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On seminormal rings (general survey)
Akira Qoishi

(Hiroshima University)

Introduction

The notion of seminormal rings comes from two sources. One
is the works of»EndG and Bass-Murthy about Picard groups under
polynomial ring extensions : Pic(A) —» Pic(A[X]) is not an isomor-
phism in general and is an isomorphism for a normal ring.l) Thus
2 problem is to characterize the rings for which Pic(A) —> Pic(A[X])
are isomorphisms. The answer is given by seminormal rings. The
other source is the work of Andreotti-Bombieri about weakly normal
varieties : Given an algebraié variety X, we seek the largest
variety x* which is birationally equivalent and homeomorphic to X.
If X is normal, then X = X by the Zariski’s Main Theorem. They
constructed X%, the weak normalization of X and called X is weakly
normal if X* = X. Weak normality coincides with seminormality if
the ground field has characteristic zero. After these works,
Traverso defined seminofmal rings and proved their fundamental
theorems. Since then, manyiauthors have studied seminormal rings

and obtained many interesting results. In this paper, we shall

report on some results known about seminormal rings.

Firstly, we begin with the following definition :
Definition‘(cf. C.Traverso [30]) Let AC B be an integral

extension of commutative rings. Put

AE = {be’ B | b/1€ Ap + Rad(Bp) ('\{ p€ Spec(A))} ’
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where Rad(Bp) is the jacobson radical of Bp. Then Ag ié the
largest ring C between A and B satisfying the following properties:
(#) For every p€ Spec(A), there is a unique prime ideal q
of C over p and q satisfies k(q) = k(p).
When AC B is a general extension of rings, we define AE by A;.,
where D is the integral closure of A in B. If B = Q(A), the total
L. e call AL

(resp. A+) the seminormalization of A in B (resp. the seminormali-

quotient ring of A, then we write A" instead of A

zation of A). If Ay = A (resp. A" = A), then we say that A is

seminormal in B (resp. A is seﬁinormal).

We shall give other charactefizations of AE . Let AC B be
an extension of rings. A fing C between A and B which isvintegrai
ovef A and satisfies the above condition (%) is said to be strongly
integral over A. An element b€ B is called strongly integral over
A if ¢ = A[b] is strongly integral over A.' (For example, if bp,
.bn+l€' A for some n >0, then b is strongly integral over A.) Then,
(1) AE is the largest ring between A and B which is strongly
integral over A,

(2) AE is the smallest ring between A and B which is semi-
normal in B,
. ‘ ] »
and (3) Ag ={b€B | b is strongly integral over A }.

Other characterizations of AE can be given in some special

cases
(1) (Weak normalization) (cf. [1],>[21], [22]) For an

integral extension A C B of commutative rings, we put
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E - n |
Ag = {be B | Vqe spec(a), (b/1)Pe Ay + Rad(B ) for some nt,

where p is the characteristic exponent of k(q) and call this ring

the weak normalization of A in B. Ag is the largest ring between

A and B which is radicial over A. If 8ll residue field extensions

“k(p) C k(q) (q€ Spec(B), p = @ N A) are sépafable (e.g., A contains
a field of chardcteristic‘zero), Ag coincides with AE . Manaresi
showed that A-‘B = {béB ] b€l — 1@’5 = 0 in (B@AB)red};a

(2) (Weakly normal algebraic varieties) (cf. [19] ) Let k
be an algebraically closed field of characﬁeristic iero and (X’(}k)
be an algebraic variety over k in the sense of J.-P.Serre (i.e.,
as a set; X is the set of closed points of reduced separated
algebraic scheme over k). Define(}§ , the (coherent) sheaf of.
cérégular functions over X as follbws : for an open éet U of X,
put :r(U;(};) = {f : U — k f f is continuous and f}ﬁeg(U) is
regular }
= {g € f%wul(U),C}Y) I g is constant on each fiber
of w },
where w : Y —> X is the normélization of X. Then we can show that

¢ =‘+ = integ S P ~" =" £
Gx,x C>X,x; the integral closure of‘(;x,x in ¢ x (Cy = the sheaf

X,
of continuous k-valued functions over X) for every x¢€ X.

(3) (Weakly normal complex analytic space) (cf. [14], [321,
[33]) Let (X’(}X) be a reduced complex analytic space. Define

(}§ , the (coherent) sheaf of c-holomorphic (or continuous weakly

holomorphic) functions over X as follows : for an open set U of X,

put {ﬂ(U,(E;) = {f’: U —2C l f is continuous and f]Reg(U) is

holomorphic}-. Then(§§ x =(}; 5 Tor every x¢X.
2 s



Let AC B CC be extensions of rings. Then,
+ _ .+
(1) Ag = A; NB. |
(2) Ag C’BE . If B is an integral domain, then A° C B' .
(3) If A is-seminormal in C, then A is seminormal in B.

