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SPACE COMPLEXITY ON TWO-DIMENSIONAL CONNECTED TAPES
HirosH1 UMEO, KenicHr MORITA anp Kazuwiro SUGATA
Fac. oF ENGINEERING SCIENCE, OSAKA UNIVERSITY

ABSTRACT A concept of two-dimensional space cqmplekity has

played an important role in the study of two-dimensional tape
automata oh rectangular inputs. Recently automata on arbitrarily
shaped two—dimensional connected tapes have been studied by
several investigators, but little has been known about them.

In this paper we extend the concept of space complexity on
rectaﬁgular inputs so that it can deal with automata on connected
tapes. A connected tape reduction theorem, log|space| connected-
tape traversal algorithm, haiting theorem, hierarchy theorem,
Boolean closure theorem, and a characterization theorem are our

main results.

1. INTRODUCTION

Recently there has been increasing interestkin the study of
two~dimensional tape automata([1]~[11]). The concept of two-
dimensional space complexity proposed by the authors has provided
us a unified treatment of two-dimensionél tape automata([Zi,[B],
[4]). This concept has been defined on‘rectangular inputs. on
the other hand several investigators have considered automata
which operate on arbitrarily shaped two-dimensional arrays([5],
{61,[71,[81). In this paper we extend the concept of space

complexity defined on rectangular inputs to the one on arbitra-
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rily shaped‘ﬁwo—dimensional arrays. Some results established
earlier are interpreted in a unified way from a viewpoint of
space complexity, and moreover several results are newly obtained.
In our considerations, a tape traversal algorithm is essentially

made use of.

2. PRELIMINARIES
ADJACENCY AND CONNECTIVITY A two-~dimensional plane is divided

into cells. (i,j) is assigned to each cell, where i and j are
integers (Fig.1l). Two cells (i,j) and (i’,3') are said to be
adjacent if and only if |[i - i’| + |j - §'| < 1. A connec-
tivitz of two cells is defined by a reflexive and transitive
closure of an adjacency. An array of cells is said to be con-
nected when any two cells on the array are connected.

PATHWISE-CONNECTED TAPE AND SIMELY-CQNNEQIED [APE ~ Let I be

a set of alphabets. A pathwise-connected tape(P-tape) over I

is a finite connected array of cells marked with alphabets in I,
where boundaries of the arfay are delineated by a special symbol
B not in I(Fig.2). The width of all boundaries is supposed to

be one cell. Note that a path-

‘wise~connected tape has some holes
: - BOUNDARY

o | (i,30 *

Fig.l Two-dimensional space. Fig.2 Pathwise~connected tape.
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in its interior in general.

Any P-tape which has no holes is called a simply-connected

tape (S-tape) (Fig.3). The size of an S(P)-tape x is the total

number of cells on x, including its boundary cells.

S(P)-1APE TURING MQCHiNE An S(P)-tape Turing machine M is

a deterministically dperating S (P)-tape acceptor which walks
about on S(P)-tape using its storage memories. M consists of
an S(P)-tape(input tape), a four-way tead—only input head, a
finite state control, a two-way read/write storage head and a
semi-infinite one-dimensional structured storage tape, as illus-
trated in Fig.4. Both the input and the storage heads are not
allowed to drop off its input and storage tapesp respectively.
We do not give an description of operations of M, since they

are easily formalized in the same way as those of one- or two-
dimensional Turing machines([2]). The set of S(P)-tapes

s (p)

accepted by M is denoted by T (M). In this paper we consider

only deterministically operating machines.

READ-ONLY S (P)~INPUT TAPE

< BOUNDARY
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Fig.3 Simply-connected tape. Fig.4 Two-dimensional S(P)-tape

Turing machine.
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S(P)-TAPE SPACE COMPLEXITY Let M be an S(P)-tape Turing ma-

chine, and L(n) be a function from (N - {],2,3,...,8})+ into
+ + -
[R ], where N and R are the set of natural numbers and non-

negative real numbers, respectively. M is called an L(n) S(P)-

tape bounded Turing machine if the storage tape of M cannot be

visited more than L(n) tape squares from the left end for any
S(P)-tape of size n. The function L(n) is referred to as an

S(P)-tape function. The family of all L(n) S(P)-tape bounded
s (p)

Turing machines ié denoted by ™ [L(n)]l. Let
P - nmy1 = 5@y mem® P Lm)13.
S(P)-TAPE CONSIEUCIIBI!IIY An S(P)-tape function L(n) is said

to be constructible if and only if there exists an S (P)-tape

Turing machine which, for each S(P)-tape of size n, lays off
L(n) tape squares using only L(n) tape squares on its storage

tape.

