). On the other hand, the conserved densities of
the KAV equation (2.7), which we denote by./4i(u(l)), are expressed
similarly in terms of tﬁe squéred eigenfunction as follows,

, . N .
= (_1y3+1 24+1 2
A= D 2] <" (€,

+ ;T- J k23D L (k)02 (£, 1K) exp8ik3T)dk . (3.4)

The proof is given in Appendix C. Incidentally the expressions

(1)

oqu j(u(l)) in terms of u may be found by the recursion

formulae

Assrre =~ iU yreeere DA 2P Ap o A 6os)

which enables us to immediately write down the expressions for

the first three densities,

1 2
A= a2u® 4, = assae)?oufth
(3.6)
_ o3, e (12 0 (1) (1) (1)
,A 3 = (1/32) [-10(u ) +5(u,g Y7 4+ 10u Urrg u,gggg] .

Finally, we note that the solutions (¢$?)'£ corresoond to
the variation of the initial phases of the solitons 5u(l)/56m

which is seen easily by the one-soliton case, while (¢2(E,T;k)),€

- 8 -
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corresponds to that of the reflection coefficient Su(l)/éro(k).

It is then understood that corresponding to the variation of the
eigenvalue K ,6u(l)/6Km (m=1,-+.,N) also satisfy the linearized
KdV equation, however as can be seen again by the one—soliton
solution those are secular solutions growiné proportional to rt.

It is shown in Appendix B that the set of functions given by the
variations with respect to the full scattering data constitutes the
complete set. Therefore the initial function can be expanded by
the complete set of fuhctions so that the resultant solution of

the linear;zed KdV equation is obtained automatically. The
existence of the unbounded (secular) solution of the linearized

Kdv equation does not contradict the stability of the soliton.
Usually, the soliton is considered as stable, because the point
spectrum of the Schr&dinger operator does not change under initial
perturbations. However for the carefully specified initial
condition, which is given corresponding to Su(l)/éKm i.e. for the
one soliton case by 25ech2(K£+9)+sech2(K§+e)tanh(Kg+e)—2Kgsech2(Kg+e).

tanh (x&+0), the point'spectrum shifts by the order ¢.

§4., The Method of Renormalization

We first consider the nurely one-soliton solution (2.16) for

u(l). Introducing this equation into eq.(2.12) yields,
2 2 ' ,
s(2) K7(b{2)sech2n tanhn+bé“)sech4n tanhn+bé“)sech6n tanhnp) , (4.1)
where bgz) (3=1,2,3) are constants independent of k. Here we note

the following relations which will be used throughout in the
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subsequent computations;

é% sechznn = =-2n sechznn tanhn , (4.2a)
2 (n+
é% sechznn tanhn = -2n sechznn + (1+2n)sech (n l)n . (4.2b)

The first term in the bracket of eg.(4.l1l) satisfies the linearized
XdV equation (3.1), whilst the other terms do not. Hence the first
term is the resonance term. It should be noted that the resonance
term derives from the linear term in 5(2), and this holds in any
high order. We now attempt to eliminate this resonant term in

all the s{n)‘s. For illustration, we first consider the set of

egs. (2.7) and (2.14) for u(n) (n>1) as the basic system to solve,

which may be inclusively written as

s)((u(l)) + ) enjC(u(l))u(n) = ) ens(n) . (4.3)

n>2 n>2
Then, we add on both sides of eq. (4.3) the term ;l € aku(z),
where §X is given in a powerseries of g, 61=ak(1)+szx(2)+---,
with coefficients to be determined later. The crucial point in
our procedure is that d) on the left hand side is not expanded

while on the right hand side it is expanded so that A(n)'s are
(n)

determined successively to cancel out the resonant term in s

Then the KdV equation is modified to

~(1) _ (1)~(l) ~(1) ~(1) _

u,; u,€ + u,EEE + 6Au,€ =0 , (4.4)
whilst eq.(2.14) for 3¢?) becomes

L@t o sxﬁfg) =52 4 (1)”,(? , (4.5)

- 10 -
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(2)_,(2) (D

(2) is defined by 8 (a

(1) __ 4y (2)

in which s

). From eqg.(4.5) we

obtain A
4b(2)

/4, hence up to this order §) is given by
-€K /4. The one-soliton solution of eq.(4.4) derives bv the

