goooboooogn
0 3530 19790 107-115

107

On a class of recursive procedures and equivalent iterative omes

Teruo Hikita
Department of Mathematics

Tokyo Metropolitan University

1. Introduction

Recursion removal (or recursion elimination) has been paid much
attention for both theoretical and practical reasons. Several theoretical
results on the translation of recursion schemes into equivalent flow chart
scheﬁes or other similar structures have clarified much of the nature of the
problem, e.g., [1], [2], [5] and [6].

Recently H. Partsch and P. Pepper [3] concretely gave translations for
a special class of recursion schemes to equivalent non-recursive schemes.
The recursion scheme considered there has the following form, which was
motivated by the well-known recursive solution for the "Towers of Hanoi'

problem:

proc F = (int i) : if i > 0 then F(i-1); A(i); F(i-1) fi 1,2

1 All programs and program schemes in this paper are written in an Algol
68 -like notation.

2 proc F = (int 1) void : ... would conform more to Algol 68.




108

They also gave several generalizations for the translation.

In this paper we investigate two other directions of generalizations
for their recursion removals. First, in Section 2, the above scheme is
extended to the case of mutual recursion. Recursive procedures for plotting
‘space-filling curves such as the Hilbert curves and Sierpinski curves [7],
[8] exactly fit into this class of recursion.

Secondly, Section 3 treats the case that the number of recursive calls
in a procedure dynamically depends upon the current values of parameters
given to this procedure. It turns out that the recursion removal given by
J. S. Rohl [4] can be regarded as a special case of this type, and thus a

unified view is obtained for these classes of recursion removal.

2. Mutual Partsch-Pepper recursion

Let us first consider the following scheme allowing mutual recursion

of two procedures:

proc F = (int i) : if i » O then F(i-1); A(i); G(i-1) fi;

proc G = (int i) : if i > 0 then G(i-1); B(i); F(i-1) fi

with the initial call F(N). We assume that A and B stand for some actions
non-local to F and G, using (but not changing) the value of i.

In this scheme the recursive procedure calls are used only as a control
mechanism for generating a sequence of calls A(h) and B(h) where 1 ¢ h < N.
More precisely, the call F(N) produces a ternary tree of which each node

corresponds to a call of either F(h), G(h), A(h) or B(h), and the 2N -1



109

leaves of the tree corresponding to A(h) and B(h) make up the resulted
sequence for the call F(N). For example, the call F(3) is equivalent to

the following:
begin A(1); A(2); B(1); A(3); B(1l); B(2); A(l) end

Thus, the translation of this scheme to an iterative one is reduced to
the problem of deciding what is the c-th call of such resulted sequence for
a counter variable c¢ ranging over 1 to ZN - 1. Computation of the value of
h from ¢ is exactly the same as the non-mutual case, which is given in [3].
The choice between two procedures A and B can be performed by simulating a
certain finite~state automaton with its state set {l, 2} ; these states
correspond to the procedures F and G, respéctively, and they indicate the
current status of control, that is, in which procedure control is held.

An equivalent iterative scheme can be given as follows:

- proc F = (int n)
(for ¢ from 1 to 2" - 1 do
int d, r, h, U; r :=¢; U :=1;
for s from n by -1 to 1 do
1

d :=r =% 28_1; r :=r mod 2°° )

[

if r = 0 then h := s; goto execute

]
]

elif d = 0 then U := (if U 1 then 1 else 2 fi)

I
1

else U := (if U = 1 then 2 else 1 fi) fi od;

execute: if U = 1 then A(h) else B(h) fi od)

We now proceed to a general form of mutual recursion of m procedures.



110

The recursion scheme to be considered is as follows:

proc F1 = (int i) : 4if 1 > 0 then

A (1); F (i-1); A, .(i); F (i-1); ...
]-90 ql’l l’l ql,2

fi;

(i); Fq (i-1); Al’k(l) else Bl

A
1,k-1 1.k

proc Fm = (int i) : if i 2 0 then
A (i); F (i-1); A (i); F (i-1); ...
m,0 qm,l m,l qm,z

Am,k—l(l); qu k(1-—1); Am,k(l) else Bm fi

with the initial call F_(N). Each of F s ses 3 F is arbitrary chosen
1 31 9n,

from Fl’ cee Fm, and is fixed; that is, each of ql,l’ cee qm,k is equal
to some integer among 1, ... , m. Al,O’ e Am,k’ Bl, cee Bm stand for
some actions non-local to Fl’ e Fm, without changing the value of i.

Note that the values of parameters given to recursive calls are all
equal, and also that the numbers of these recursive calls in the procedures
are all equal to k. The recursive programs in [7, Chap. 3, Sec. 3] for
plotting some members of a sequence of polygonal arcs which converges to a
space~filling curve, such as the Hilbert curves and the Sierpinski curves
(see also [8]), exactly fit into this class of recursion.

It would be rather tedious to directly generalize the previous
translation to this general case of mutual recursion of m procedures. A
clever idea is to introduce an array U, which keeps information on the

current status of control for each level of recursion corresponding to the

value of i. The status is indicated by the values from 1 to m, each of which



111

ee. 5 F or F ,

represents that control is within the procedure F -1 m

1’
respectively. It is also more convenient to express the counter variable
c as a k—-ary counter, in order to easily obtain information on the status
of control within a procedure for each level of recursion.

