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Abstract

The principle of inclusion-exclusion on semilattices is
extended on partially ordered sets as follows. Let Q be a
nonempty set and P be a finite partially ordered set with the
unique maximal element. Let f:P —{P(Q) be a map satisfying
£(x)N £(y)c £(z) for each x and y in P and for some minimal
element z in the set of all upper bounds of { x, v}. Then for
any measure m on P(Q) the following identity holds.

n(U£x) = & Dm0 £(x))

X€P ceC X€&C

‘where C . is the set of all chains in P and 2(c) denotes the length
of a chain c. Also the theorem can be dualized, which results
in other three cases. Furthermore, the theorem can be restated
in terms of valuations on distributive lattices instead of
measures on P(Q). Herewith, by a slight application of the
theorem we obtain some identities on the number of chains and
unchains contained in a partially ordered set with the unique

maximal element.
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Introduction

The following theorem was introduced in order to enumerate
e ‘ such v v
reducible or irreducible types of finite systems,as mappings,

finite automata and sequential machines [3]([4, Corollaryl).

Theorem (Inclusion~Exclusion on a Partition Latticé)- Let

S be a finite set. Let F(S) be the set of Qgpgings from S into

itself and (PL(S),Vv ,A) be a partition lattice of S. Let 3 be

a relation between PL(S) and ¥(S) defined by mdf for each 7 in

N : of =

£(t) are contained in a same block whenever s and t are in a same
of w N ,

block, Let .8 be the map induced by the relation and L be any

subsemilattice in PL(S). Then for any measure m on P(F(S)) the

following identitg'holds.

(U J@) = ¥ 15 nc O 3,

TEL ceC TEC
-— P . W

where C is the set of chains in L and &(c) denotes the length of

a chain c.
— ————— A

In the proof it is essential that for each 7 and 1 in PL(S)
Xmn eI mat and MmN (DS Anv 1)
hold. Therefore the theorem has been extended on semilattices

as follows [4, Theorem 1].

Theorem (Inclusion-Exclusion on Semilattices). Let Q be

a nonempty set and (L,Vv ) be a finite join-semilattice. Let
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£:L— p(Q) be a map satisfying £(x)N £(y) S £(xv y) for each x an

y in L. Then for any measure m on P(Q) the following identity

holds.

=
'“C

@) = ¥ 09N,
S

£
L gec

S MWoomeomonS ot & ===

where C is the set of chains in L and I(c) denotes the ;gpggh of

a chain ¢. The theorem ggpkgg dualized.

Furthermore, the theorem was applied to a Boolean lattice
and a product partition lattice [4, Proposition 1, Theorem 2].
Also the theorem has been restated in terms of valuations on
distributive lattices instead of measures on’@(ﬂ)[S].. In the
proofs, the following Rota’s theorem obtained from [1l, Theorem 1]

plays an important role.

1541 -

Theorem (M8bius Functions on Closure Relations).A Let x —

be a closure relation in a partially ordered set P having a unique

minimal element 0, with the property that X = 0 only if x'= 0.

Let Q be the partially ordered subset of all closed eiements/ig

P. Then for each y in Q

2w (0, x),

x:g=y T

By (90 Y)

where My and Hg are the M8bius functions of P and Q.

A map X —>X of a partially ordered set P into itself with

the following properties is called a closure relation in P:

(1) %2 x, (2) X = %, (3) x>y implies X>7.



If = x then x is called a closed element.

1!

Let (L,Vv) be a
finite join-semilattice. A map X— X of (L) into itself defined
by X = subsemilattice of L generated by X () = ¢) is a closure
relation in P(L). The set of closed elements results in the
lattice of all subsemilattices of L, written L*. Then Rota’s
theorem is applied to the Mobius functions j and p* of (L) and L*,

which leads to the following identity. For each Y in L*,"

pr G, ¥ = I 46, 8 = L (-1%.
X:X=Y X:X=Y
Furthermore, for each ¥ in L* let X{sgg the set of join-irreducibles
of Y. Then ¥, is the unique minimal element of { Xe P(L)| X = ¥}.
Therefore, it follows that
> (-1 (-1 % (1-1)¥- 1%l
X:X=Y
»(-lfg' for ¥{,= Y , i.e., ¥ is a chain’
) 0 otherwise.
The identities are showed in Proposition of [4, p.198]. On thé

other hand, since £(x)N £(y)C £(xv y) for each x and y in L, it

follows that for each X in {P(L)
N £x) = N £x).
xex . xeX

The inclusion-exclusion

on semilattices is proved from these

identities.

