goooboooogn
0 3630 19790 1-40

RIMS=-280

Module=wise Compilation for a Lanaguage

with Type=-parameterization Mechanism

By

Taiichli Yuasa

Research Institute for Mathematical Sciences

~Kyoto University, Kyoto, Japan

May 1979

Page 2

abstract

Language ! is a specification and programming languadge
designed to support hierarchical and modular program
development. The notion of symes, which generalizes the
so=called type~parameterization mechanism, causes some
essential problems in tne,implementation iof the language,
These problenms are discussed in detail and what {is
considered to be an efficient technique is 1introduced with
which each type-parameterized module is separately compiled
independent of the context In which it is used with actual

type parameters.

Page 3

1. Introduction

Structured programming with data 'aqd procedural
abstraction mechanisms has - been shown to highly increase
program readability and softﬁare reliability. (See, e.d.,
CLU - [2]) It nas also been shown that the difficulties of
specification and verification of programs, especially fo;
large scale software systems, can be eased by introducing
hierarchical structures into programs. Language L (4] has
been proposed to support such program development with
hierarchical and modular structures.

One of the characteristics’of l‘is that it has a new
data type concept =~sypes, which generalizes the so=-called

type=parameterization mechanism (5].

Sémple programs with comments

-----;;-I;;;-;;;;-;;;;;;;;-;;itten in language ¢ in order
to locate 'the problem to be discussed in this paper. As
complete description of the language is not within the scope
of ﬁhis paper, wé only give preliminary remarks élong with
the programs., For a detailed explanation of the lanéuaqe or

formal definitions for, say, the sype=-sype relation, refer

to [5].

Page 4

interface tyne IANT

+ £D ZERQ: =wwwww==> @ as o0

+ ONE 2 mmmm-———— as 1

+ ADD: (@,8) ===> @ as 6+@

+ MULT:(Q,8) ===> @ as @%@

+ REV: @ mww=m==)d> @ as =@
GE: (R,Q) ===> @ as Bge

end interface

specification type INT.

xar X,Y,2:@

axiono 1: X+0=X
23 X+Y=Y+X
3 (X+Y)+Z=X4(Y+Z)
4: X*¥Y=Y%xX
5: X¥(Y*Z)=(X*Y)*Z
6: X¥(Y+Z)=X*Y+X*Z
T: 1¥X=X
8: X+(=X)=0
9: XYV YLX
102 (XLY&YLZ)==>XLZ
11: (XLY&YSX)==>X=Y

+ 4+ b+ o+ +

end specificatian

This is part of the type madule INT which presenfs the
type of integers. The interface part declares the primitive
funtions on INT with their domains and ranges, @ denotes
the type presented by the type module, which is INT in this
case, By as a notational abbreviationlis introduced for a
function name, For instance, ADD(X,Y) can be written as
X+Y. In the specification part, the basic axioms on INT are

placed.

Page -5

The following is a type module which presents RAT or

the type of rational numbers.

interface type RAT

+ £fn ZERQ? e==w==-~> @ as 0
+ ONE: ===w====> @ as 1
+ ADD: (@,R) ==~=> @ as @+A
+ MULT: (@ ,8) ===> @ as B/*@
+ REV?: Q@ wmemw=> @ as =@

INV: B mmwa=m=d> @ as /@
end interface
specification type RAT

x¥ar X,Y¥,Z:@
+ axiaom 1: X+0=X
+ 2: X+Y=Y+X
+ 3: (X+Y)+Z=X+(Y+Z)
+ 4: X¥Y=Y*X
+ 5: X¥(Y*Z)=(X¥Y)*Z
+ 6: X¥(Y+Z)=XXY+X*Z
+ 7: 1%X=X
+ 8: X+(=X)=0
9: X% 0 ==> X*(/X)=1

epnd specificatian

Notice that these two types have a common substructure:
They have five primitive functions in common and their basic
axioms from 1 to 8 are identical. Since this substructure
may be contained in many other types, we extract and isolate

the lines preceded by + to form the sy¥pe module of RING.

Page 6

Interface sygpe RING

En ZERQ: ==me=me==> @ as 0
ONE: ======e=> @ as 1
ADD: (@,8) ===> g a8 RB+6
MULT:(R,8) ===> @ as @%@
REV: @ wmme==> @ as =@
end ipnlLerface
specification sy¥pe RING
var X,Y,Z:@
axionm 12 X+0=X
2: X+Y=Y+X
3 (X+Y)+Z=X+(¥Y+Z)
43 X¥Y=Y*X
5: X¥(Y¥Z)=(X*Y)*Z
61 X¥(Y+Z)=X*¥Y+X*Z
7: 1¥X=X
8: X+(=X)=0

end specificatian

We introduce a sype-~type relation "g ", For a svype S
and a type T, SXT holds' if T contains S as its
substructure. Thus RING S INT and RING £RAT in this ‘case.
To establish SXZT, fof each primitive function of S, say £,
there must be defined a function of T of the same name (i.e.
T#f). T#f is said to be the function carresponding to £ of

sype S.

