A THEOREM ON BINARY DIGITS

UNIVERSITY OF COLORADO WOLFGANG M. SCHMIDT

Let \(B(n) \) denote the number of digits 1 in the representation of a natural number \(n \) in the binary scale. It is well known that for most \(n \), the number \(B(n) \) is about half the total number of digits, so that \(B(n) \) is roughly equal to \(\frac{1}{2} n \), where \(n = \nu(n) = \log_2 n \) with \(\log_2 \) denoting the logarithm to the base 2. In fact it follows from the Central Limit Theorem of probability theory that the number \(n \) with

\[
\frac{B(n) - \frac{1}{2} n}{\sqrt{n}} \leq \frac{1}{2}
\]

have density

\[
p(\frac{1}{2}) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} e^{-2t^2} dt.
\]

Here we say that a set \(S \) of natural numbers has density \(p \) if the number \(S(x) \) of elements \(n \in S \), \(n \leq x \) satisfies the asymptotic relation \(S(x) \sim px \) as \(x \to \infty \).

Stolarsky was the first to compare \(B(n) \) and \(B(kn) \), where \(k > 1 \), in a fixed odd integer. He called a number \(k \)-sturdy if \(B(n) \equiv B(kn) \),
and similarly if it is k-sturdy for every k. Stolarsky proved that the 3-sturdy numbers have density $\frac{1}{2}$. Here we are going to sketch a proof that for any odd $k > 1$, the k-sturdy numbers have density $\frac{1}{2}$.

The interest in the proof lies in the fact that it uses Markov Chains. The main result is as follows.

Theorem. Let k_1, \ldots, k_s be distinct odd integers. The matrix $M = (\psi_{j,j})$ with entries $\psi_{j,j} = k_i^{-1} (\gcd(k_1,k_2))^2$ has an inverse $Q = (q_{j,j})$, and the quadratic form $Q(t_1, \ldots, t_s) = \sum_{i,j=1}^{s} q_{j,j} t_i t_j$ is positive definite. Hence

$$Q(t_1, \ldots, t_s) = \left(\frac{\pi}{2}\right)^{s/2} \left(\det M\right)^{-1/2} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dt_1 \cdots dt_s$$

is well defined for $(t_1, \ldots, t_s) \in \mathbb{R}^s$. The main assertion now is that the natural numbers having simultaneously

$$\frac{B(k_1,n) - \frac{1}{2}n}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}$$

have density $Q(t_1, \ldots, t_s)$.

A corollary is that for distinct odd integers k_1, k_2, the numbers n with $B(k_1, n) - B(k_2, n) \leq \eta \sqrt{n}$ have density

$$\varphi(\eta) = \left(\pi (1 - \alpha)^{-1/2}\right) \int_{-\infty}^{\infty} e^{-t^2/(1 - \alpha)} dt$$

with $\alpha = k_1^{-1} k_2^{-1} (\gcd(k_1, k_2))^2$. In particular, numbers n with $B(k, n) \leq B(k_2, n)$ have density $\varphi(0) = \frac{1}{2}$. Another corollary is that the sturdy numbers have density 0.

Let \mathcal{O} be the ring of 2-adic integers.
\[N = a_1 + 2a_2 + 2^2a_3 + \ldots \]

with each digit \(a_k \) either 0 or 1. The triple \((\Omega, \mathcal{F}, P) \), where \(P \) is the Hausdorff measure on \(\Omega \), and \(\mathcal{F} \) consists of \(P \)-measurable subsets of \(\Omega \), is a probability triple. Write \(B_h(N) \) for the number of
digits 1 among \(a_1, \ldots, a_h \). Given distinct odd \(k_1, \ldots, k_s \), put
\[S_h^{(i)} = B_h(k_i; N) - \frac{1}{2} h \quad (i = 1, \ldots, s), \]
and write
\[R_h = \left\{ h^{-1/2} S_h^{(i)} \leq \frac{1}{2} \quad (i = 1, \ldots, s) \right\}. \]

The theorem can be shown to be a consequence of the

Proposition. \(\lim_{h \to \infty} R_h = g \left(f_1, \ldots, f_s \right) \).

Write \(k_i N = b_i^{(i)} + 2 b_2^{(i)} + \ldots \), and put \(X_i^{(i)} = \left\{ \begin{array}{ll}
\frac{1}{2} & \text{if } b_i^{(i)} = 1 \\
-\frac{1}{2} & \text{if } b_i^{(i)} = 0
\end{array} \right. \).

Then \(S_h^{(i)} = X_1^{(i)} + \ldots + X_h^{(i)} \). For given \(i \), the random variables
\[X_1^{(i)}, X_2^{(i)}, \ldots \]
are independent. But the random vectors \(\vec{x}, \vec{y}, \ldots \)
where \(\vec{x} = (X_1^{(i)}, \ldots, X_h^{(i)}) \), are not independent. Hence we cannot use
the Central Limit Theorem for sums of independent random variables.

Call a vector \(\vec{x} = (x_1, \ldots, x_s) \) admissible, if there is a real
number \(\alpha \) in \(0 \leq \alpha < 2 \) with \(x_i = \left[\frac{x_i}{2^\alpha} \right] \quad (i = 1, \ldots, s) \), where \(\left[\cdot \right] \)
denotes the integer part. There are finitely many admissible vectors.
The vector \(\vec{0} = (0, 0) \) is admissible, and if \(\vec{x} \) is admissible, then
both \(\vec{x}^0 = (\left[x_1 / 2^\alpha \right], \ldots, \left[x_s / 2^\alpha \right]) \) and \(\vec{x}^1 = (\left[x_1 / 2^\alpha \right] + k_1, \ldots, \left[x_s / 2^\alpha \right] + k_s) \)
are admissible.

Given \(N \) as above, put \(N^t = a_1 + 2a_2 + \ldots + 2^{t-1}a_t \). Put \(\delta_0 = 0 \).
and
\[x_t = z_t(N) = \left(2^{-t+1} k, \eta_t, \ldots, 2^{-t+1} k, \eta_t \right) \quad (t = 1, 2, \ldots) \]

Then \(z_0, z_1, \ldots \) are (vector valued) random variables. Clearly, \(z_t(N) \) is always admissible, and conversely if \(z \) is admissible, then there is an \(N \) and a \(t \) with \(z_t(N) = z \). It is now easy to prove the

Lemma. The random variables \(z_0, z_1, \ldots \) form a Markov Chain.

The transition probabilities are given by the rule that for given \(z_t \), we have \(x_{t+1} \) either equal to \(z_t \), or to \(z_t' \), each with probability \(\frac{1}{2} \).

We now observe that the random variable \(x_t \) is a "functional" of \(z_t \): We have \(f(k) = f^{(2)}(z_t) \), where \(f^{(2)}(z) = \frac{1}{2} \) if \(x_t \) is odd, \(f^{(2)}(z) = -\frac{1}{2} \) if \(x_t \) is even. Hence the machinery of Markov Chains can be used to complete the proof of our theorem.

In the special case when \(s = 2, k_1 = 1, k_2 = 3 \), there are 6 admissible vectors: \(a = (0, 0), b = (0, 1), c = (0, 2), d = (1, 3), e = (1, 4), f = (1, 5) \). The transition probabilities are given by the following diagram, where each arrow represents a probability of \(\frac{1}{2} \):

References:

K.B. Stolarski. Integers, whose multiples have anomalous digit frequencies. *Acta Arith.* (To appear)