(L) If A is seminormal in B and B is seminormal in C, then

A is seminormal in C.

N

Conductor theorems (cf. [30]) For an extension A C B, we

denote by c(B/A) the conductor of B in A. Then,

»(1) if A C B is an integral extension and A is seminofmal”
in B, theh c(B/A) is a fadical ideal of B. 7

(2) If AC B is a finite extension of noetherian rings and
A is not seminorma} in B, then c(Ag/A) is not a radical ideal of
N ,

AB L]

The following criterion is very useful to verify the semi-

normality of given rings.
E.Hamann’s criterion (cf. [L], [12], [15]) Let AC B be an

extension of rings. Then, the following statements are equivalent :

(1) A is seminormal in B.

n bn+%§

(2) If BEB, b2, b€ A (resp. bY, A for some n >0),

then b€ A,
(3) c(A[b]/A) is a radical ideal of A[b] for every b€ B

which is integral over A.

Using this criterion, we can prove some fundamental facts

about localization and graded rings.
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Localization (1) Let AC B be an extension of rings and S

+
)Y = (a). . In parti-
BS B’S

cular, if A is seminormal in B, then AS is seminormal in.BS.

ve a multiplicative subset of A. Then (AS

(2) Let A be a ring such that dimQ(A) = 03) (e.ge., an
integral domain or a reduced noetherian ring). Then (AS)+ = (A+)S
for every multiplicative subset S of A. Hence if A is seminormal,
then AS is seminormal. A is seminormal if and only if Am is
seminormal for everyrnGbe(A).

(3) Let A be a noetherian ring such that dimQ(A) = 0. Then
A is seminormal if and only if Ap is seminormal for every p € Spec(A)
such that depth(Ap) = 1. (If A satisfies the'Serre’s condition
(52), then Odepth(Ap) =1 ’ can be replaced by hht(p) =1 " )

In particular, let A be as above and I be an ideal of A such that

depthI(A)2'2. Then A is seminormal if and only if Ap.is seminormal

for every p€ D(I) = Spec(A) — V(I).

(Sa)—Mori rings Ve say a noetherian ring A is a Mori ring if

it is reduced and its integral closure A;'is finite over A. If

A is a one-dimensional semi-local Hori ring, then AT = A + Rad(a’).
Hence A is semino mal < Rad(A°) = Rad(A) &= c(A’/A) is a radical
ideal of A, If A is a Mori ring which satisfies (82), then A is
seminormal if and only if c(A’/A) is a radical ideal of A’(cf.

[2]).

+
B[X]

(AE)[X]. If A is ean integral domain or a reduced noetherian

Graded rings (1) For an extension A C B, we have A[X]

ring, then A[X]" = -(A")[X]. Therefore A[X] is seminormal if and

only if A is seminormal.u)



(2) For an extension A C B of graded rings, A; is a graded
subring of B. If Ais a graded domain, then so is At. 1r A=

Qanéjz An is a seminormal graded domain, then so are its Veronesean
subrings A(d) = G;né‘z And . 7

(3) If (A, I) is a Zariski pair and its associated graded
ring GI(A):G\ﬁIn/In+l is a seminormal domain, then A is also a
seminormal domain.

(4) Let A be an integral domain or a reduced noetherian ring
and I be an ideal of A. If A is seminormal and GI(A) is reduced
(e.g., I is a radical ideal generated by an A-regular sequence),
then the Rees algebra RI(A)==@BIn is also seminormal.S) In
particular, if (A, m) is a one-dimensional local Mori ring, then
A is seminormal if and only if Rm(A) is seminormal (cf. [10]).

(5) Let A = GE;njaO A be a graded noetherian ring such that
dimQ(A) = 0. Assume that Ay is a field and A = AO[Al] and put
V = Proj(A) and C = Spec(A). Then C is seminormal if and only if

.V and (¥ are seminormal. If V is seminormal and depth((?b (0))
: . ?

C,(0)
7 2, then C is seminormal.