3. Space CoMPLEXITY oN CONNECTED TAPES

S(p)[L(n)] are

In this section several properties of TM
considered from a viewpoint of space complexity. A connected-
tape traversal algorithm given by‘several investigators has'
played a fundamental role in this study ([8],[10]1,[11]). Let’'s
begin with a tape traversal algorithm for any S(P)—tapé;

3.1, S(P)-TAPE TRAVERSAL ALGORITHM

Tape traversal problem is that "is there an automaton

which can halt after visiting all cells oh any S (P)-tape,

without stepping off,'starting from any cell of the tape?" and

"by what algorithm is it traversed, if possible?".

t+ Note that n > 9, since the minimal size of connected tapes

is equal to nine.
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The authors and Shah have shown independently that any S(P)-tape
can be traversed by a finite state automaton supplied with one
marker (five markers)T([S],[ll]). A finite state automaton on
S(P)-tape supplied k markers, {ml,m2
marker automaton(MAs(p)(k))([l],[3],[8]).

,....,mk} is called a k-

The tape traversal algorithm has the following properties.
1. The automaton begins to traverse at a unique point of any

S(P)-tape. This unique point is called the traverse start-

ing square.

2. In traversing, the automaton can distinguish the square
which has been already scanned from those not scanned.

3. The automaton finishes traversing and halts after returning
to the traverse starting square.

S(p)(l)

It is shown from above observations that an MA

(MAS(p)

(5)) M can think of any S(P)-tape of size n as a string
of length n, and conversely, M can also embed a string of length
n into an S- or P-tape of size n. This tape traversal téchnique
is often used in the following;
3.2, Space CoMPLEXITY oN CONNECTED TAPES
A tape reduction theorem for two-dimensional connected
tapes follows from the same idea in one-dimensioanl space
complexity.
Theorem 1 S(P)-tape Reduction
For any L(n) and any constant c > 0,
P - nm1 = 5P o - o)l
Lemma 1

s (p)

For any positive integer k and for any MA (k), M,

T Recently Blum and Kozen have shown that any P-tape can be

traversed by a two-marker automaton([10]).
-5~
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there exists a machine M, such that Ts(p)(Ml)

v 1
Ts(p)(M) and M e:TMS(p)[lOg n]+.

1

Proof sketch: The input head of M., directly simulates the

1
moves of the finite state control of M. The horizontal and the

vertical displacements between the finite state control of M and
its markers placed are stored in the storage tape of M, in a bi-

1

nary representation. At each step of M, M, updates the contents

1
of its storage tape. M, can easily know whether a marker is

1
placed or not on the square currently scanned by referrencing
its own storage tape. Since the reletive displacements are at
most n squares for any S(P)-tape of size n, the length log nstorage

tape of M, is sufficient for the simulation. Q.E.D.

1
Lemma 2
Log n is S(P)-tape constructible.
From lemma 1 a log|space| tape traversal algorithm is obtained.
Theorem 2 Log|space| tape traversal algorithm
There ekists a machine M satisfying the following
conditions: (1) M eTMS(p)[log n] and (2) M halts after
traversing any S (P)-tape with its read-only input head.
The following is a halting property for TMs(p)[L(n)]. Note
that we do not need constructibility of L(n).
Theorem 3 Halting
Let L(n) be any S(P)-tape function such that L(n) > log n.
Then, for any M in TMs(p)[L(n)], there exists a machine
Mh satisfying the folloWing conditions: (1) Mh halts
for any S(P)-tape, (2) TP ) = 5Py ang

3) M e om® ®) (L (n) 1.

+ From Th.l constant factors are irrelevant, so we do not need to

specify logarithmic bases.
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. h s (p)
Proof: First we construct M in TM [L{(n) + log nl,

satisfying (1) and (2). Mh’ operates as follows: At first Mh’
lays off log n tape squares(See lemma 2). While M uses k squares,
Mh' simulates M on the firsﬁ track using k squares and con-
currently counts the step number of M on the second track using
k + log n squares. In the simulation Mh’ halts when M halts.
Next we show how Mh’ detects the looping conditibns of M. Lét
M have s states and t storage éymbols. . The numbef of configu-
rations of M on the array of‘size n are at most s-n-tk-k(=N),
where k is theblength of the storage‘tape being used. Since

N < (2.s.t)k‘+ Log n, for any n, Mh’ can.detect the condition
in which M loops by counting the number of movesbof M in base

’