In a similar way,

Here we have FIELDZ RAT.

specification sype FIELD

fn OKE: ========> @ as
ZERQ: =w=m====> @ as
MULT:(8,RQ) ===> @ as
ADD: (@,R2) ===> @ as
INV: g =wme=- > e as
REV: Q =mwe===> @ as
end interface
specification s¥pe FIELD
xar X,Y,Z:@
axicnm 1: X+0=X
2: X+4Y=Y+X
3: (X+Y)+Z2=X+(Y+2Z)
4: X¥Y=Y*X
53 X¥(Y*¥Z)=(X*Y)*Z
62 X¥(Y+Z)=X¥Y+X*Z
7: 1¥x=X
8: X+(=X)=0
9: X% 0 ==> X¥(/X)=1

end specificatian

Now we define a type module POLY(P:RING) which presents

type of

type T such that

polynomials

in

RING S T.

we construct the sype

Page 7

module FIELD.

1

0
@x*e
g+@
/8
-@

the

one variable with any coefficient

interface type POLY(P:RING)

£0 ZERQ: ===w====> @ as 0
ONE S mmemes==> @ as 1
ADD: (@,2) =~=-=> @ as @+e
MULT:(8,3) ~==> @ as @x@
REV: @ s==e==> @ as =@
COEF:(8,INT)-=> @
DEG: Q@ =eew==> INT
end ipterface
specificatiaon type POLY(P:RING)
xar X,Y,Z:9
axianm 12 X+0=X
2: X+Y=Y+X .
3: (X+Y)+Z=X+(Y+Z)
42 X¥Y=Y*X
5: X¥(Y*XZ)=(X%*Y)*Z
6: X¥(Y+Z)=X*Y+X*2Z
7: 1%xX=X
8: X+(=X)=0

end specificatian

realizatiaon Lype POLY(P:RING)

repg=ARRAY(P)

£n (ADD(X,Y:rep) return (Z:rep)

¥ar I:INT

Z[I] := P#ADD(X—[I]'Y[I]) ..'......".(*)
end £n

end realization

Fig.1.1 Type module POLY(P:RING)

Page 8

Page 9

An arbitrary type T such that RINGL T can be used as
the actual Ltype parapeter for POLY(P:RING). For instance,
since RING SINT, POLY(INT) is a tvpe of polynomials whose
coefficients are of type INT. Thus P, which we call a type
paramefer of sype BRING, represents the indefinite (formal)
type parameter and POLY(P:RING) is said to be a
type=parameterized module. We call POLY(INT) a definite
maodule=instance of POLY(P:RING) since the actual type
parameter INT is a definite type. On the other hand,
ARRAY(P) in the realization part of POLY(P:RING) or
POLY(POLY(P1)) which will appear later in Fig.l1.2. are
called indefinite module instances, for they cohtain formal
type parameters P of POLY(P:RING) or P1 of BIPOLY(P1:RING).

The realizatiaon part gives an implementation of
POLY(P:RING). Each object of type POLY(P:RING) 1is
represented by ARRAY(P) or array of type P. (e.g.
POLY(INT) is represented by ARRAY(INT).) There is a rigorous
distinction in the language between an -abstract function
(which 1s presented in the interface and the specification
bpart) and 1ts concrete function (which defines an
implementation of the corresponding abstract functionl). To
discriminate between these two kinds of functions, éach
concrete function has the name of its corresponding abstract
function preceded by "{". In the figure above, the
concrete function corresponding ﬁo (abstract) ADD has the
name ¢ADD;

The line marked "*" says that the I=-th components of X

10

Page 10

and Y are ‘added” and then the result replaces the I-tﬁ
component of Z, Since the components of X and Y are of type
P, the addition + must be that of P (i.e, P#ADD). 1In this
paper, - those functions which -are actually executed in
runtime at the 1line "*" are said to be actual ARD s for
P#ADD., If the actual type parameter is INT, the actual ADD
is the addition of integers, i.e. INT#ADD,

From the Vinterface and specification parts of
POLY(P:RING), we find another sype-type relation
RING S POLY(P:RING). Remember that an? type T such that
RINGST can be used as the actual type parameter for
POLY(P:RING). This indicates that POLY(POLY(P:RING)) is
permissible. Indeed, ‘a type module BIPOLY(P1:RING) 1is
represented by POLY(POLY(P:RING)), which 1is supposed to

present the type of polynomials in two variables.

realization type BIPOLY(PI:RING)

rep=POLY(POLY(P1))

£n ADD(X,Y:ren) return (Z:zep)

Z := rep#ADD(X,Y)

end £n

end realizatian

Fig,1.2 Type module BIPOLY(P1:RING)

(Note that POLY(POLY(P1))#ADD is abbreviated as rep#ADD.)

11
Page 11

The relation "< " is also defined between two sypes in
language T . For example, FIELD has RING as 1its

substructure. Thus we can denote RING £ FIELD.

realizatian pracesdure STP(P2:FIELD)

¥ar A,B,C:POLY(P2)

fD *F.o'.

C := POLY(P2)#&ADD(A,B)

end £p

end realization

Fig.1.3 Procedure module STP(P2:FIELD)

In the body of STP(P2:FIELD)#F, above, POLY(P2)#ADD is
called. That is, the actual type parameter which
STP(P2:FIELD) receives 1in ‘execution time is passed to
POLY(P:RING). This is permissible since RING L FIELD.,

We have already used such a sype=sybe relatiaon in the
realization part of POLY(PIRING). The built-in module
ARRAY(P3:ANY) is a type-parametérized module which receives
a type paremeter P3 of sype ANY. SYpe ANY is a built-in

sype whose only primitive function is EQUAL or equality.

