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MATHEMATICAL CONSIDERATIONS ON
MULTI-CELLULAR DEVELOPMENTAL SYSTEMS

H.Nishio Dept.of Biophysics, Kyoto Univ.

1 Introduction

Multi-cellular organisms like filamentous plants,
early embryos, nervous systems, neuro-muscular systems,
retino-tectal systems and other systems of various
complexity levels, are considered to emerge from
origin cells through successive unequal cell divisions.
Upon the philosophy that the processes of cell pro-
liferation and interconnection aredeterministically
controlled by division history of each component cell,
we proposed a mathematical theory of developmental
processes [1], [2]. We did not consider cell migra-
tion and growth explicitly. These papers contain
biological foundation and discussion as well as theo-
retical results.

In this paper, let us develop further mathemati-
cal analysis of our cell lineage and connection rela-
tion system (CLR system) in the framework of automata

theory.

2 Preliminary Explanations

For the sake of simplicity, let us assume through-
out in this paper that the alphabet used for idéntify—
ing each cell is binary, i.e. B={a,b}. This constraint
brings into no loss of mathematical generality.
2.1 CL System

A cell 1ineage system (CL system) is a pair
(B,é)), where é; is the division time spectrum satis-

fying the following conditions:
(1) 49 is a family of mutually disjoint suksets of

B*. That is,

49 = {Do, Dl’ D2,..., D
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where Di‘s are called components of é) and especially
DO the terminal component.

(2) For every i, if w=uv eD., then there is a non-
terminal component Dj (depending on u) such that
ueDj.

Meaning of CL system: If w'eDi with i#0, then
the cell having the division history w bifurcates
in i units of time and its daughters obtain those of
then the cell w never divides.

wa_and wb. If weDO,
A is the origin cell (a spore or a fertilized egq).
A CL system is often identified with its division
time spectrum JD .

Finite Regular CL Systems: When the number of

components of é) is finite and every component is a
possibly empty regular set on B, then the system is
called a finite regular CL system. In the following
we treat this kind of CL systems mainly.
2.2 Rational Relations

(B*, - ) and (N, + ) are monoids, whose unit

elements are A and 0 respectively, where N is the set
of nonnegetive integers.

A subset R of B*xN is called a rational relation
in B*xN, if R is defined by means of a rational

machine M as follows:
M=(Q, £, qol F)

where Q is the finite set of states,
f is the set of nondeterministic transitions

defined by arcs g ——» g', where x ¢ B,y
(x,n)

= BU{A} and ne N, and (x,n)#(XA,0),
9, is the initial state and
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F is the set of accepting states.

w € B*xN is called to be accepted by M, if
qow(\F#¢, where qgwW means the set of states which
are rgached through a path from,qo. Paths are defined
as usual by means of the jaxtaposition of operations
in the product monoid B*xN. The relation defined by
a rational machine M is denoted by R(M) and defined
by

R(M)={ we B*xN | AW N EF#B 1.

R is.called a rational relation if there is a rational
machine M such that R=R(M).

In the similar way, rational relations in B*xB*xN
are defined by means of rational machines.

Note that the above defined notion of rational
relation is essentially the same as the "transduction"
defined by Elgot and Mezei [3] and the "rational re-
lation" by Eilenberg [4].

2.3 Semi-direct Product

Let R and S be relations in B*xN. Then the re-
lation in B*xB*xN T= {(w,v,n) |ngN, (w,n)e R and ;
(v,n)e S } is called the semi-direct product of R and
S and denotedby ROS.

Proposition 1
If R and S are rational relations in B*xN, then

their semi-direct product T is also rational.

Proof

Let MR and MS be rational machines defining R

and S, respectively. From M for example, by adding

RI
new states, construct a "canonical" rational machine
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MR' such that R(MR')=R and every transition arc is

labeled with (x,1l) where xeBk. That is, if g —» q'

(x,n)
is an arc of MR , then it is replaced by a chain of
arcs q —» g, ——=> gy,—>...—> g 4 —>q' . Every aug-

(x,1) “(A,1) (A, 1)

mented state is a non-accepting state.

Now the rational machine MT is constructed from

MR' by making the "product" machine as follows: The

state set is QRXQS, where QR and QS are those of MR
and Mg, respectively. Aan arc (p,q)—>(p',q') is
(x,1)
whenever arcs p —=p' and g —> q' are
(x,1) (x,1)
in Mp and MS’ respectively. FT=FRXFS and q0T=(qOR’
From this construction of M

drawn in MT’

qOS)' iy it will be clear

that R(MT)=T=R@S. ~ Q.E.D.