Thus Rota’s theorem is a guiding principle in our

subject, herewith it is also worth notice that some elemental
proofs without the use of the closure relation are possible.
In this paper it is shown that the inclusion-exclusion on

semilattices can be extended on partially ordered sets. The
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two different proofs are given,one in which the closure relation
js used, the other is elemental, Then the relationships between
the results obtained before and the present theorem are described.
Finally, a new slight application to cbunting the chains and

unchains contained in a partially ordered set is given.

The Theorem

A partially ordered set is also called a poset. The theorem

is as follows.

Theorem (Inclusion-Exclusion on Posets). Let Q be a nonempty

set and P be a finite partially ordered set with the unique maximal

element. Let f:P —> p(Q) be a map satisfying £(x)N £(y)C £(z) for

each x and v in P and for some minimal element z in the subposet’

(of P) of all ggpgj bounds of {x, y}- Then for any measu;gvg

on P(Q) the following identity holds.

nU £ = & C0XnN g,

xeP ceC €C
- - we - A

in other three cases. Furthexrmore, the theorem can be restated

in terms of valuations on distributive lattices instead of measures

en p(9).
The two proofs are now given. Let P be a finite poset
and L be a finite semilattice. The first proof is carried out

by an extention of the closure relation on (P(L) in the proof of
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described in Introducton
[4, Theorem 1] | to the closure relation on P(P). The second

proof is elemental without the use of the closure relation, in
which {(P) is classified by the pre-ordered incomparable pair
contained in each subset of P and a bijection on the set of
unchains in P is defined. For each unordered pair p = {x, y}

in P let <p> denote the minimal element z in the subposet (of P)
of all upper bounds of p which satisfies f£(x)N £(y)c £(z).

<{§, ¥}> is abbreviated to <X, ¥>. Note that <§,‘Z> =y for §<X
in P and <x, y> = xvy if there exists the least upper bound Xvy
of {E' ¥}° For each X in p(g) let Icp(X) denote the set of all

incomparable unordered pairs in X. . _the proofs are as follows.

AN

Then

First Proof. For each X in {(P) g is inductively defined

in the following way. Let Xp = X and for i2 0
Xy = XUl<p>| p in Icp(X;) L.

Then g is defined by g = U X; which is equal to X, for the least

0y "™

integer n such that Xy, = X,. Therefore the map X —X of @(B)
into itself is a closure relation in P(P). The set of closed

elements is denoted by Q. Now we show that the following

. . each |
identity holds. For Y in Q

Y (-1)¥=

{(--l)“{I when Y is a chain or ¢
X:X=Y

(1)

0 otherwise

where the sum of the left side ranges over all X satisfying

141

= Y. Considering that for each Y in Q ¥Y-{<p> | p in Icp(Y)},

written Y, , is the unique minimal element in {§ in @(?)‘ g = X},
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S (-1)¥ = (-1l (- -5

}’(:X=X

—

-1)% for Y, = ¥

{ 0 otherwise.

¥, = ¥ means that Y is a chain, completing the proof of the
identity (1). Also, since f(«x, YINEXINE(y) = £(x)N £(y)
for each x and y in P, it follows that

£(x) = O £(x). (2)

xeX xeX

on the other hand, by the principle of inclusion-exclusion,

m(U £x) = X D% 'nenN £:x).
xep X< p(P) xeX

Then from (2) the following identity is obtained.

(U £x) = Z{ L DTN £60).

xeP Ye Q X:X=Y xeY

Now the theorem follows from the identity (1).

Second Proof. Let M be the set of minimal elements in P.

Let’s arrange elements in M and then minimal elements J.n the

subposet P-M and so on up to the unique maximal element. Thus
p is: totally orxdered Xy €eXySet - LeXs in the arrangement. Note
X <y for x<y in P.. For each i (1sis<s) let P; denote |

(P in Iep(®)| <p> = %)