Gluings (cf. [267, [25], [30], [31]) Let AC B be an integral
extension and p be a prime ideal of A. Put Ag(p) ={b€B | v/1
€ Ap + Rad(Bp)}' and call it the ring obtained from B by gluing
over p. Then Ag(p) is the largest ring C between A and B which
satisfies the followihg property :
(3#) There is a unique prime ideal g of C over p and g
satisfies k(q) = k(p).
Since Ag(: Ag(p), Ag(p) is seminormal in B. If A C B is a finite

extension and {ql,...,qr} is the set of prime ideals of B over p,

-6 -



we can also define Ag(p) by the following cartesian diagram :
Af(p) —— B

I

k(p) — [[i_1k(ay) = (B k(D)) g -

Using this notion of gluings, we can state the following

structure theorem of seminormal rings :

Structure theorem (cf. [30]) Let AC B be a finite extension

of noetherian rings. Then A is seminormal in B if and only if

3 pl,...,pnGFSpec(A) such that B = B ) By Doeee ;)Bn = A,

R . .

where Bi+l = ABi(pi+l)’ namely, A is obtained from B by a

succession of gluings. Hence a Mori ring is seminormal if and
only if it is obtained from a normal ring by a succession of

gluings.

Now, before going further, we shall give some examples of

seminormal rings.

Example 1. Let d be an integer which is not square and put
A= 2Z[Vd ]. Then A is seminormal ifvand only if & - iijep (p
prime and epé Z ep}O), whefe ep<2 for all p and ezél. In
particular, A i1s seminormal if d is a square-free integer. Z[J?ﬂf]

is not seminormal. In fact, we can show that Z[V-1 ]+ = zZ[i].

| Example 2. (Abelian group rings, c¢f: Bass-Murthy [2]) Let
G be a finite abelian group. Put A = Z[G]. Then A is a one-
dimensional Mori ring and A is seminormal if and only if Card(G)

is square-~free.



Exahple 3. (Semigroup rings, cf. Hochster-Roberts [16]) Let
H be a commutative monoid written multiplicatively. For an
integral domain A, A[H] is an integral domain if and only if’H is
cancellative and~torsion-free (i.e., the quotient abelian group G
of H is torsion-free). Then, the following statements are equi-
valent :

(1) If u, v€H and w’ = v2, then u = w2, v = w’ for some
w€H (equivalently, if w€ag, w°, wie H,r (py, @) =1, then w€H).

(2) K[H] is a seminormal domain for a field K.

(3) A[H] is a seminormal domain for every seminormal domain

If these equivalent conditions are satisfied, the monoid H
is said to be seminormai. |

If H is a seminormal monoid such that HC Z, then H-
is isomorphic to N or Z, hence is normal. The submonoid of.IN2
generatéd by (2, 0), (1, 1) and (0, 1) is seminormal which is not.

normal (see Example 6 below).

Example L. (N.Chiarli [8]) Let k be a field of characteristic
zeré and suppose that : Yn = f(Xl,...,Xm) is an irreducible
hypersurface in4A§+l. Then V is seminbrmal if and only if either
n = 2 and the multiplicity of every irreducible factor of f is at

most two or n 3% and f is square-free.

2

Example 5. (Algebraic curves) (1) k[X, Y]/(YZ— X —-XB) =

k[T°- 1, T(T°— 1)] (char(k) # 2) is

seminormal. This ring is obtained f(_\Nz —
1 Al + X

by gluing two points x = + 1 of A",
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(2) k[X, Y)/(XY) is seminormal. _

This ring is obtained by gluing two .Ml Q —_—
affine line at x = 0. 1 * xy =0
m. . ,

(3) k[x, Y]/(Y2-X3) = k[TZ, TS] is not seminormal. In fact,
T is strongly integral over k[Tz, TB].

A plane algebraic curve is seminormal if'and only if its
singularities are at most nodes (= ordinary double points) (cf.
4], [28]). More generally, an algebraic curve is sehinormal if
and only if its singularities are ordinary n-fold points, where
n is the dimension of the Zariski tangent space (cf. [3], [10]).
E.D.Davis proved this theorem as follows : Let (A, m) be a one-
dimensional local Mori ring. Then

A is seminormal & Gm(A) is reduced and e(A) = emdim(A4)

NG Proj(Gm(A)) is reduced and e(A) = emdim(A),
where e(A) is the multiplicity of A and emdim(A) is the embedding

. . . 2
dimension dlmA/m(m/m ) af A.