Galilei-transformation §=£—6AT, that is,

a2 Z2¢? sech®h ,  F o= wl{E-(42+SN) T} + 0 . (4.6)

Thus the higher order effect is given byv the renormalization of

the soliton velocity. In this sence we call eq.(4.4) as the

~(1)

renormalized KAV equation. With the u and 6X, eq.(4.5) becomes

~(2) ~(1) ,~, ~(2) ~(2)
ul,[_ - 6(u (n)u )rz + urz—éz
= K7(b§2)rsech4ﬁ tanhﬁ+b§2) sech6ﬁ tanhn) . (4.5)"

By means of egs. (4.2), a particular solution of this equation is

obtained as

32 K4(B£2) sechzﬁ+Bg§) sech?®) , | (4.6)"
where 6(2) é% (2b(2)+b(2)) ﬂ“ = (2)/48 The general solution
of eqg.(4.5)"' for u( ) is given by

~(2) _ ~(2) ~(2)
u = u, + up ’ (4.7)

(2)

in which U, is a solution of the homogeneocus equation for

eq;(4.5)‘, the linearized KdV eguation. However, as was noted

already)the linearized KAV equation admits the secular solution,
(2)

which is given by Gu(l)/dK. Therefore, in general, ﬁo‘ should

be expressed as

- 11 -
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2) ~(2) ~ (1)

= w + CK(éu /6k) -, (4.8)

(2)

where w is given by eq.(3.2), being bounded for T>w. The

(2)
0

secular term in U,"’ can be eliminated as follows. Solve the

Schrddinger equation (3.3a) for the initialbfunction ﬁ(l)(E,O)
+€cK(6ﬁ(l)/6K)]T=O. Then the eigenvalue k is shifted by which the

(1)

evolution of u is determined, while the special initial function

cK(éﬁ(l)/SK)!T;O must be subtracted from the initial function
ﬁ(z)(g,O) so that ﬁéz) becomes w'2). As the result, the second
order effects on the Kdv §oliton are given by the renormalization
of the amplitude and the width as well as the velocity. Sinée
the velocity-shift can be replaced by the phase—shift; it may be
stated that the secénd order effects are given by the renormali-
zation of the scattering data. By means of the mathematical

| ) (0=1) 4 (n)

induction, it can be proved that and the narticular

solution ﬁén) are given by
A(n—l) - |<2n d(n-l)’, 7 (4.%9a)
- 2n ¢ . ‘ ,
u;n) =" ) Bfn) sechzjn , v (4.9Db)
521 . .
n+l . ,
§(n) = K2n+3 ¥ bgn) sechzjﬁ tanhn , (4.9¢)
j=2‘ J .
where d(n), Bgn), bén) are constants independent of k, consequently
u‘l)‘ Here it is to be noted that, for the one-soliton solution,

L@

the conserved density J4j+l( ) becomes

A i1 = S22 (4.10)

- 12 -
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Therefore, we have

(1) _ -1 _(3-1) ’
Mu,g = jzz £ a /4j+1,g , (4.11)

where aj's are constants independent of k, that is, indepvendent

£ u(l). Thus the renormalized KAV equation becomes well estab-

(1) (1)
g

We now show that for the N-soliton solution, the renormali- -

(o]

lished one for u , when §iu is expressed by (4.11}).

zation term can be represented samely by the higher order conserved
densities. This may be seen by using the exvression for the

N-soliton wave function uél)

N ‘ , ,
(1) 2
ut) = -y 4k cC oy, (4.12)
N o] momm . .
where
2 1 2
mem > 5 Ky sech N for T > o ,
(4.13)
_ _ 2
n, = Km(g 4Km T) + em .
Consequently, from eq.(3.4) we have
do s ey 3T 205D )2 £ > o (4.14)
341 L K e N+ or T . .
On the other hand from eqg. (4.1) 5(2) becomes
s(2) +I§ 7 (6{?) secn?n_ tanhn )
o “m 1 S€Ch Ny m
+ E' 7 (0f2) sech?n. tanhn +b{%)sech®n  tanhn ) (4.15)
L K 5 'sech'n Natb; ' sechn_ thn ), .
in which the coefficients b£2) (i=1,2,3) are independent of Ko

hence m. Consequently, the first term which is to be eliminated

_13...
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is equal to
w72y (0 A 00 . - (4.16)

