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Quasi-periodic solutions of the

Sine-Gordon equation and the massive Thirring model
Etsuro Date

Department of Mathematics

Osaka University

In this note we consider quasi-periodic solutions of

the sine-Gordon equation

Uy — Uiy + sinu =0 (0.1)
and the field equation of the massive Thirring model

- iu, - iu_ + 2v + 2|V|2u = 0

t X

2 (0.2)

- iv, + iv_ + 2u + 2|ul|“v = 0.

t X :

Quasi-periodic solutions of the sine-Gordon equation
1)

were given by Kozel-Kotlyarov in terms of the Riemann theta
functions. We obtained a similar result for the massive
Thirring modelz).

In sections 1 and 2, we descrive the result of Kozel-
Kotlyarov in a modified form. First we derive a systém of
solvable differential equations which generates a family of
solutions of the sine-Gordon equation. This system is derived
from the linear operators which were given by Ablowitz-Kaup-

3) 4) for the

Newell-Segur and Zakharov-Takhatzhian-Faddeev
sine-Gordon equation. Next that system is integrated by

empléying the theory of abelian integrals on a hyperelliptic
curve, which gives an explicit formula for the solution in -

terms of the Riemann theta functions,
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In section 3, we briefly summarize our result for the
massive Thirring model. 1In this case the corresponding system
of the differential equations are derived from the linear

3)

operators given by Mikhairov™'’.

§1. Sine-Gordon equation ( 1 )
Let ¢l and ¢2 be solutions of the following equations

2i¢i + u'¢l + Lo, = 0

2i¢é'+ Lo, - u'¢; =0

219, + tlexp (iw)g, = 0

2i<f>2 + z;_lexp(—iu)¢l =0
- where ¢' = 2¢/ S E, o = ¢¢o/ en, & =’t + x, N =,t’_ x and ¢
is a parameter. These linear equations are essentially the
same as those which‘wefe given by Ablowitz-Kaup-Newell-Segur
and Zakharov-Takhtadzhian-Faddeev for the sine-Gordon equation.
Then functions f = ¢l¢2, g = ¢i, h = ¢§ satisfy the following
equations

£' =27tz (g + h)

iwg + igf ‘ w = u'

g
h' igf - iwh’

. _ -1 (1.1)
f = (27) “Tdiexp(-iu)g + (2z) “Tiexp(iu)h

g = ¢ tiexp(iu)f

h = ¢z LYiexp(-iu)f

We consider the system (1.1) in which u and w are
regarded as arbitrary functions. We require that the above

system have solutions of the forms

c_S N . 2j-1 _T N 2] SN 27 )
f j=]_fjC 7 g ijogjc ’ h Zj=0hjc' . (l. )

2
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where N 1is any natural number. This requirement determines
coefficients u and w, as will be shown below. Putting (1.2)

in (l.l), we have the following relations for coefficients:

-1
[ - : s « e
fj—2 1(gj_l+hj_l) jil, ;, N
! = iwg, + if, j = 0,""°, N f. =0
h! = if. - iwh. . o
J J J j =20, , N
i -1 -1 (1.3)
fj = 2 iexp(-—iu)gj + 2 iexp(iu)hj j=1,""", N
gj = J.exp(lu)fj+l j =0, , N fN+l =0
hj = 1exp(—1u)fj+l j =0, , N
gN+hN=O
exp(-iu)g, + exp(iu)hy = 0
Further we see that the following relations hold:
In = —hN = conétant,
gOhO = constant.
Therefore coefficients u and w are expressed as
u = -ilog(-hy'g ) 1/2,
-1 ‘ (1.4)
w = -9y fy.

Substituting these relations (1.4) into (1.3), we get the

following system of differential equations

£1 = z'li(,gj_l *hy_p) j=1,""", N
g} = -ifyg, + if, j=0,""", N-1
?5 = if, + ifyh, j=0,""", N-1 -
£, = 27 Mi-ggng) 2 Cgghy - ggng ) 3= 1,000, N
éj = i(—goho)‘l/zgofj+l j=0,""", N-1
ﬂj - —i(—goho)_l/zhofj+l j=0,""", N-1
where we put Iy = —hN = -1 without loss of generality.

Accordingly the existence of polynomial solutions of (1.2)
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is equivalent to the solvability of the system (1.5). Kozel-
Kotlyarov derived the system of this type as the deformation
equations of the monodromy matrix of the linear operators.
Reversing arguments, we begin our discussion with the
system (1.5); First we can show that the system (1.5) is
completely integrable. Therefore for any initial condition
L £5(0,00, (3 =1,7"", N) g,(0,0), hy(0,0) (3 =0,""", N-1))
there existsdunique solution { fj(g,n), gj(g,n), hj(i,ﬂ)}.
Define polynomials £, g, h by (1.2) and coefficients
u, w by (1.4) with solutions f., g.