Example 6. (Algebraic surfaces) (1) k[X, Y, Z]/(Y3 + 22~ XYZ)

= k[s + T, ST, SZT] is seminormal. This ring 5 | ¥
is obtained by identifying x-axis with y-axis A $\¥
in an affine plane‘A2. | 7 x
(2) x[x, ¥, z]/(xz2—-Y2) = k[S2, ST, T)
(Cayley’s umbrella) is seminormal. This ring a°
- is obtained (in char(k) # 2) by identifying -’A//—\\\x v
~x bd

(x, 0) and (-x, 0) in an affine pléne.ﬂ2.

On the contrary, & = k[X, Y, z)/(xz"-Y") = x[s", sT, T] (ny3)

is not seminormal, since (SZT)n = Sn(ST)nE A, (Sz'I‘)m'l =

s (57) 2 e A put SET§A.6)
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(3) x[xvy, Y, XZ— 1, X(Xg— 1)] (char(k)z# 2) is seminormal.
If we put B = k[X, Y],fmwi = (X-1, Y),lﬁb = (X + 1, Y) and
m = Fﬁifﬁlnt, , then A = k + m = Ag (m), '

i.e., A is obtained by gluing (1, 0) and T

_ .2 : _ .
(-1, 0) in A®. A has dlm(Am) = 2, and -1 1
depth(Am) = 1.

‘Characterizing seminormal surfaces by their singularities
as in the case of algebraic curves seem to be unknown, though

partial results have been obtained (ef. [6], [9]).

Example 7. (Ordinary singularities) Here we consider over
€, the complex number field. If X is a smooth projective variety
of dimension n, the singularities of its generic projections in

Pn+l are called ordinary singularities. Ordinary'singularities

of plane curves are precisely nodes. Hence these are seminormal
by Example 5. Ordinary singularities of surfaces in.IP3 are of

three types : xy = 0 (ordinary double curve),

i

Xyz 0 (ordinary triple point),

x2— yz2 = 0 (pinch point),
‘which are easily shown to be seminormal. Thus a dquestion arises :
Are the ordinary singularities always seminormal ? (c¢f. [3]) This

question has recently been solved affirmatively by S.Greco and

C.Traverso using a classical result of A.Franchetta (cf. [14]).

The relation with Picard groups (cf. [2], [4], [11], [12],

(18], [34]) For a ring A, put NPic(A) = Coker(Pic(Aa) ¥+VPic(A[X])).
Then, the folloﬁing theorems hold :

Let AC B be an integral extension of reduced rings snd

- 10 -
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suppose that A is noetherian. Then A is seminormal in B if and
only if NPic(A) — NPic(B) is injective.

vaA is an integral domain or a reduced noetherian ring, theh
A is seminormal if and only if Pic(A) — Pic(A[X])kis an isomor-

phism, i.e., NPic(A) = O.?)

An application to Serre’s problem (cf. [4], [23]) Let A be

a commutative ring. Consider the following property for A : For
any set I, every finitely generated projective A[Xi]ié.I-module
is extended from A. (The set I can be assumed to be a finite set.)

If A satisfies this property, we say that A is a Quillen ring

(after'the'famoﬁs work of D.Quillen on Serre’s pfoblem). Next
facts are known about Quillen rings : |
(1) A is a Quillen ring if and only if'Ared is so.

.(2) If A is a Quillen ring, then AS is also a'Qgillen ring
for every multiplicative subset S of A (M.Roithan).

(3) & is a Quillen ring if and only if A_ is a Quillen ring
for every m € Max(A).

(L) A regular ring of dimension at most'tw6 is a Quillen
ring (Quillen-Suslin). It is'cbnjectured that every regular ring
is a Quillen fing. Some speciél cases of this conjécture are
proVed'(H.Lindel-w;Lﬁtkebohmert). |

(5) A locally finite dimensional arithmetical ring is a
Quillen ring (Lequain-Simis).

Using the method of Lequain-Simis (i.e., axiomatic treatment

of Quillen rings) we can prove the following theorem :

'(6) Let A be a one-dimensional integral domain whose integral

closure is a Prufer domain. Then A is a Quillen ring if and only

- 11 -
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if A is seminormal. If A is a one—dimenéional noethérian ring,
tﬁen A is a Quiilen ring”if and only if‘Ared is seminormal.B)
Following the method of N.Mohan Kumar (éf. Inv. Math. L6
(1978), 225-23%36), Wwe can show the next theorem about the number
of generatdrs of ideals of polynomial rings over Quillen rings
(e.g., one-dimensional seminormal rings) : Let A be a noetherian
Quillen ring of dimension d such that every finitely generated
projective A-module is free (e.g., PID or two-dimensional semilocal
regular domain or one~dimensional noetherian‘semilocal seminormél
domain) and I be an ideal of B = A[Xl,...,Xn] (n>0). 1If h&(I/Iz)
2dim(B/I) + 2 and ht(I) »d + 1, then M(I) = M(I/IE), where

M (M) denotes the'minimal number of generators of a module M.