.wiz
Page 12

interface sype ANY
£n EQUAL: (R,@) =-=> BOOL as @=@

end interface

specification sype ANY

yar X,Y,u,v:e
axiagm 1: X=X
2: (X=

Y&EU=V) ==> (X=U)=(Y=V)

end specificatiocn

In language !, every sype or type is supbposed to have
its own EQUAL function. It can be defined explicitly in the
module or else it is automatically defined by the system.
Thus any sype or type S satisfies ANY<S. Since ANY RING
holds, ARRAY(P) is permissible in the realization part of
POLY (P:RING).

Although the type-parameterization mechanism itself is
foun& in some other languages (e.g. CLU[2]1), the expressive
power of the notion of sypes brings some new difficulties.
into the implementation of the language.

This paper discusses these difficultiés and shows how
to overcome | them, - Section 2 pfesents the most
straightforward way of compiling type-parameterized modules,
‘called the ‘definite module-insﬁance approach”’, Since thé
method has some deficiencies, we would prefer anothér method

- with which each type—parameterized module 1is Separately
compiled independent of the context in which it i1s used with
actual type parameters. Then, in section 3, we discuss what

kind of information 1is required for the actual type

13
Page 13

parameters. Finally, in section 4, we explain how such

information is constructed in execution time,

The problemn

Let us return to the module POLY(P:RING) (in Fia.1.1)
and focus on the following problem: what should the
compiler do 1in processing the realization part of
POLY(P:RING), especially for the function «c¢all of P#ADD
(marked "*")? Also what kind of information should be sent

to POLY(P:RING) in execution time?

14

Page 14

2. A solution == definite module-instance apprcach

One possible solution is to do almost nothing with,.
POLY(P:RING) 1itself wuntil P 1is bound to some actual type’
parameter, #hen POLY(T) is wused 1in other modules (i.e.
when P 1Is bound to an actual definite type instance T), the
instance of the realization part of POLY(P:RING), with all
occurences of P replaced by T, is processed.

For éxamole, when POLY(INT) is used, the 1line marked
WxH is replaced by:

Z[I) := INT#ADD(XI[I]1,YI[ID])
Then the processor knows that INT#ADD is to be called.

1f POLY(P:RING) is used with the actual type parameter
RAT or the ¢type of .rational numbers, we have another
definite module-~instance POLY(RAT) with:

ZI[I1 := RAT#ADD(XI[X1,YI[I])

Thus the processor actually reqgards these
module~instances of POLY(P3RING) as two different type
modules. Notice that the number of module-instances of a
quule is always finite because any module in langﬁaqe I3
must be hierafchical i.e. no module can depend on itself.,
(Refer to [5]. The proof of finiteness is found in (81,)
Therefore this approach is valid. Indeed, the expefimental’
version of the U ~-language compiler adopted this method.

This is not altogether a bad solﬁtion. Without the
type-parameterization mechanism, one must define, say, two
non-type~-parameterized modules INTPOLY -and RATPOLY

separately, corresponding to the module instanqes POLYC(CINT)

15

Page 15

"and POLY(RAT), respectively. Here, INTPOLY and RATPOLY are
thought to be of completely different modules. Thus the

above method is nothing more than the conventional way’ of

processing modules without the type-parameterization
mechanism, In addition, the above method makes some
optimizations possible, For example, as INT#ADD in

POL?(INT) is nothing more than the usual ‘integer addition,
one can generate a single machine instruction instead of the
actual function call of INT#ADD.

However, this method has the following deficiencies.
1. The bookkeeping of all instances of all
type-parameterized modules is not a trivial task and is also
time=-consuming. (See, for example, in Fig.1,3 when STP(RAT)
ils defined, POLY(RAT) is to be automatically and implicitly
defined.)
2. The compilation time tends to be long with repetitions
bf similar processing. Besides, a large amount of storaaqe
is required since each instance of a single
type-parameterized module must be allocated separately.
3. Since a type~parameterized module is defined
independently of the actual type parameters it receives, it
is often convenient in program development to process it
independently. For example, a type parameter independent
object code of a type=parameterized module may make it
possibie to debug the module without sending actual type
parameters,

Thus we would rather have module~wise processing where

16

Page 16

each module 1s 1independently compiled and type parameter
bindings are done dynamically. The following sections are

devoted to showing hpw this can be done.

17
Page 17

3, What is sent as actual type parameters?

Procedure tables for sype~type relations
Given a procedure module AHO, iIn the realization part
of which POLY(INT)#ADD is called,

realization praocedure AHO

POLY(INT)#ADD(X,Y)

end realizatian

let us consider what kind of information AHO must send to
(the compiled) POLY(P:RING) (in addition .to the wusual
parameter information for X and Y).

The actual ADD . for P#ADD in the realization of
POLY(P:RING)#ADD is INT#ADD 1in this case, Thus the
information must include the location of INT#ADD. Since AHO
does not know the realization part of POLY(P:RING), AHO
cannot determine which functions, corresponding to the
functions primitive on sype RING, are actually used in
POLY(P:RING)#ADD, Therefore AHO must send a table which
contains all actual functions corresponding to the primitive
functions of sype RING., We <call such a table procedure
takble for RIMG S INT and denote it as PT<RING,INT>.