Proposition 2 [3]
If RCB*xB*xN is rational, its projections to

the components Rl={ w |(w,v,n)€R } and so on are
regular sets on B.
Proof

Clear from the definition of rational machines.

3 Cell Proliferation Process

Suppose that a finite reqular CL system (B,ég )
is given with 49={D0; Dys «ees Dk} . Then construct
a finite automaton Ag as described in Nishio [1],
which defines the family of regular sets Di's. Note

that no arc emerges from the states defining DO'
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Example 1 (defining automaton of CL system)

=. =a% =RX¥wa %
kS iDl, Dz))where D =a* and D,=B*-a

= initial state

CD accepting state

- Next, from A , we construct a corresponding
rational machine Mg' by taking into account the divi-
sion time. Indeed, attach the division time i to an
arc of AQ , if it enters a state accepting Di'

Then it is clear that Mg' defines a (rational) rela-
tion Rg' in B*xN such that if (w,n)e€ Rg' , the cell
w is produced by the CL system &) at time n.
Example 2 (rational machine)

CL system is the same as in Example 1.

Mg (A (“) (az)
(b, 2) (b,2)

Finally, as is described in the proof of Proposi-
tion 1, canonical machine is constructed from MO'
and every state is defined to be an accepting state.
Furthermore, from a state defining DO’ if any, an arc
with label (A,l1) is drawn to itself. Denote this
machine by Még .. Then,

R(Mg )=R(Mg"') Y {(w,n+j)| (w,n) € Rp and
j=1,...,i-1 if weDi and
j=1,2,... if wGSD0

Example 3 (modified canonical machine)
Mo corresponding to MgQ' in Example 2.
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- (4,1) (1) _
O OO,

(a,1)
(b,

Meaning of R(Mg ): If (w,n)€e R(M® ), then the cell
w exists at time n. Let us call R(M®) or simply RO
the proliferation relation of CL system & .

' Next the cell population at time t is given by

W = fw | w,t)e RY}.

W=W, ,W. ,W

OI lr 2105-IW

ERER

is called the proliferation process of'&), Nishio [2].

4 Connectability Relation and Developmental Process
A connectability relation is a rational relation
S C B*«xB*xN. It is considered to be given a priori
from some biological ground and is interpreted as
follows: If a pair of cells w and v exist at time t
and (w,v,t)e S, then w is connected to v at time t.
Contrarily, even when (w,v,t) is in S, a connection
from w to v is not eStablished if w or v is not in
Wt'

gence of a connection is biologically questionable in

Note that this interpretation of instant emer-

cases where spacially separated cells are to be con-
nected after migration and growth. But, for the sake
of simplicity, we dare adopt it in this analysis.

Now let R® be the proliferation relation derived
from a CL system & as in Section 3. Then the semi-
direct product RgORg is a connection relation among
cell population produced by &) , such that there exists
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a connection between every pair of cells. So, the
relation R® @R will ‘be called the perfect connection

relation.
Example 4 (perfect connection relation)

M , where M

Rg OR.D is given in Example 3.

(x,y) is abbre-
viation of
(XIYII) .

(qu)/(b,d)
Relation describing developmental processes:

Now we define our final relation r in B*x B*xN.

r= S n R@@RS ’

where S is a rational connectability relation.
Obviously r is a relation describing a process of
cell proliferation and connection in the following
sense. If (w,v,t)e r, then the cell w is connected
in reality to v at time t. Thus, r represents the
developmental processkgenerated by a developmental
system G=(B, & , S), where (B,8) is its CL system
and S is a connectability relation. G is called a

CLR system too.

5 Some Results on Properties of r
In general the set of rational relations is not
-7~



closed under intersection [3]. But there had remained
the problem to determine, whether r is always rational.
or not, since RgORQ 's constitute a special class
of rational relations in B*xB*xN, Indeed we obtained
Theorem 1 .

There is a developmental system G=(B,.:9 , S) with
finite reqular and S rational, such that

rG=Sﬂ R ORp

is not a rational relation.
Proof

We show an example of G which satisfies the theo-
rem. Let £ be as given in Example 1 and S be defined
by M .
y below (A A1)

S
(a,x,1)

2i+j

Clearly, S= {(a a'bd, 2i+j)| i=0 and j =1} .
Note that Rg ORg is defined by the machine illustrated

in Example 4. Then,
rg = (@310, 31)] iz1) .