Therefore, a generalization to the N-soliton case can be deduced

(n)

rg add, on both sides of

as follows. Corresponding to ngl enSXu

eqg.(4.3) the term

Z S S (/4](2;

nzl j22

where /4§l)=,4j(u(l)), ,4§n)5(d/dv)J4j(u(l)+vu(n))lv 0‘4 (n) (n>2)

and SAj=ej_la(J—l) to which the same rule of expansion as that
in the one-soliton case is applied. Then the renormalized K4V

equation takes the form

~ (1) (l)~(l) ~(1) ~ (1) =
Ehi gt g gzé)\j}ij_'_l(u Jig =0, (4.17)

which is called the generalized KAV equation and may be written as
‘ ’
b + A g =0, (4.17)

=.7 AA : ith 6A,=- = 3Dy, igher
where_A lesxj 541 with 6Xl 8 and _AJ ,Aj(u ) The higher
order equations are correspondingly modified, and corresponding

to (4.5) we have
LaTha? =gl 14(2) =3 WAL, (4.18)

The lefthand side of this eguation is.given by the linearization
of the generalized KAV equation (4.18), while from eq.(4.16) it
(l) (b(2)/2)

: 3
The generalized KAV equation is completely integrable.

is anticipated that a

- 14 -
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Namely it is solvable by means of the inverse scattering scheme,
where the Schrdndinger equation is valid samely so that the

spectrum is not altered by the presence of the higher conserved
densities, only the evolution equation for y is modified as is

given in Appendix D. ConSequently, for 1w, the N-soliton solutions
are obtained by modifying the velocities of the solitons (see

also Appendix D). Therefore the higher order effects are given

by the renormalization of the velocities of the KdV soliton.

The explicit form of the N-soliton solution (for 1+»») may be found

by the following heuristic arguments. Assume that for t-e

~ (1) 2 2. :
IV 2 - 2k ' sech Ny v (4.19)
m=1
~ i 2 . . ) .
where N Km{g (4;<m +5%m)r}+em and sxm is constant to be delermined.
Then @m (the m—-th eigenfunction of the Schr8dinger eguation (3.3a)
with potential ﬁél)) takes the form Jém @m-+/Km72 sechﬁmx Hence

by means of the definition of J4j we have
4 > (—1)3'“}2I 2(3+1) gecn?; (4.20)
j+1 i “m N 7 . :
Introducing egs.(4.19) and (4.20) in eq. (4.17) yields

2]

m ’- (4.21)

Sho=-7 Loaa(-1Itt .
moo532 2 3

which is in agreement with that obtained in Appendix D by means
of the inverse machienery.

It is also worthwhile to note that the éeneralized Rav
equation (4.17) is given in terms of the conserved quantities,
ijzfﬁjdg. That is, the last (renormalization) term on the left-

~ (1)

N ‘. . Z pd '
hand side of eq.(4.17) is written as 552 évj61j+2/6u where

_15_
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is expressed by the canonical form

ij%is defined by [2/(2j+l)]5kj_

x (1) 81 6%,

3u 9 16 3 2

e+t S — + L Sy ] =0. (4.22)
3T 885 5 5 43 T 5

Here we note that in the strongly dispersive system reducible to
the nonlinear Schr&dinger equation, the renormalization term

cannot be represented by the conserved densities but by the

conserved quantities.4) Therefore the canonical form (4.22) is

more general than eq.(4.17).

(1)

With the lowest order solution 4 given by eq. (4.17), we

proceed to the next order equation (4.18), which has properties

similar to those of eq. (2.10). In general, when ﬁ(l) satisfies

eq.(4.17), J4j,g (j=1,2,---) satisfies the homogeneous equation
for eq.{(4.18). To prove this, using (4.17)' we first get

~ ~ ~ ~ b4
J4"r=-14gj4’g=_’4;)¥ﬁfl)’ then by means of the relation

] g
oy ~7 ] vy
g (1) _
5)"

which was first derived by Lax and is proved in Appendix E,

r~ ) -

we obtain J4j'1+1444j'£z 0, hence differentiating once with respect

to £ gives
(}le)IT + (AAJIE)IE = 0.

Since the homogeneous part takes the same form in all order, this

is valid in any higher order. Also, for the N-soliton wave
' (1)

function of u ;, in the limit 1+, the extra term on the left-
lad , ~
hand side of eq.(4.18) due to the renormalization (jg? GAjJ4j+lul2))%

can be eliminated locally by means of the Galilei-transformation

- 16 -
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£~ é =&~ A 7 (m=1,2,+°°,N), where dim is given by eq: (4.21). 1In
other words this term may be discarded provided £ is replaced by
gm. We thus find that for 1+, discussions go parallel to that
of the one—seliton case, because in the limit 1+~ the N-solitons
are locally equivalent to the one soliton.