In general, for each pair of type S and type T such
“that ST and T 1s used as an actual type parameter of sype
S, PT<S,T> is constructed as follows. Let f1,...,fn be the
primitive functions which are defined in that order in the

interface part of sype S and let T#f1,...,Téfn be the

18

Page 18

functions of type T corresponding to fl,...,£n,
respectively. PT<S,T> is a block of n entries and its i-~th,
entry (1<ign) contains the entry point of the function T#fi.

For instance, sinéé the third function declared in sype
RING 1s ADD and fourth one is MULT, the third and fourth
entries of PT<RING,INT> contain the location of INT#ADD and

INT#MULT, resvectively.

e vmmmcmz | ====> INTH#ZERQO
mmemmmeSmm===> INT#ONE
—m——————t | =====> INT#ADD
|l cmmmmmas = ====> INT#MULT
| ez | =====> INTH#REV

Fig.3.1 Procedure table PT<RING,INT>

At the time of compilation of POLY(P:RING), -the
‘processor recognized that ADD is the third function of sype
RING by analyzing the interface part of RING. The object
code 1s made so that the third entry of the procedure tablev
is used in order to access the 'éctual ADD. -+ Then, when
POLY(CINT)#ADD is called in AHO, the location of PT<RING,INT>
is sent to POLY(P:RING).

Note that the order of primitive . functions in the
interface part of sype' RING is important and needs to be

fixed once POLY(P:RING) is compiled.

Adaptor tables for sype=-sype relations

LA LR L X DXL ELELEEFY YT EY R LYY LX)

Suppose we have a procedure module MAKO, in the

19

Page 19

realization part of which STP(RAT)#F 1is «called. (See

Fig.1,3)

realization procegure MAKQC

STP(RAT)#F

end realizatiop

As explained before, PT<FIELD,RAT> is _ sent to
STP(P2:FIELD) when STP(RAT)#F is called in executing (a body

in the realization part of) MAKO.

mme=> | mmemeews | ====> RAT#ONE
lecmeeew=|====> RATH#ZERD
[P —z|====> RAT#MULT
emmemeezi====> RATH#ADD
lemeeem=l====> RATHINV
lmememew=|====> RAT#REV

- PT<FIELD,RAT>

In STP(P2:FIELD), however, this procedure table <c¢annot be
directly sent to - POLY(P:RING) for the‘fbllowinq reasons:
POLY(P:RING) expgcts a procedure table in which the
functions are ordered according to the interface part of the
sype RING, but the order of the primitive functions in RING
does not necessarily coincide with that of the corresponding
primitive functions of FIELD. Indeed, the location of
RAT#ADD 1is found in the fourth entry in PTI<FIELD,RAT> while

ADD is the third function in the interface part of sype

20

Page 20

RING.

Thus some adaptations must be made to use PT(FiELD,RAT>
in POLY(P:RING)., To this end, we introduce another kind of
table called adaptar tableé. For each pair of sypes S and
S5* such that §£s’, an adaptor table AT<S,S’> is
constructed. If the 1i-th primitive function of 5 |1is
presented as the J~th primitive function in the interface
part of S°, then the i-th entry of AT<5,5°> has the value of
j. (Actually, however, AT<S,8’> 1is not reqguired if the
order of the primitive functions in S coincides with that of
the corresponding functions of S5°%.)

POLY(P:RING) is supposed to receive a single 1list
called the pracedure descriptian list (PDL) of the following
form, where S1,...,5n are distinct sypes and T 1is a type

such that RING <SS!, S1£S52,..., and Sn< T,

“==>] =|===>] =|m==> ,,, ===>] =|===>] nil
C - Jmmm=] | === |-------|
I — N Y R
nil **n
n----_--a
AT<RING,S1> “AT<S1,52> AT<Sn=1,Sn> PT<Sn,T>

As a particular (but most common) case, n may be zero. That

is, the PDL is simply of the form:

¥*¥) This cell 1is wused for the “‘type parameter 1list”’

explained later,

21

Page 21

=====>| nil |

PT<RING,T>

In the above example, when MAKQO 1is compiled, the

processor constructs the followina ;

m====>(nil |

fmmm====]

|mm————-]
{ nil |

PT<FIELD,RAT>

In the compilation time of STP(P1:FIELD), an incamplete PDL
shown below 1is prepared with AT<RING,FIELD>, (It 1is
incomplete in the sense that the cell marked "*¥" nmust bpe

linked to form a PDL in execution time,)

-—==>] ¥ to2

| 1 1

I 4 |

| 3 1

| ==m=m=en]
| 6 |

| [

Filg.3.2 : AT<RING,FIELD>

In execution time, this incomplete PDL is linked to the PDL

22

Page 22

that STP(P1:FIELD) receives and is sent to POLY(P:RING) when

POLY(P1) ADD is called in executing STP(P1:FIELD).

® e o= @ B 2 ———— = -

—————>| i | nil |
| =====| jm======]
— |
|=======]
I ni1i1 |
AT<RING,FI1ELD> | e |
Fig.3.3 PT<FIELD,RAT>

We call such a dymanic linkaqe done in exection time
BRL linkage. Note that, when executing a non
type=parameterized modﬁie, no PDL linkage is required, For
each t?pe-oarametetized module M(P1:51,...,Pn:iSn), PDL
lihkaqes are required when and only when some Pi (1<£ig<n) is
used as an actual type péfametef vto some ‘formal type
parameter of sype Si’ such that Si< Si and that Si‘ differs

from Si.