The program may be viewed as a kind of tree traversal or backtracking.

An equivalent iterative scheme for the general mutual recursion is as follows:

proc F = (int n) : ([1 : n] int c¢; dint t; [0 : n] int U;
for s from 1 to n do ¢[s] := 0 od; t :=n+ 1; Uln] :=1;

do for s fromt - 1 by -1 to 1 do AU[S],O(S); Uls-1] := qU[s],l od;
Puro1’®
for s from 1 to n do if c¢[s] = k -~ 1 then c[s] := 0
else c[s] +:=1; t :=s; goto up fi od;
t :=n+ 1;
up: for s from 1 to t - 1 do AU[s],k(S) od;
if t = n + 1 then goto fin fi;

(t); Ul[t-1] := od;

Aulel,elt] Qurel, cltl+l

fin: )

The array U works as a stack for the control of recursive calls. The
resulted simplicity is owing to the uniformness of both the values of
parameters given to recursive calls and the numbersof recursive calls in the

procedures.



112

3. Rohl's recursion removal

In this section we treat the second direction of generalization for
the recursion removal of Partsch and Pepper. This is the case that the
number of recursive calls in a procedure is not fixed but dynamically depends
upon the current values of parameters given to this procedure.

The recursion scheme to be considered is

proc F = (int i, xp) : (dnt x; x := xp;
if i > 0 then
repeat A(i, x); F(i-1, a(i, x)); B(i, x) until P(i, x)

else D(x) fi)

with the initial call F(N, X). A, B and D stand for some actions non-local
to F, and we assume that they may possibly change the value of x but not
that of i. P and a stand for some predicate and function, respectively,
both computed on i and x without side-effects on their values.

In this case the total number of calls of A, B and D cannot be
immediately predicted by the initial value of the parameter i, so that the
counter in the previous section cannot be utilized. However, the idea of
introducing an array V for retaining values of the parameter x for each
level of recursion can be used in this case, and it can also be used in
order to control the traverse on the ''tree'" generated by the call F(N, X).

An equivalent non-recursive scheme is as follows:

3 while (A(i, %); F(i-1, a(i, x)); B(i, x); mnot P(i, x)) do skip od
would conform more to Algol 68.



113

proc F = (int n, x) ¢ (dnt t; [0 : n] int V; t :=n + 1; Vin] := x;
do for s from t - 1 by -1 to 1 do A(s, V[s]); V[s-1] := a(s, V[s]) od;
D(V[0]); t := O3
repeat t :=t + 1; if t = n + 1 then goto fin fi;
B(t, V[t])
until not P(t, V[t]);

ACt, V[t]); V[t-1] := a(t, V[t]) od;

fin: )

J. S. Rohl [4] considered a certain recursive procedure which produces
in ascending order all the combinations of the first N natural numbers taken
r at a time, and he translated it to several equivalent iterative ones.
Fixing the value N, the main part of his recursive program (originally
written in an Algol 60 -like language) may be written in the following

form:

[0 : r] int c; c¢[0] := Oy
proc choose = (int k)
for d from c¢[k-1] + 1 to N - r + k do

c[k] :=d; if k # r then choose(k+l) else output(c) fi od

with the initial call choose(l).
By safely exchanging the order of the for clause and the if clause,
and introducing the second parameter dp, it can be shown that this procedure

is equivalent to the following:



114

[1

: r] int c;

proc choosel = (int k, dp) : (dint d; d := dp;

if k €< r then

else repeat d :=d + 1; clk]

repeat d :=d + 1; c[k] d; choosel(k+l, d)

until d N-r+k

d; output(c)

until d=N-r+k fi)

with the initial call choosel(l, 0). Now it is immediately seen that this

procedure belongs to the recursion scheme considered in this section. It

is also seen that the translations of the recursive procedure choose into

iterative ones in [4] may be regarded as a special case of ours.

(1]

(2]

(3]

(4]

(5]

(6]

References

J. Engelfriet: Simple program schemes and formal languages, Lecture
Notes in Computer Science, vol. 20, Springer, 1974.

S. J. Garland and D. C. Luckham: Program schemes, recursion schemes,
and formal languages, JCSS 7(1973), 119-160.

H. Partsch and P. Pepper: A family of rules for recursion removal,
Information Processing Letters 5 (1976), 174-177.

J. S. Rohl: Converting a class of recursive procedures into non-
recursive ones, Software - Practice and Experience 7 (1977), 231-238.
H. R. Strong, Jr.: Translating recursion equations into flow charts,
JCSS 5 (1971), 254-285.

S. A. Walker and H. R. Strong: Characterizations of flowchartable

recursions, JCSS 7 (1973), 404-447,



115

[7] N. Wirth: Algorithms + Data Structures = Programs, Prentice-Hall,
1976.

[8] Computer Recreations by Aleph Null: Space-filling curves, or how to
waste time with a plotter, Software - Practice and Experience 1 (1971),

403-410.