So far we have considered the particular solutions-uén)_{nZZ)

(n) (n)"

assuming that U, =0 (n22). Since the equations for u' ' (n22) are

linear, the general solution can be obtained by adding to ué n) the
homogeneous solutions ué ). In this case, when initial functions

v . . T 2 ( )
% n

(3.2) is given by the.poxnt spectrum 2 C wm rg o Uy

(n+1)

thus specified
will not give rise to the new secular term in s This may _
be shown by the one-soliton case. Let ﬁ(z) be given by —4ch2

~(3) ~(2)

asechzﬁ tanhn, then in s it glves even functions, hence u
does not produce the secular term.

So far, we have considered the system of equations given by
egs. (2.7) and (2.14) as the basic set to be solved. However, the
renormalization for the'original system of equations, which may

be taken as the set of egs.(2.6), (2.9) and (2.13), is achieved

similarly. Namely we first add on the lefthand side of eq. (2.6)

the term ea {A (0). Then it yields the generalized XdV equation
(4.22) while U(z) takes the same form as U( ), because u(T) is
eliminated by eq.(4.17). 1In the next-order equation (2.9) the

~ { , T )
terms sa”ﬂ (Z)R O)and ea(l)}, 3,ER(O) are to be added on the left-

~and right-hand sides respectively. It is then obvious that eq. (4.18)
~(2)

for .u is reproduced, while eq. (2.9) so modified gives
ﬁ(3)=rR(0)'ﬁ'(3) N F](g,)dg ’
where §(3) = V(3)(ﬁ(2),ﬁ(l)) )

- 17 -
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The same applies to eq.(2.13). Thus in all order discussions go
parallel to those‘done previously for the set of egs. (2.6) and
(2.14).

Finally we show that the coefficients 6Aj in eq. (4.17) can be

determined by the linear dispersion relation (2.4). Since 5Aj are

(1)

independent of u , they may be determined by the one-soliton

solution of ﬁ(l). 'In this case, as can be seen frome eq. (4.9b)

(n)

for x>~ O (n>4) damps at most as exp(-2n). Hence from eq.(2.15)

it follows that U is approximated by U—Uomexp(-zﬁ) for x-,

Substituting this expression for U in eq.(2.1l) and linearizing, we

get
det] (e1/? ) {-x, - etarsTfren, (e 20) +axg (/200 3] = 0
that is
detl[-A0 ~e{ac? - Z %%—l)j+1 KZjGAj}]I+ Ay + K0(4€K2)| =0 .

jz2

In comparison with the linear dispersion relation, one sees

immediately

2 1 4 1 6
Ay +oetac? 2t o, -2 k% oy }
= [w/k] ,
k=ic1/2 (2¢) . (4.23)

§5. Example (Ion Acoustic Wavel))

For the system composed of warm electrons and cold ions, the

basic equations can be reduced to

- 18 -
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on ) ~ 0, 0 —

?t + ﬁ(n v) - 2'—23—}5(55 ) (n Bx) =0, (5.1a)
ov ov 1l on _

e TV Tnoax 0 - (5.1b)

in which x and t are stretched by the factor V2 in comparison to
those in ref.l, n is the density of the electrons and v the flow -
velocity of the ions. This system can not be given in the matrix
form (2.1), because of the existence of the time-derivative in the

dispersive term; however, as was shown in ref.l, the reduction goes

entirely parallel to that of eq.(2.1). That is, for u,=n, u,=v, we
have A=vz*l, hence for nl=l, v=0 the linear dispersion relation is
given by ou=ik(l+2k2)_l/2 tk(1- k2 +3 k4+"') Consequently, we have
the KdV eq. (2.7) for u(l) where n( ) (l)— 6u(l), while

nt?) = 6@, ) o 6y (@) L1 (D)y2 (éé . (5.2)
The explicit form of s(2) is obtained as

S(2) - l8(u(1))2 (1) _ 3u(l) (1) (1 ) (1) 3 ..(1)

Ure Urgg = 60 T Urppe T 5 Wigpgeg

Hence, after the renormalization we get

et - ea™MafP) +alll, +eas A@™), v e = 0
v ~(2) _ (1)2~(1) ~(l) ( ) ~(1)~(l)
Li = (631 G’ =330, Uy - 218l gg,) -

The N-soliton solution becomes

- 19 -
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N
~ (1) _ 2 2.
u - g 2Km sech nm .