Type parameter lists

) ---;o ;;;:-;;-;;;; considered only those cases where the
actual type parameters to POLY(P:RING) 4are nof
type-parémeterizéd. Now we explain how to deal with the
cases where the actual type parameters to PdLY(P:RING) are
also type=~parameterized, o |

Consider the case when POLY(M(T1,...,Tn))#ADD is called

where; M(P1:S1,...,Pn:5n) - is a type=-parameterized type

23

Page 23

module with type parémeters Pl,...,Pn of sypes Si,...,Sn,
respectively, and T1,...,Tn are actual type parameters to
M(P1:S1,...,PniSn). (T1,...,Tn may be themselves
type~parameterized.,) In this case, the PDL’s for Tl,....Tn
must be sent to POLY(P:RING). These PDL’s are combined
together in a 1list called a type parameter list (TPL) as

shown below;

————> =|m=w~=w=> PDL for T1

[=~=m==ni

i | mem———— PDL for T2

S

C;: | w|=======> PDL for Tn

{ nil |

This TPL is linked from the PDL for M(P1:S1,...,Pn:Sn).

===«>| nil | | =|=======> PDL for T1

|===m==n] |==m====]

| | _ . m——

I =|=======> PDL for T2

PT<RING,M(P1:S51,...,Pn:Sn)> g | J—

-

<;3‘ ~|=====-=> PDL for Tn

I nil1 |

24

Page 24

When M(Pi1:51,...,Pn:Sn)4ADD is called in executinér
POLY(P:RING), each PDL for Ti is retrieved through the PDL-
for M(Pl:Sl,...,Pn:Sp) and sent to M(P1:S1,...,Pn:Sn)#ADD.
The TPL’s hust be constructed in execution time 1if a
certain module N which calls POLY(M(T1,...,Tn))#ADD is a
type=-parameterized module and Ti coincides with one of the
formal type parameters of N. For example, in the
realization part of BIPOLY(P1:RING) (in Fig.1.2),
POLY(POLY(P1))#ADD 1is called. 1In this case, the processor

prepares an ‘incomplete’ TPL in compilation time, which |is

linked from the PDL for POLY(P:RING).

P - a= o= @ ® we ne wn = . > - @

e===>| pnil1 | ' | * |

fommames| fmmmmen|

| Il nil |

- g —————

PT<RING,POLY(P:RING)>

When BIPOLY(P1:RING)#ADD is <called with some actuél
type parameter, say T, the cell marked “*“ is linked to the
PDL for T; | o

Such a process to construct a completé TPL in execution
time is called a IRL linkage. Note that if
POLY(POLY(P1))#ADD in the fealization part of
BIPOLY(P1:RING) 1s replaced by POLY(PI)#ADD,.no TPL linkage

is regquired since the actual type parameter that

25
Page 25

.BIPOLY(PI:RING) receives can be sent to POLY(P:RING)#ADD

directly.

26

Page 26

4, Runtime TPL/PDL linkages

The incomplete portions of TPL/PDL’s (i.e. those which
require dynamic 1ihkaqe in execution time to construct
information about actual type parameters) must be linked
carefully so that the infbrmation already constructed is
retained., #When an incomplete TPL/PDL is linked in execution
time, 1if the same TPL/PDL -is already linked in order to
construct information about actual type parameters of a
currently active module instance, then this old information
is violated. Such a situation may not occur so often in the
actual programming. Theoretically, however, it is possible
to create such a situation as shown 1in the following
example: |

Consider how BIPOLY(BIPOLY(INT))#ADD is executed
(though this is gquite a pathological case). Since
POLY(POLY(P1))#ADD appears 1in the realization part of
BIPOLY(P1:RING) (See Fig.2.1) and the actual type parameter
to P1 1is BIPDLY(INT), POLY(POLY(BIPOLY(CINT)))#ADD - will be
called in executing BIPOLY(BIPOLY(INT))#ADD. Then the
actual ADD for P#ADD in the realization part of POLY(P:RING)
is POLY(BIPOLY(INT))#ADD, and so forth. The diagram below
shows those functions which will be called in executiﬁq
BIPOLY(BIPOLY(INT))#ADD, in order:

BIPOLY(BIPOLY(INT))#ADD
POLY(POLY(BIPOLY(INT)))#ADD

POLY(BIPOLY(INT))#ADD

21
Page 27

BIPOLY(INT)#ADD
POLY (POLY(INT))#ADD
POLY(INT)#ADD
INT#ADD
Fig.4.1 shows the state of the ruhtime stack and PDL’s
when BIPOLY(BIPOLY(INT))#ADD is called, As mentioned in the
previous section, the cell marked "*" must be linked to the
PDL for the actual type parameter that BIPOLY(PI:RING)
receives (to the PDL for BIPOLY(INT), in this case). Then, .
in the course of executing BIPOLY(BIPQLY(INT))#ADD,
BIPOLY(INT)#ADD will be called. This time the same cell "X¥"

is to be linked to the PDL for INT.