J J
£, g, h are solutions of (1.1). Using the system (1.5), we

’ hj' Then polynomials

know that goho is a constant and the function u defined

by (1.4) is a solution of the sine-Gordon equation. Further

by (1.1), we see that
2 2N 27
p = £ -gh = ). .
(¢) g 5=0P5°

is a polynomial with constant coefficients.

(1.6)

Let fg;j(g,n) (j=1,""", N ) be the roots of the equation
g = 0. Then the polynomial g is expressed as

N 2 2
= |1 - c. ). 1.7
g =TLZ 2% - 2f) (1.7)

The solution u is expressed in terms of Ci as
_ . N -L/29F N 2
u = -ilog((-1)"py TTj=l;j). (1.8)
Next we derive differential equations for C?- By (1.7), we
have
- N 2, 2 2 '
gt = - NS e e - e (1.9)
- N
where TT 5 = Tty y 5-
Putting 7 = Cj in the equation

g' = iwg + izgf,
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we have by (1.9),
2. 2 2 _ .
(e My ef - e = 1oyeey).
since f(gj)2 = P(¢;) by (1.6), we have
.2 1/2
l(CjP(Cj))

2 +
(z2)' =< . (1.10)
n],‘»-TT 2 2

Similarly we have

N-1. 2 2 1/2
Y 1T 4 (30 (25P(ESD)

(ty) = T2 - 2 . (1.11)
k#j 73 k
§2, Sine-Gordon equation ( 2 )
In this section we use notations gz = A, g? = “j
. I
2N 3 2N . .
P(A) = . AT =, A = A.). For simplicity we assume that
(1) Z;=opj 521 ¢ ) p y

the initial condition for the system (1.5) is given so that
the e%§tions P()) = 0 and sziogj(o,o)xj = 0 have simple
roots and kj # 0.

ILet S Dbe the Riemann surface of the hyperelliptic
curve uz = AP(A). The genué of S is ©N. We realize this
surface S as a double covering of the Riemann sphere in a
standard way and take a canonical homology basis aj, Bj. For
the theory of Riemann surfaces we refer to ref. 6) and

references in it. We denote a basis of the abelian integrals

of the first kind by

_ N-1
i 2=0%52
normalized by

g@jwk = 6jk' i, k =1, , N.

1/2

" 2o () " %an, i=1,""", N
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gB W, = Tjk j, k =1, , N

cand T = (Tjk). Let T be the lattice of CN generated

by the columns of the period matrix ( I T ), where I

NI
denotes the identity matrix of degree N.

N

We regard the differential equations (1.10) and (1.11)
as that on S. The locations of uj(0,0) are determined so
that the relations

N k ’ 1/2
2z (0:01500,6) = (00,002 (g (0,00
hold. We rewrite differential equations for uj:

. 1/2
1(ujP(uj))

[Ty (g 1)

D[ Ty (uyp a2

. _
TW&#j(“j Hy)

By similar calculations as in ref. 6), we have

Wy, (E,M) '
N k=’ — . . o=1/2 w
0

.

u, (0,0) _
+ )y 0 ) mod. T (2.1)
k=1 . . :

where is a fixed point on S.

"o
Introducing the Riemann theta function

O(u) = z;' “N exp(2ﬂimtu + ﬂimTtm)
mez

.. N .o

u = (ul,' ,uN)eC , = (ml,

we can express symmetric functions of uj in terms of 0O by
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a standard method. As a result we have

- 0(w(0) + ¢(E,m) |
&N _ N
Li=1loguy (8 = 2109 Gy S o(g, ) ¢ Lym1 Su toghug

3
+27im, ‘ mez (2.2)
where
= et = \H -
w(n) (wy (1), P (1)) wj(u) guomj ue s
$(E,n) = (¢1(5:n),"°g¢N(€rn)) .
_ _ . . =1/2 -1y N
¢‘J(gln) - lcj,N_lg + lpo leon 2 Zk=1Tjk

-1, N
+ 27% -Zk=le<uk(o,0)).
Combining (2.2) and (1.8), we have the following formula

for the solution of the sine-Gordon equation

O(w(0)+¢ (&,n))
g +
O (w(x)=*¢ (&,n))

u(g,n) = -2lo C + 2mm,

_ . N o _\N_-1/2
C = -i j=l$;jlogij ilog(~1) Py .

§3. The massive Thirring model

For the field equation of the massive Thirring model,
we can give a formula of the solution in terms of the Riemann
theta functions by a similar method as in sections 1 and 2.
Here we descrive our result briefly. For detail, we refer
to ref. 2).