~ 2 2 2 .
= - - +
where 7n_=«x_{& - (4« £24k_~+0(€“))t}+6_ , and the dressed part is

expressed by

~(2) o & 2. 4. ..
a > %[ 9k {sech i +6sech nm}],
'6(1)=ﬁ(1)=-66(1) and the equations for 7(2) ana ¥‘2) take the same

form as eq.(5.2). = (Note that 6A2=48€ derives directly from

eqg.(4.23)).
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Appendix A. Inverse Scattering Scheme

For eq.(3.3a) we introduce the Jost functions ¢ and ¢ with

the boundary conditionsG) for the right scattering
V(E,Tik) > e TRE £+ -2, (A.1la)
6(8,7:%) - e KE

£ » o | (A.1Db)
For real k, it holds

w(ng;k) = a(krT)q)(ng;-k) + b(krT)(b(ng;k) .
(A.2)

2 2
la(k,7)|° - |b(k,T)|° =1
and the bound states are given by
a(i|<2 ,T) =0 (k=il<2 ; £=1,2,+++,N) (A.3a)
w(i,r;ifz) = b, (1) (g, Tsiky) . (A.3b)
From eqg. (3.3b) we get
alk,t) = ao(k)
b(k,T) = by (k) exp (8ik>1) (A.4)
By (T) = by (1)/(1d(iky)) = By, exp(8K£3T)‘.
Hence the right scattering data S(t) are given by
8ik>1 BTN
S(t) = [R(k,T)=b(k,T)/a(k)=R, (k)e B, e 1Ko} 1
0 20 2 =1
(A. 5a)
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and the left scattering data are given by

.
.13 8K, T N
: - L
s(1) = [r(k,T)=bEk,T)/a(k)=ry (ke o e, e et 1

Appendix B. Squared-Eigenfunctions

We introduce the squared-eigenfunction and its spatial

derivative by

9(E,Tik) = 02 (E,Tik) = <E|k> , (B.1a)

i

Y, R = gp VP, TR = ke L. (B.1b)

By means of egs.(A.la) and (A.2) Y and © satisfy the equations

- Ay _ 2y _ 1 (l)
LS¢ = k9 , LSW = k°Y Urg W (-R,T;k) (B.2)
where L. =- % Jii + u(l) + 1 Jm dE'u(l)
and Lé is adjoint to Lg fi.e.
2 €
A_ 13 (1) , 1 (1 J \
L= - > — + u + = u, dag
S 4 52 2 £ J_g
From egs. (B.2) we have
v e - o[Li¥+1 ult)v? (-r k)] = 8,F (B.3)
S € T €
= -1y 3 o093
where F = 4[W BEQ 0] BEW]
1, (& 2 (1)
+ 51 Yag' +v (—R,T;k)]'J u,;,%ag' ,
2 ¢ e

- 22 -
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while the evolutions of Y and ¢ are governed by the associated Kdv

7}

equation’ and the linearized KdV equation, respectively.

Let the innerproduct be defined by
JY(E,k)@(E,k')dE = <klk'> . - (B.4)

Then in view of egs. (B.2) it becomes

d | ' = __..___._._1 l 3._ r 'y - ' _3 § =
<k|k'> = 77 YR g REKD ek g ME T T, -
Hence for real k, k' we have
<k|k'> = -2inka’ (k) § (k-k') ; (B.5)

for complex k, k' with positive imaginary parts, at the zero

points of a(k) we get

ok <klikg o = ikgdg S (B.6) -
We also obtain
<iK£IiKm> = <k|iKm> =0 _ (B.7)
and 9. 2 x|k (42+ix,3,4,)6 (B.8)
ok ok’ k=ik, 2 292527 "gm - :
k'=ik
m

The completeness relation can be shown in. the same way as was
- 8\)
done by Kaup by considering the integral
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where the contour C vasses through the upver half plane above all

the zero points of a(k), namely

© N .. S
. . 1
=il e L)+ ] SRk |
—e 2T }a? (k) 421 ig a2 ok K=ig
2 L 2
N a :
+ ) (i —E) ik, ><ik, | (B.8)
9=1 2.2 53 2 2
=L Kg 3y Ke%e
. . (1) éu(l)
The secular solution for one-soliton solution of u i

corresponds to

3 : 2

-8k T 3 ] = - XX (2+tanhn) sech™n

é 2 YETK) [ Cq
. 2 5

+ 2 2 £ sechn tanhn
o
, 2
where n = x(&-4c 1) + 0.