PDL for BIPOLY(INT)

————— ~—— —— o o~ — - - @

| | nil | -I---->! nil |
i | !-------l i-------l |wm—emm|
f | | I nil |
o | | mmm————] l-------t I---—---I
1 | | nil |
1 | [—— l__--_-_l
| i
f |
) | | PT<RING,BIPOLY(P1:RING)> PT<RING, INT>
N [P
R
SP==>| incomplete PDL to be sent to POLY(P:RING)
' @ o - ——— —— » B "o e o —— L
I nil | i * |
|mmmmmm—] IR LD Y

| ~m—mm——| [P ——— |

[

|
]
|
I
I | I nil1 |
|
|
{
|
|

PT<RING,POLY(P:RING)>

Fig.4.1 Just before BIPOLY(BIPOLY(INT))#ADD is called

28

Page 28

Whenever such a violation of already constructeé
information occurs, the status of the TPL/PDL’s must be "
festored when the fupction which causes the vioclation ends.
its execution, This situation arises for any
type-parameterized module which reguires dynamic TPL/PDL
linkages 1in eXxecution time and an instance of which is
nested in another, Since the 1latter condition cannot be
determined with the module=-wise compilation, for any type
module that requires dynamic TPL/PDL 1linkage, we must
prepare for the situation above.

The well=-known ‘“stack’ mechanism is well adapted for
the purpose. Before going to the actual mechanism adopted
in the language processor, we present a virtual mechanism as
an intermediate step.

Given a type-parameterized module M(P1:5%t,...,Pn:iSn)
which reguires TPL/PDL linkages, suppose that the PDL’s
corresponding to PyryrecesPmy, must be linked, where
{Msrecer/MTn} is a subset of {1,...,n}. For each j (1£j<m), a
stack STjJ is prepared. When a function | of
M(Pl:Sl,...,Pn:Sn)‘ is called from outside***
M(P1:S1,...,Pn:Sn),

1) the first node of each PDL corresponding to Pm is
pushed on STj, and

2) each cell in the incomplete TPL/PDL which must be
linked to the actual type parameter corresponding to ij is
set to point to the node just pushed on STJ.

when the execution of a function of M(P1:Si,...,Pn:Sn)

23

Page 29

which is called from outside¥*x¥x M(P1:S1,...,Pn:sSn) Iis
completed,

3) ST1,...,STm are popped, and

4) each cell in 2) is relinked to point to the node on
the top of the stack.

Even if many module instances of a single module
appear, the 1level of their nesting seems to stay low.
Accordingly, these stacks need not be so large., This is the
reason why we c¢all these stacks small stacks. Thus the
memory space is not wasted with this mechanism. Fig.4.2
shows two stages of the small StacK for BIPOLY(P1:RING) in

process of executing BIPOLY(BIPOLY(INT))#ADD.

*¥*x) When a function of M(P1:S1,...,Pn:Sn) 1is ~called from
inside of the module, the actual type parameters remain

unchanged. Thus the process 1s unnecessary.

30

[P

PT<KRING,BIPOLY(P1:RING)>

Page 30
| =|====>}1 nil |
| === |m——————|
I nil | -
 ——— |wemm———
I nil |
[
* PT<RING, INT>

I nil |

S ———

I nil |

SP==> PT<RING,POLY(P:RING)> | I ~
: Small Stack ST2
Fig.4.2(a) When BIPOLY(BIPOLY(CINT))#ADD is called
} | | nil | i - m—D nil
| | | =wmmmm—] | em—m—— mem————
| { i I nil | -~
| | | =m—m——] | - m -
I | | nil
| |
I |
{ | PT<RING,BIPOLY(P1:RING)> PT<RING,INT>
| J— (f
| |
" I B " u " w - O W - e e e e e § B - - - O
| | I nil1 | i I nil |
| { |~=————- [m——————] ELLLIIIS
| | 1 I nil 1 I
| | |=w—mm——] | P | | =]
| I T, — |
| | e
I i nil
| [E—— PT<RING,POLY(P:RING)> - -
| | -
| | nil
o | ———t
SP==>| | | |

Fig.4.2(b)

When BIPOLY(INT)#ADD is called

N
Page 31

There is room for improvement to cover the followina
inefficiencies.
it. An entire node must be pushed on the small stack.

2. Each incomplete TPL/PDL must be 1linked and' relinked.
This may be a problem when a module requires many incomplete
TPL/PDL’s.

The improvement can be realized with the indirect
addressing mechanism of DEC=20 which is also found in many
other computer hardwares.

with this mechanism, one need only push on the small
stacks the pointers td the PDL the module receives, not the
entire node pointed to by the pointer. Moreover, ' TPL
linkages are done automatically.

The DEC=-20 CPU calculates effective address as. follows
(if no indexing is used): each memory and instruction word
contains an 18~bit address part and a 1~bit indirect flag.
If an instruction wordvmust reference memory, its indirect
flag is tested, 1If it is off, the number in 1its address
part 1is the effective address. If it is an, addressing is
indirect, ahd\the processor retrieves another address word
from the location specified by that address part. This new
word 1s processed in exactly the same manner. This process
continues until some referenced’]lbcation is found with
indirect flag af£: the number in its address part is the
effective address. |

Suppose, for ~instance, that there is a chain of

pointers as shown in the figure below,

32

Page 32

X1: X2: X3: X4: X5:

L1l =l===>1 1| =f===>] 0 =l===>] 0| =|===>| | |

QN [— R [N QO DU

Here each cell represents a word and the left hand side of
each cell <contains an indirect bit with 1 for 2n and 0 for
cff.