2-s-t. Therefore when M does not halt Within N steps, Mh halts
and rejects the input. ‘From Th.l It is easily seen that Mh’ can
be reconstructed to satisfy (l), (2) and (3). \ Q.E.D.
The next theorem establishes ah infinite hierarchical re-
lation between TMs(p)[L(n)]. We can show the exisfance of the
set L'of S (P)-tapes, which is nbt a set of rectangles, such that
L ¢a€?(p)[TM - Ll(n)] and L Ed(?(p)[TM -‘Lz(n)], for Ll(n) and
L2(n) in Th.4, by the use of‘conventional diagonalization tech-
nique and tape traﬁersal algorithm.
Theorem 4 Hierarchy
Let Ll(n) and L2(n) be any,constructible S (P) -tape
functiohs satisfying the following conditions. Then,
&P - 1) 15 & ® 1m - L,(n)1.
Conditions: (I) Ll(n) < Lz(n), and (IT) there exists
an infinite sequence i = 1,2,......., such that
(1) 9 <n,. <n_ < ..o0enn PEEE S ¢ S |

(2) lim —*_ =90, (3) <L > k, for some k > 0.
i-oo Lz(ni) : log n.
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Halting theorem is applicable to establish the following
Boolean closure results.
Theorem 5 Boolean Closure
Let L(n) be any S(P)-tape function such that
L(n) > log n. Then, o(f(p)[TM -L(n)]} is closea under
complement, union, and intersection, andkforms a
Booleah algebra.

Proof sketch: From Th.2 we can assume without loss of gener-

S(p)[L(n)'] halts in an accepting or

ality that any machine in TM
rejecting states for any S(P)-tape. Therefore, for any M in

TMS(p)[L(n)], we can easily construct a machine M. in TMS(p)[L(n)]

—_— 1
such that TS(p)(Ml) = Ts(p)(M), In the same way we can construct
a machine M in TMs(p)[L(n)] such that Ts(p)(M) = TS(p)(Ml) U Ts(p)

(M2) for any M., and M2 in TMS(p)[L(n)]. Moreover, Ts(p)(Ml) f

1

Ts(p)(Mz) = Ts(p)(Ml) U_Ts(p)(Mz). This’completes the proof.Q.E.D.
The last application of spaée complexity is a computational

characterization of’two-dimensional tape automata on connected

tapes. We consider the following automata. The details of each

automaton are omitted (See the references).

(1) FINITE STATE AUTOMATON(ESA) ([7],[8]) An FSA, consisting of a
read-only input head and a finite state control, is an automa-
ton which walks about on S(P)ftape.

(2) MARKER AuTOMATON(MA) ([81,[11]) An MA is just an FSA provided

with a finite fixed number of labelled markers which it carries
about itself and leaves on squares on the input as temporary

markers. Let MA = | MAs(p)(k).

k=1 g ,
(3) Murri-Heap FiniTE STATE AutomaTon(HA) (181) A k-head finite
state automaton(HAs(p)(k)) consists of a finite state control

and k read-only input heads which operate on S (P)-tape.

-8-
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Let mA = | 5aS(P) (1),
k=1
(4) ARrRAY BounDED AuToMATON(ABA) ([51,(61,[7]1) An ABA consists of

a finite state control and an input head, where this head
can read and write symbols on the tape, but its operation is

bounded within the input tape.

(5) BounpeD CELLULAR SPACE(BCS) ([51,[91) A BCS is a parallel

operating finite array of identical FSA’s called cells, each
connected to its four nearest neighbours.
Computational abilities of these automata are characterized
as follows (Proofs are omitted):
Theorem 6 Computational Characterization
(1) dﬁ?(p)[FSA] = °ff(p)[TM - k], for some positive
constant k. |
2) 25 a1 = 2 ® 1w - 10g n]
3) £5® A = F£® M - 10g n]
4) 2P amal = P pw - 1)
5) £°® acs) = &P mm —n.
The following two corollaries are immediate from Th.4, Th.5,

and Th.6.

Corollary 6.1 Computational Relation

&5 P) (psa) < £ ®) a1 = o P [ma

‘fots(p) [ABA] = £(p) [BCS].

Corollary 6.2 Boolean Closure

25 ® ar, o P (uag, £ P (aBa] anda &5 ®pee

forms a Boolean algebra.

4, ConcLUSIONS
In this paper we introduced a concept of space complexity on
connected-tapes and then investigated several interesting proper-

ties of automata on connected tapes with an aid of this concept.
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Further studies are left for the class of machines with tape
L(n,)

bounds less than lim ——% = 0, such as "is there a hierarchy

i+~ log n,

s (p) s (p)

in TM [L(n)]?2", "can a halting property be assumed for TM

[L(n)]?" and so on.
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