Appendix C. The Conserved Density and the Conserved Quantity

9)
For the conserved quantity, Ij=jj4j dz, we have

2541 (7 2,23 g
Ij+1 = 5 J_w ln]a(k)]
541, N 2541 c.13
+ (-1) 2y K . .
: m
6T
Hence is calculated as
g;TTT »
61. . oo 1 5 *(k) 2_
3+l _ 25+l I 1 sa(k) , _ a(l&*'k I ax
sull) 21, alk) ) 3 su
. M . 8k
. 2 n
-0t 2 § ekl —gy - (c.2)
m T su
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Using the relations proved by Kodama and Wadati,lO)
1 sa(k) 1 sat) - 1, 2 2
S0 e T g D FiR D 0997 (83 - x (ST e, K )
(C.3a)
SKm Cm 2 ‘ | ' .
6 (l) = - 2K IP (EI le) F ) (C-3b)
u m
we obtain
2 a3 k2371 r (k) w2 (£, k) ak
23+ S (I W, !
. N .
25-1 2 .
+ (-1)7 21% K T C v (E, ik )
=/4j(u(1),) : ' (C.4)

_35_
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Appendix D. The Generalized  KdV Equation

In the canonical form, the genéralized K4V equation is

given by
M o empaty | >.1)
5T T 4D |
where arat?y = %? 13[6(1)] -3 auj1j+2[ﬁ‘1)]

j22

while the canonical variables are represented by the scattering

data
k 2
P(k) = — Inla(k) | , Q(k) = arg b(k)
(D.2)
= 2 - - =
pm = Km , q, = 2]_nbm (m=1,2, ,N)
consequently
J234 [T 2371 a4 ony3tE 2? (25+1) /2
j+l 2 P
—0co m
p (D.3)

Hence we have

rm
H= 8 | k3p(k)dk -
o 332

25+3

© o 29+1
5 8V, I_w k P (k)dk

. N . y
%% p 5/2 ¢ ) 2(_l)j+l sv. J p (23+3) /2

m j=22 I ™

. (D.4)

32

The canonical equations (Hamilton's equation) are integrated as

follows.

For the continuous spectrum,
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ap(k) _ _ _8H _ : a oy L
3t 50 (k) 0 i.e. at a(k,t) 0o, (D.5a)
dg (k) SH 3 25+3 L. 23+1 )
= . = 8k~ - z === §v.k" , (D.5b)
dt SP (k) 352 2 J
which yields
b(k,T) = b.(k)exp(i8kot -i J 2333 sy k23+L 1) |
» 0 : . 2 3
j=2
For the point spectrum,
dap
m_ _ SH _ ; 4 ¢ =
Ti-?— = 6q 0 l1.e at Km =0, (D.5c)
m
M _ SH g, 32, I (-1 32543y 8y, p (23F1)/2
dart 6pm m j32 i m
(D.5d)
which gives
_ 3. _1y 3+l 23+3 S 2341
bm(T) = bmoexp(SKm T~ ) (-1) =5 ijKm T)

3§22

Then the asymptotic solution (pure solitons, r(k)=0) reduces to

(1) 2 2 2 Ly 4L 2343 25, -
u > 3 2Km sech [Km{é (4Km'_j§2( 1) —TE_'dijm )T}+—6m}

(D.6)
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Appendix E. Lax's TheoremS}

Consider the linearized equation of eq. (4.17),
3 3 g (1), o |
v = - gUAehy o ~ (E.1)

Let the solutions of (4.17) of one-parameter family be given by

uél)=u(l)+€v. Then

a (1) 2441, 4
Te Tyerlug Mo = "2—’(/43'"’) (E.2)

is time invariance, where (£f,g)=/f-gdg (f,geLz(R)), conseguently,

(1)

) - / Ju ‘ v
ar( Ay = (A = + (A 5D

I

79y 7y '__

’
Namely J4j 5—%/4] —_,4,3—35_,4. =0 .

- 28 -
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