An indirect load instruction from X1 (i.e. indirect
load instruction whose address part is X1) is executed as
follows. The processor retrieves the content of Xl. Since
the indirect flag 1s on, it retrieves the content of X2.
Again, the flag is od and the content of X3 1is retrieved.
The flag being g££f this time, X4 is the effective address.
Thus the content of X4 (1.e.b the pointer to X5) is loaded.

~Note that the instruction yields the same Tresult as

above even when the chain of pointers are replaced as:

X1: ‘ X2: X5:

| | Ry |

NOW we are ready.to explain the |improved small stack
mechanism,

As before, when M(P1:Si,...,Pn:Sn) is compiled, small
stacks ST1,...,STm are prepared. In addtion, stack pointers

SPl,..+.+SPm are prepared one for each STj. Each cell in the

33

Page 33

incomplete TPL/PDL .which must be linked to the actual type
parareter corresponding to Py; contains the pointer to SPj
and 1its indirect flag is set an. Each cell which contains
the pointer to such a cell is also set the flag - an. The
flags of other cells are set off. (See Fig.4.3)

when a function of M(P1:51,...,Pn:Sn) 1is called from
outside of the module, each pointer to the PDL corresponding
to Pu; is pushed on STj. When the execution of a function
of M(P1:51,...,Pn:Sn) which is called from outside of the
moqule is completed, each STj is simply popped.

With this method, Fig.4.2(a) is revised as follows.

. ® - - - —-— ® o - o @

| nil | [01 =l====>| nil |
[==m=m== [~==m=mn [EETEEERY
| | nil | .
————--- P ! [==m===
i 0l I nil |
| o I

[

PT<RING,BIPOLY(P1:RIKG)> PT<RING, INT>
0l
] l :
| | X1: X2: X3: X4:
‘ I S - . " — - ® @ v ——— O
| I | nil | | 11 =+ 0] ——>(01
i | fomem—| mm———| P — i
i | | | nil |] i
| | |m———] | wmewe=! Small Stack | |
| | I I ey Pointer SPi1 | |
| | Small Stack
I I ST1
| I

PT<RING,POLY(P:RING)>

Fig.4,3 When BIPOLY(BIPOLY(CINT))#ADD is called

34

Page 34

Now return to the problem of how, in executin§
PDLY(P:RING)#ADD, the actual ADD 1is retrieved and actual
type parameters are sent to the module that the actual ADD
belongs.,

The P#ADD call in POLY(P:RING) 1is done as follows.

Step 1. Search the PDL it receives to find a node whose
first cell is nil. 7

Step 2. Load the third word of the cell to a register,
say, LX.

Step 3. If LX is not pil then load a pointer indirectly
from LX and push it on the runtime stack. Else go to
Step 5,

Step 4. Load the second wdrd of the node pointed to ‘by
LX and go to Step 3.

Step 5. Get the actusal AbD from the procedure table
pointed to by the node found in Step 1 and call it,

(Step 1 and 5 are simplified for brevity.)

To see the soundness of the above algorithm, we trace
the steps in two cases; One case when POLY(P:RING) receives
a PDL generated in compile time and another <case when the

TPL is linked through the small stack in execution time.

Case 1. Suppose POLY(P:RING) receives a PDL of the form:

step 1. ‘The search stops immediately since the first

of node X1 is nil.

step 2. LX contains: - cm—m———

I 01 =l===> X2

R —

35

Page 35
X1t X2t X3:

| I i nil1 | | 0 =l====>| nil |
I I ememmma] |mmm——— |mmmm———|
| | | | nil | {
i | omom—e=] e | |wmmm———]
g I | ol I nil |
l | P — P -
-

i I ¥ PTCRING,POLY(P:RING)> PT<RING,INT>
I

!

cell

step 3. Since the indirect flag is af£ in LX, the effective

address 1is X2. The first cell of X2 is pushed on the

runtime stack.
step 4, . The second word of X2 is loaded to LX.
step 3. LX is oil.

step 5. POLY(P:RING)#ADD is called.

P o > - O B et - - —— 0 "= - - O

I | > nil | i 0] ={====>| nil |
{ | I======= EEEEEEEY R
| i | i nil | |
| | | === S —————
] | 10 I nil |
| | QP — [—
| R

1 1 PT<RING,POLY(P:RING)> PT<RING,INT>

36

Page 36

Case 2. Consider the execution of BIPOLY(CINT)#ADD. when
POLY(POLY(INT))#ADD is called from BIPLY(INT)#ADD,
POLY(P:RING) receives a PDL, whose TPL is linked throuagh the

small stack for BIPOLY(P1:RING),

X3:

I nil |

'-------'
I nil |

PT<RING, INT>

101

| ===

| i

! I X1: X2: X4

' | B - ——— - @ 0 - o= - O ® e w— == -s @ @ - e -

I I i nil | I 1l > 0l L _—5I 0}

t | |mom——] jomm—-] |omdme | lmed

| i | | i nil | | |

| | | =] | mme~e] Small Stack | |

[T Pointer I {

101 , } Small Stack

{====] for
SP==>| f PT<RING,POLY(P:RING)> BIPOLY(P1:RING)