We can show that the following system of differential

equations is completely integrable

v sl c =1 .o -
fj lfN hNgj + lfN gNhj 3 1, (N-1
o= o=l -2 ce=1 Y . oo
gj 2 1fN gNhﬁ%f 21fN ngj—l Zlgj—l j 1, /N
-1,.-2 =1 . v
1 — - =
hj 2 1fN gNhNhj 21fN thj-l + 21hj_1 Jj 1, N
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1 -1

fj = —1f0 hlgj+l + 1f0 glhj+l j =1, ,N-1 (3.1)

o -L_-2 L1 _ o . .o

gj = 2‘Lf0 glhlgj + 21f0_glfj 21gj+l j =1, /N

S =Y. -2 _ o3 e—1 . . -

hj = 2 1f0 glhlhj 21f0 hlfj + 21hj+l j =1, N
where fo and fN are constants and N is any natural number.

This system is derived from the following linear equations

+

. 2 .
o] + |v]|%0, + 2icvee, - %4, = 0
. 2 . 2
i¢) - |v] ¢, + 2izve; + %, =0
Lo 2 S -2
ig, + |u] ¢, + 2ig Tu*¢, - ¢ 9, = 0
.o 2 .o =1 ~2
ig, - ul%e, + 2icTTugy + 7%, =0
which were given by Mikhairov for the massive Thirring model.

Then functions a, b, ¢, d defined by

_ -1.-1 _ -1 -1
a = -2 fN hN’ b =2 fN IN
_ _,-1.-1 _ ,-1.-1
c = -2 £o hyr d = 2 £0 91

with solutions satisfy the following differential equations

(3.2)

d' = 2iabd + 2ib
-c' = 2iabc + 2ia

. (3.3)
b = 2icdb + 2id
-a = 2icda + 2ic.

Define polynomials £, g, h in ¢ by

SN 27 N 25-1 N 2§-1
£=).Ne %3, g=)Ng. h=). " n. .
L3=0t53% "1 9 T L5=195° ' j=1"5°
The polynomial '
2 2N 23
P = £f7 -gh =) . .
(z) g j=0pjg

is a polynomial with constant coefficients.
If we choose the initial condition { fj(0,0) (3 =1,°°°,N-1),
gj(0,0), hj(0,0) (j = 1,°"°,N)} so that the relations
f% = £., g* = -h. | - (3.4)

J J J J
hold, we have
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a = b*, c = d*.

Therefore by (3.3), we have

-u' = Zi]vlzu + 2iv
-v = Zi[ulzv + 2iu
. _ -1_-1 _ -1_.-1 . . .
with u = -2 fo hl v = =2 fN hN’ that is, a pair of functions
[

u, Vv 1is a solution of the field equation of the massive
Thirring model.

The system (3.1) is rewritten in terms of the roots
t;j(i,n) (j = 1,""",N-1) of the equation h = 0 and constants
pj’ fo, fN ( under the condition (3.4)). The result is the
following:

(2/3¢&) (Log (gyhy))= 41m2§;l 2

4(_]_)N f Im N-1_2

( ¢/ 3n)(log(gyhy)) = 5=153 (3.5)
(3/38) (log(gyh)) = a(-1)N? lf T4 }c"z
(a/ an)(log(glhl)) = 4Im j lC-

3 = _o~1 _ N- l 2 Y

8/98¢)(log hy) = -2 N gN N 212:3 1 3 ifyg p2N 1

a ~ I - . N
(3/38n)(log hy) = 2 1f0 glhl 2i (-1 N]T 1’5 5.6

. -1, -2 . - Z2 3

(3/3€) (log hy) = 27 ify gNN—Zl(-l)N fTJ 2183

. _ ool _ N- =2
(8/38n)(log hy) = =27 if gl 1 21}: ‘ 1f0 Py -

The roots pj = ;j satisfy the follow1ng.d1fferential eguations

2iP(uj)l/2

v+
Uj = -
poo¥ '

j _ - .

Introducing the Riemann surface of the hyperelliptic

curve uz = zgp AJ, we can integrate the above differential
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equations. Corresponding to (2.1), we have

N-1 Uk(iln) o " -1 L o-1
( §:k=l S Wy ) = ( 2if cj,N-Zg - 2if <5, 0" +
Yo
N-1 uk(oro)
+§;k=l ‘ wj ).
Ho

Further we can express symmetric functions of ”j in terms

of the Riemann theta functions by using the above relation.

A formula for the solution of (0.2) is obtained by the following
procedure. The right hand side of (3.5) are expressed in

* terms of theta functions. Integrating those.relations, we

have formulas for log(gNhN) and log(glhl) in terms of theta
functions and initial conditions gN(O,O), hN(O,O), gl(0,0),

_ hl(0,0). Substituting these expressions into (3.6) and
integrating the resulted relations, we have formulas for hN-
andk hl' By (3.2), we have an expression for the solution

of (0.2).
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