3
For some i P. may be ¢. Then 2 P, = Icp(P). Now number elements
- - (=1 e
in P, and then P, and so on till P; . Thus the elements of Icp(P)
is numbered P, s Pysvrcs Py - - Then for sach i (L<i<kg<t) <
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contains no <p> - Because, if for some i (1< i<Kk) p.
contains <P, > then <P < <Py that is, <P <e<Pi> s which is
contrary to <Py <Py - For ?t (15_& t) in Icp(P) U(p ) is
inductively defined in the following way. Let
u(p,) ={x in p() | x2p,}

and for k (2<k<t)
k-1
U ={x in ( P@)- U v, | x2p,}-
L= - -

t
Then {(P) = E: p ) + C, where C is the set of chains in P.
1<

-
Let for k (1 lgg‘g)

c"
»O
|

= {xeUlp) | cp> ¢ X}
U (p,) = {XeUlp) [<p>eX} .
Then g@>(pk) contains X + {<pk>} if g‘”(pk) contains X. Because,

for each X in g(”(bk) Icp(X + {(pky}) contains Py but not pl(lgégk—ly

Therefore, a map
T (n
A = U (_gk)—ﬂg (gK)

is well defined by &(X) = X +{<p>} and it is easily shown that
-+ . \
X (Le<k<t) is a bijection. Let U‘¥ =¥Ei g‘”(PK) for each i

in {0, 1}. Then a bijection

is defined by o(X) = ¥(X) for each X in gf)(pk). Now, by the

principle of inclusion-exclusion
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n(U£x) =- X 0¥ N £6:)
&P

x Xe p(p) x€X
= Y P 'nN s+ Y 1900 £ (3)
Xeu xeX gec x¢g

where U is the set of unchains (U’ + U'?) and C is the set of
chains. - Also, since £(x)N £(y)E £(<x, y»), for each X in U

N £(x) = (N £(x), and [(X)] -1 = IX.
xe X x e A(X)

Therefore, the first term of the right side of the identity (3)

is equal to 0, completing the proof.

If necessary, a map £:P-—pP(Q) satisfying £(x)N £(y)C £(z)

for each x and y in P and for some minimal element z in the subposet

(of P) of all upper bounds of {x, y} is called a weak morphism
on P (contains other three dual cases). For a given poset P
and map £:P — {(Q), it is of interest whether f is a weak morphism

or not.

Remark 1. " To dualize the theorem " means that!U and N
are interchangeable by setting f(x)U £(y) 2£(2z) for TINEEIC £(2)
and that for any finite poset with the unique minimal element the

theorem holds.

Remark 2. Let (D, Vv ,A) be a distributive lattice and (B, +)
be a commutative ring with identity. A map v:D—A satisfying

vixvy) + vixay) = v(x) + v(y)
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for each x and y in D is called a valuation on D. Then it is

easily shown that the theorem can be restated in terms of valuationg

on distributive lattices instead of measures on P(Q).

Remark 3. ©Let P be a finite chain. Then a map £:P — ¢(Q)
is a weak morphism on P and p(P) = C. Thus the principle of
inclusion~-exclusion is derived. Let P be a finite semilattice.
Then a map f£:P— {(Q) satisfying £(x)N£(y)S£f(xvy) for each x
and y in P is a weak morphism on P. Thus the principle of

inzlusion-exclusion on semilattices is derived.

Remark 4. Let P be a finite poset and Q be the set of closed

elements (¢ = ¢) in the first proof. Let p and p* be the Mdbius
functions of @(P) and Q. Then for each ¥ in Q

(—l)]¥| if ¥ is a chain

u*(¢r¥)={

0 otherwise.

Because, *( ¢, ¥) = Z u( ¢, X) = 2 (—1“5', which is just
T xRy T KR
the identity (1). This formula is an extention of Proposition

in [4, p. 198] described in Introduction.
Finally a slight application is shown.

Proposition. Let P be a finite poset of the cardinality n

-

with the unique maximal element.  Let c. be the number of chains

of length i in P and u; be the number of unchains of size i in

P.  Then the following identities hold.

10
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3

(1) ¥ (-, =1 (2 ¥ -1 " tu, = 0.
0<1i * 2<i I
€

/ELQ i n,l

For non-negative integers k and 1 such that k + 1 = 2 -1

(3) Fe =2k+1 (4 yu, =20

0<i ) 2<1i

L
(5) Fe, =k+1 (6 yu, =1 "
osi ' 1<i : iﬁ
. £
(7 & 210 =k (8) L P2i4n =1

Proof. In the sequel, for each X in (P(P) let m(X) be the
cardinality of X; (1) Let f:P—> p(Q) be a c;nstant map defined
by £(x) ={a} for all x in P. Then clearly f is a weak morphism
and the identity is easily derived. (2) Let P denote a totally
ordered P. Let g:?——»&nn) be a constant map defined by f(x)={a}.

Then by the principle of inclusion-exclusion,

5 (;1)!1(5,1) + 5 (-1)¥=1 = 1
c&C

yeu

where C is the set of elements in @M?) which are chains in P and
U is the set of elements in P(E) which are unchains in P.
Therefore the identity follows from (1). The identities (3)—(8)

are easily derived.
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