The trace is same as in case 1 except for the first Step 2
and Step 3.
step 2. LX contains: ' ¢ ————— .
I 1l =f====> X2
| mmmdee |
stpe 3. Since the indirect flag is on in LX, the effective

address is X4, (See the example presented 'in the

explanation of the indirect addressing mechanism.) The first

37

Page 37

word of X4 (i,e. the pointer to X3) is pushed on the
runtime stack.
when POLY(P:RING)#ADD is called at Step 5, the state of the

runtime stack is:

‘ ---—-—-'

I nil |

PT<RING,INT>

101

| ====]

I] Xt X2: X4z

l ' O - - ———-— ® "= onunenan @ @ v - ——— LI Yo p—

| | I nil | b 1} —f—> O] ~— 3l 0]

| | |wmm——] | === | emd e | P

| i | I nil | J |

| | | === leeee=! Small Stack | |
 J— llloZ Pointer | {
{01 Small Stack
Jmm———i for

| | PT<RING,POLY(P:RING)> BIPOLY(P1:RING)
{ |

| |

1ol d

Tﬁus in both cases POLY(P:RING)#ADD is called with
valid PDL set on the runtime stack.

In Step 1 of the algorithm, indirect instruction will
bé used as ‘in Stepv3 since the PDL may also be linked
through small stacks, We leave it tb the reader to detail

- Step 1 and 5 of the algorithm,

38

Page 38

Nate, Treatment of assignment and equality

As mentioned in section 1, every sype or type in 1 1is
suppésed to have itsrown EQUAL function. The truth value of
the equélity between two objects of a type T 1is determined
by the EQUAL of T (i.e. T#EGUAL). If T#EQUAL is not
defined in the realization part of the type module T, then
the system automatically generates codes for T#EQUAL so that
the EQUAL of the type by ﬁnich T is represented is called.,

The assignment (ASSIGN]) 'is a data-type independent
Droqram‘ construct in language l and 1s never aiven
implementation in the realization part of any type module.
In the implementation of the language, however, it is
convenient to consider . that each type T has 1its own

assignment among the basic operations of T and we

conveniently denote it as *“T#ASSIGN® as if ASSIGN were a-

primitive function of T. Thus, for example, the assignment

statement

(where X and Y are variables of type T) is considered as:
T#ASSIGN(X,Y)
In this way, EQUAL’s and ASSIGN’s can be treated inlthe
same manner as (other) primitive functions; “ 7
In executing POLY(P:RING), if P#EQUAL or P#ASSIGN is
required, the acﬁual EQUAL or the actual ASSIGNVmust also be
retrieved from - the procedure description list that
POLY(P:RING) receives. Thus we extend each procedure table

PT<S,T> so that 1its ‘=1’=th and ‘0”-th entries contain

39

Page 39

T#ASSIGN and THEQUAL, respectively. For exXample,

PT<RING,INT> (in Fig.3.1) 1s extended as follows:

@ v o = ———— O

zl=====> INTH#ASSIGH

| mwemmmnz === > INTH#EQUAL
D e ——— =|=====> INT#ZERO

| ez =====> INTHONE

omemmm = | =====> INT#ADD

| emm—emme | =====> I[NT#MULT

| cmmmmes | m====> INTHREV

When the actual EQUAL or ASSIGN is retrieved, since
they are always contained in the fixed entries in any
procedure table, the intermediate adaptor tables in the PDL
need not be used. Therefore the PDL is simply traversed to
find the node which contains the procedure table, This
indicates that the retrieval of the actual EQUAL or ASSIGN
is faster than that of other primitive functions.

Remember that EQUAL is the only primitive function of
sype ANY. For the same rea;on as above, for any sype or
type S, we need no AT<ANY,S> at all. For example, when a
function of ARRAY(P3:ANY) is called in POLY(P:RING), the PDL
that POLY(P:RING) receives can be sent to ARRAY(P3:ANY) as
it is, without TPL linkage. Actually, most of the sype=sype

or sype~type relations are of the form ANYSS. So this

consideration may greatly increase the efficiency.

40

Page 40

ACKNOWLEDGEMENTS

The author wishes to eXxpress his appreciation ¢to
Professor Reiji Nakajima for patiently supervising this

research.
REFERENCES

1. Burstall, R., Goguen, J.: Putting theories together to
make specifications. Int. Joint Conf., on A.I., 1977

2, Liskov, B. et al.: Abstraction mechanisms in CLU.
Comm. ACM, B, 567=576 1977

3. Honda, M., Nakajima, R.: Interactive theorem proving on
Hierarchically and Modularly Structured Set of Very Many
Axioms. 6th Int. Joint Conf. on Artificial 1Intelligence
79

4. Nakajima, R., Honda, M,, Nakahara, H.: Describing and
verifying programs with abstract data types. Formal
description of Programming Concepts., (ed. Neuhold)
North-Holland Publishing. Co. 1977

S. Nakajima, R., Nakahara, H., Honda, M.: Hierarchical
Program Specification and Verification==-a Many-~Sorted
Logical Approach=- RIMS-Preprint 26% 1978

6. Nakajima, R., Yuasa, T.: Program Development with the
kA system, Proc. of TSC Symposium on Intelligent
Programming Systems, IBM Japan 19738 ‘

7. Nakajima, R.: Sypes = partial types = for program
structuring and first order system 2 logic. Research
Report No.22, Institute of Informatics, Univ. of 0slo 1977

8. Yuasa, T.: Supports for . Hierarchical Software
Development =~-Systems and Mathematical methods=-~ (Master’s
Thesis)