Since {albll i>1} is not a regular set, rs is not

a rational relation from Proposition 2. Q.E.D.

For filamentous organisms (see [l1]), we have the
following theorem.
Theorem 2

Let Rf be the filamentous connectivity relation,

i.e. R.= {wab*xwba*xt | weB* and t €N} . (see [2]).

-8
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Then, for an arbitrary finite regular CL systenxéD,

rf = an RoBQRS is a rational relation.

Proof
R_ can be représented by the following machine Mf.

£ (AAL)
(ALAL)
m, alt)
(b, A, 1

(a.a,))
b, b,1) ¢bra

We denote a machine defining RQORQ by MD.

construct a rational machine Mr which represents re.

Now we

First of all, the state set of Mr is defined to
be the direct product of those of MD and Mf. of MD’
suppose there is an arc going from the state g to g'
and having the label (x,x,l) where x(EBA. Then in
Mr an arc is drwan from state (g,a) to state (g',a)
with label (x,x,1). If in MD there is an arc going
from g to g' with label (a,b,l), then Mr has an arc
from (g,a) to(q}B) with the same label. Finally,ifin
MD arcs from g to %;”with labels (A,A,), (A,a,l),

(b, A, l) or (b,a,l)y, then in M_ an arc from (q,B) to
(g',B) with the respective label is defined.

The initial state of Mr is (qo,a) where qo is
that of MD and the accepting states are those which
are of the form (q,B).

Since in this construction of Mr’ no patholqgical
phnomenon, which might arise from the non-freeness of
B*xB*xN, does not occur, Mr defines rf in reality.

e Q.E.D.

Q (hD

Example 5

Mcaz
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Example 5 continued.
R(MJB ) is denoted by U,

Significance of Theorem 1l: In general a developmen-

tal process can not be represented by a finite state
machine, while its generating system G is defined by
rational machines. This is an example which would
support the belief that to describe directly a mature
organism is more complicated than to do its generating

rule.

The following problemsremain unsolved.
(1) Decision problem: for arbitrarily given finite

rationa( o .
regular CL system &) anqAFonnectablllty relation S,

-10~-
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decide whether the developmental process r is rational
or not. We conjecture that it is unsolvable.

(2) Characterization problem: Investigate condi-
tions for &£ and s such that r is rational.

6 Positional Information in Filaﬁentous Organisms
As described in [1], a filamentous organism with-
out branches like a blue green alga aégaena consists
of a string of linearly connected cells. If we con-
sider wa as the apical and wb the basal daughter pro-
duced by division of a cell w, a CLR system Gf=(B,§9,
Rf) with the filamentous connectability relation Rf
generates a time series of filamentous organisms.
( In this section, we do not assume- the regularity
of & ).
As the simplest case of positional information,
let us consider the cells located at the center of
an organism during the time course of development.
So, we define and investigate the relation of central

' * 5N =
cells Pl/2 C_ B*xN:

P = {(w,t)| weB*, teN and w is located at the

1/2
center at time t} .

When an organism contains even number of cells at a
time, Pl/2 has two elementscorrespond®ng to this time.
We show some examples which might be useful for

understanding properties of P1/2' Proofs will be

omitted.
Example 6
The CL system is the same as in Example 1, i.e.
=a%* - =Rk _a%k : 1 1
D1 a* and 02 B*-a*, Then, Pl/2 is rational and
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defined by the following machine M6'

A1)
.(_b/) ‘(q,,) .(bz) @8(0,2)

(b2)

Example 7
]) =a'B ‘} a nd ]) =bB*
1 *Ui } a 2

P, = {(*,0),(a,1), (b,1), (ab,2), (aba,3), (abb,3) }

1/2
U ( {abat/ 2 1pat/272, abat/zbt/z—z},t)it=2n)
nzl}
L/{( {aba(t 1)/2- lb (t-1)/2- l
apa' M pt-u/zy t)lt 2n+l, nz1)

From Proposition 2, this P1/2~is not a rational re-
lation.
Example 8 _
D,=B*-D, and D, {al l plat | iz 1}.
This CL system is obv1ously finite nonregular. ' But,

Pl/2 is rational and indeed defined by M8'

The decision problem that given an arbitrary
finite regular CL system, decide if P1/2 is rational
or not has not been solved.

As is Pl/z’ for example, the "one third position"
Pl/3 from the apical end can be defined. As to rationa-
lity, P1/2 and Pl/3 seem to have similar character,
but this problem has not been studied.

-12-
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