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ESSENTIAL COMPLETENESS OF THE CLASS
OF MONOTONE DECISION PROCEDURES

IN ESTIMATION PROBLEMS
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Kumamoto University

1. INTRODUCTION

For the estimation problem, Karlin and Rubin (1956) proved
that the class of monotone decision procedures is essentially
complete under the following conditions: Each‘of the sample
space, the parameter space and the decision space is a subset
of the real 1line, the probability density has monotone likelihood
ratio and the loss function satisfies some suitable conditions
(cf. Karlin and Rubin, 1956, p.293).

In this paper we try to extend the results in Karlin and
Rubin (1956) to the following case:

Euclidean k-space is denoted by Rk. The sample space X and the
parameter space @ are subsets of R™ and Rn, respectively. The
decision space T is an open convex subset of R™. Suppose that
there are defined a partial ordering é in X, a partial ordering

5 in ® and a partial ordering in T, The probability density

QA

p(x,0) with respect to a o-finite measure u on X has monotone

14

n A

<
and
p

likelihood ratio with respect to the partial orderings

that is, if x i y and © w, then it follows

Ze RN
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p(x,0) p(y,w) - pkx,w) ply,8) z 0. (1)
The loss function L(8,t) is assumed to satisfy the following
conditions:
(i) For each 6, L(06,t) is continuous and convex as a
function of t.

(ii) For any two decisions t u, the set D = {8 : L(O,t)

QA

- L(6,u) = 0} is a type I, set: that is, any two
points on the set are not greater than or smaller

than each other in the sense of = and {6 : L(6,t)

1w

D}, where 6

p
é D means that there

z L6,ul} = {6 : 6

exists a m in D such that © é W e

For example, the loss function L(6,t) = (8 - t)' M(® -Ut)

satisfies the conditions (i) and (ii), where (6 - t)!' = (el - tl'

e, Sn - tn) and M is a positive definite matrix. Here the

partial ordering (al, ces, an) < (bl, e, bn) in R™ is defined

by a;

2. RESULT

é, 3, p(x,06) and L(6,t) be as for Section 1.

Furthermore, we require that X = {x : p(x,08) > 0} and the inequality

Let X, ©, T,

0 lIA

14

in (1) is strict.

Definition 1. An estimator 6 of 6 is called monotone if

X y implies 6 (x) 8 (y). Denote the class of monotone estimators

0 A

O A

by M.



An extension of Lemma 1 of Karlin and Rubin (1956] is stateq
as follows.
Lemma 1. For a prior probability measure £ and a real valueq

function h on @, let

gx) = [p(x,8) h(®) dg(8). (2)
+ e < + +
If e H = {6 : h(f) 2z 0} and 6 ; w imply w €« H , then x € G
= {x : g(x) 2 0} and x i y imply y = ct.

Proof. Define

hl(el = - 3)
o, 0 € H
and h,(8) = h;(0) - h(8), where H = {6 : h(8) < 0}. Clearly,
hi(e) 2 0 for i =1, 2. Let
g; x) = [p(x,0) h, (6) dE(6). (4)
)
Then gi(x) 2 0 for i =1, 2.
For x 2

s Y we have
9, ) g,(x) - g,(y) gy &x)

= [, [_ {p(y,0)p(x,8) - p(y,0)p(x,w)} hy (w)h,(8)AE(8)AL (w) (5)
H H

0.

v

If v ¢ G+, then g(y) = gl(y) - gz(y) < 0. On the other hand,
from the assumption that x e G+, it follows that g({x) = gl(x)
- g2(x) > 0. Hence gz(y) gl(x) > gl(y) gz(x). This contradicts
(5).

The following lemma is an extension of Theorem 11 of Karlin

and Rubin (1956).
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Lemma 2. If L(9,t) satisfies (i) and (ii) of Section 1,
then the.Bayes estimator with respect to a prior probability
measure £ is a monotone procedure.

Proof. We remark from the assumption (ii) that L+ =
{e\: L(6,t) z L(6,u)} (t g u) has the property that 6 e L"
and © é w imply w € Lt B

For t in T, put

Py (x) = [ L(e,y) p(x,0) A& (8). (6)
8 S

1f, for a given x, min pt(x) is attained at u, then for

<
u and x S Y we have

Qi JIA

Py () < Py (¥) » (7)
by the above remark and Lemma 1.
Thus, for x i y, the minimum of pt(y) is attained in the

set t with u g t. This fact shows that the Bayes estimator must

be monotone.
Denote the class of Bayes estimators by B. Then it follows

from Lemma 2 that B < M.

Definition 2. 1lim en = 6 in the regular sense if
n-»oco .

lim fgn(x) f(x) du(x) = fé(x) f(x) du(x) for any pu-integrable

N>

function £.

We remark that if 1im en = 6 in the regular sense then
n—>co

lim en = § a.e. Furthermore, it is well known that the closure
n-»o

B of B in the regular sense is essentially complete.

Lemma 3. M= M.
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Proof. Let 6 & M. Then there exists a sequence {6_} such

n
that en e M and lim en = § in the regular sense. Let x é Y.

n->co
From en e M, en(x) £ en(y). From the above remark, 9 (x) £ 0(y).

This shows that & € M. This completes the proof.

< <

< =
s’ 51 ar
Section 1. Furthermore, we require that X = {x : p(x,06) > 0}

Theorem. Let X, ©, T, p(x,6) and L(6,t) be as for
and the inequality in (1) is strict. Then the class of monotone
estimators is essentially complete.

Proof. ¥From Lemma 2, B ¢ M. From Lemma 3, M = M. Hence,

BcM=M. This completes the proof of Theorem.