Other applications of}séminormal rings include :

(1) The problem of invariance of coefficient rings of
polynoﬁial rings»(E.Hamann [15]) : Let A be a seminormal domain.
If AC B and A[Xo,...,Xn] = B[Yl,...,Yn], then‘B = A[T] (X;”s,
Y.’s and T are variables). 7 ‘ ;

(2) Liroth’s problem for rings (S.Glaz, J.D.Sally and W.V.
Vasconcelos, J. of Algebra L3 (1976), 699-708) : Let A be a
seminormal domain. If A ng C{A[X] and A[X] is faithfully flat
over B, then B Q'SymmA(P) for some finitely generated projective
A-module of rank one P. (If, moreover, A is semiloéal, then B =
A[T].) ,

(3) The probiem of efficient generation of maximal ideals
in polynomial rings (E.D.Davis and A.Geramita) : They proved, in
particular, the following theorem : Let A be a one-dimensional

'semilocal Mori domain. Then, M(n) = ¢A(n/n2) for every maximal

- 12 -
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‘ideal n of A[X] if and only if A is seminormal.

Notes

Al) This follows easily from the fblloWing commutatiﬁe diégram
for a noetherian normasl domain A : |

Pic(a) —&> Pic(a[X]) —Ee-Pic(A[[xj])

o i 0

c1(a) Bsc1(a[x]) —3, ci(allx1]),
where p is an isomorphism, gep is injective and gef is an isomor-
phism, -
2) This follows from the next facts : A ring homomorphism A — B

is radicial &= A —_— Bred is an epimorphism in the category

red
of reduced rings & (BtghB)red——> Bled is an isomorphism. Hence,

for an extension AC B, a ring C between A and B is radicial over

A<= ¢ CKer(B —-i_.:;» (B@,B)__4)» where i(b) = 5&T and j(b) = I&H.
3) This condition ensures the commufativity of total quotient
ring and localization (cf. J.Lipman , Proc..Amer. Math. Soc. 16’
(1965), 1120-1122). |
L) As for theipower series‘extensions; we can show the followirig
facts : | |

(1) Let AC B bé en integral extension. If Ais semiﬁormal
in B, then A[[X]] is seminormal in B[[X]].

(2) If AC B is a finite extension of noetherian rings, then
A[[X]]E[[X]] = (AE)[[X]]. If A is a Mori ring, then Al[x])F =
(4" [[x1]. ’

(3) Let A be an integral domain or a reduced noetherian ring

which is seminormal. Then, A[[X]] is also seminormal.
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Concerning general base change, the following facts are

known (cf. [1L]) :

(1) Let A C B be an integral extension and A — A’ be a

reduced homomorphism of noetherian rings. If we put B® = B(@AA',

+
B

(2) Let A — B be a reduced homomorphism of noetherian rings

then we have A°.., = (A;)QQAA'.
with normal gereric fibers. Then we have B = A+QDAB.

{3) 1If A is a reduced excellent local ring, then A is semi-
normal if and only if A, the completion of A,is seminormal.
5) By a theorem of J.Barshay (cf. J. of Algebra 25 (1973), 90 -
99) RI(A) is integrally closed in A[X] in this case.
6) Similarly A = k[S2,‘ST1,...,STn4_1, Tl,...,Tn__i] (Hhitney’s
umbrella) is seminormal. If m is the maximal homogeneous ideal
of A, then dim(Am) = n and depth(Am) = 2., In general, if A is
a seminormal domain in which 2 is a unit and I is an ideal of A
such that GI(A) is reduced, then-A[It,tz] is a seminormal domain.’
(The condition on 2 probably can be deletted.)
7) General situation is as follows : .

(1) If A is seminormal and Min(A) is a finite set, then
NPic(a) = 0 (ef. [34]). |

(2) If A is reduced and NPic(A) = 0, then A is seminormal
(Schanuel). .

(3) Even if A is seminormal, NPic(A) =‘O does not hold in
general (cf. [12]). | |
8) For the proof of this theorem, we use the next fact found by
S.Itoh ¢ Let A be an integral domain. Then, the integral closufe
of A is a Prufer domain if and only if the canonical'map‘Spec(A(X))
— Spec(A) is bijective. (Concerning the ring A(X), see‘Nagata,

Local rings, p.18.)
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