3. EXAMPLES

Example 1. (Stein.] Consider the problem of estimating thé
mean of a p-variate normal distribution (p 2 3) when the covariance
matrix is known. Let X be a random variable distributed by
Np(ﬂ,I), where I is a p x p unit matrix. Stein (1956) has proved

that the estimator 6 (x)

]

x of 6 = (Gl, ces, ep)' is inadmissible
for the loss function L(é,e) = (g - 6)'(8 - f) and it is strictly
dominated by the estimator 6*(x) = (1 - —E;%—Jx. It is clear

that g(x) is monotone with respect to the coordinatewise ordering.

But 6* (x) is not monotone and hence inadmissible. In fact, for

x = (-¥Yp-2, 0, «++, 0)' and y = (——E%z—, 0, e<-, 0}' we have that
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6*(x) = (0, +++, 0)' and 08*(y) = (_iigiz_, 0, +++, 0}'.

It is also known that the positive part of Stein's estimator
- + . .
o** (x) = (1 - "%Té“} x dominates the estimator 6* (x), where
+

a = max(0,a). Fere we shall show that 0** (x) is monotone. In

fact, for X = (Xll 0, e, 0)'1

- _p=2_ cen - =
s ) = {(xl B2, o, , 0) if 'xll > /DP-2
X) , 1
(0, 0, +++, 0) if ‘XlI < yp—2.
and the function defined by
‘ -2 .
NEST —g——— if ’xll > Vp-2
f(xl) = 1
0 if 'xll < Jp-2

is monotone non-decreasing in x Hence 0**(x) is monotone for

1
X such that all the components except x, are 0. Futher, for

X § y ; that is, X, 2 Y5 (i =1, 2, «++, p), we have from the

above facts that

A

e**((xl,xz,x3'ooo'xp) ') e**((yi’X2’x3’.‘.’xp) l}
= 9**[(Y11Y2:X3,"‘,Xp)'} £ = 9**((erY2:"':Yp)'}-
This means that 6**(x) is monotone.
Example 2. (Stein.) Let Yir Yor **tr ¥, be independently

and identically distributed random variables having a p-variate

normal distribution Np(O,ZI with an unknown covariance matrix

n
I (n > p). Since a complete sufficient statistic is x = Z Y; yi,
i=1

we consider only estimators based on x for the problem of estimating
Z. Both the parameter space © = {f£} and the sample space X = {x}
are the set of all p x p symmetric positive definite matrices.

Partial orderings é and i in ® and X are defined as follows :
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I

1 z

if and only if 22 - X

1 5 if and only if Xy = Xq

distribution of x is the _Bi%iil_ - dimensional Wishart distributigy

is semi-positive definite, and

2 1

X X

0 A 7T 1A

is semi-positive definite. The

and has monotone likelihood ratio with respect to i and since

“1 s -1
2 2 p 1

Let the decision space T = {I} be the set of all p x p

T A

z L, implies I

T 1A

1

symmetric positive definite matrices. A partial ordering in T

is defined as follows : %

1 X, if and only if £, - Z. is semi-

2 2 1

[oTRITY

positive definite.
It is assumed that a loss function is L(Z,Z) = tr I % &

- log det Loy - p. We shall show that L(X,Z) satisfies the

conditions (i) and (ii). Since (aZl + (l-alzz}el < azil

+ (1—a)z;l, L(Z,Z) is convex in I for each I. For any Zl and
I, with I, < I,, let D = {r i u(z,z;} = ©(2,2,}}. Then we have
from a simple calculation that D = {I : tr 2_1[22 - Zl}

= log det L, - log det Zl}. Suppose that I, and I, are in D.

2

—l _l ~ A ‘
Then tr (I;7 - I,7}(Z, - I;} = 0. If %, S Iy 0r I 3 I, had held,
we have that tr (211 - Z;l}(gz - gl} > 0 or tr (Zzl - Z;l}(gz - 21}

. Ny -1 -1y (3 _
< 0. This contradicts that ¢r (Zl - 22 }(22 - Zl} = 0. Hence
any two elements in D are not greater then or smaller than each
L(z,z,}}

L(Zl,zz} and L(Zz,zl}

other. Next, it is shown that {I : L(Z,Zl}

1Y

{z : 2 D}. Suppose that L(Zl,Zl}

W

T v

= L(2,,I,}. Clearly, L(Z,,%;} - L(Z;,2,} 2 L(Z,,Z;} - L(Z,,%,}.

1

— _l ~ ~ . . .
Then tr (Zl - I, }(Zl - 22} 2 0. Since the last inequality
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holds £ 5.3 h 12571 anan < i
olds for any 14d Zar we have Zl p 22 an ence 22 P Zl. This
shows that {I : L(z,Z;} 2 L(Z,gz}} c {z : 1z é D}. Conversely,
suppose that L(Z,,Z;) = L(Z,,Z,) and I, p Ip+ Then tr I, (2, -z}
= log det gz - log det gl and
L(z,2;} - L(2y,2,)
_l A ~ ~ A
= tr I (Zl - 22} + log det L, - log det Zy
= tr 3TY(Z, - 1) + tr ISY(E, - I,)
1 1 2 2 2 1
= tr (230 - 27 (2, - 1) 2 0.
. Z ~ N
This shows that {I : I o p} < {z : L(Z,z;} 2z L(Z,Z,}}. From the

above facts it is seen that L(Z,I) = t»r Z_l T - log det Z-l I -p

satisfies the conditions (i) and (ii). Accordingly, it follows
from Theorem that the class of monotone estimators based on x
constitutes an essentially complete class. This example is

suggested by G. Ishii.
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