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SOME ASPECTS OF WEIGHTED AND
NON -WETIGHTED HARDY SPACES

Bui Huy Qud [(Hiroshima Undv.)

The main aim of this talk is to present some results on
weighted and non-weighted Hardy spaces. We also put some emphasis
on the interrelations between these spaces and with other spaces
existing in the literature, such as Besov (Lipschitz) spaces and
Triebel-Lizorkin spaces. These interrelations are marked by the
fact that the study of function spaces in recent years has
flourished due partially to the combination cof the technique of
maximal functions developed by Fefferman-Stein and the spectral

decomposition of Peetre.

51. HP and hP spaces

We begin by recalling an equivalent definition for the space
HP as given by Fefferman-Stein [1]. A tempered distribution f on R®
is said to be in Hp, 0 < p < o, if the non-tangential maximal

. = p .
function N(f) (x) Sup[x—y|<t lwt*f(y)l € LF, where 9 €S with
J o(x)dx =1 and ¢ (y) = t Mo(y/t). We put IIfHHp = ]IN(f)Hp.

There are various characterizations of HP by using other maximal
functions or harmonic functions on R2+1. We refer to [1] for
details. It is known that HP = LP for 1 < p < «, and HP (0 <p=<1)
are good substitutes for L? from a number of points of view.

However, these spaces break down at some other points, such as S is
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not entirely contained in HP and pseudo-ditferential operators are
not bounded on HP (0 < p <1). To remedy these facts, Goldberg
 [2] has considered the space hP which éan be defined as follows.

A tempered distribution f is in hp, 0 <p< o, if N(H)(x) =
SUP|x—y|<t<1/2 Imt*f(y)[esz, where o is as above. (There should
be no confusion about the notation N(f) since if will be clear
from the context whether wevare dealing with HP 6r hp; similar
abuses of the notation will be used in the rest of this note.)

Further, we put ||£|| . = |[IN(£)]]...
LP P

Before proceeding on, we need some notations. Let S denote
the strip domain R" x 10,1[. The Poisson kernel for S, denoted
by P, is given by P(x, t) = Pt(x) = PO(x, t) + Pl(x, t), where
ﬁo(g, t) = sinh{(1 - t)2w|&|}/sinh{2n|E]]}, Pl(x, t) = po(x, 1- 1),
and % stands for the Fourier transform of f(ELl. Since PtVGS,
Pt*f = Pf is a well-defined harmonic function on S for each feS'.
The main results on hP are summarized in the next theorem (see [2]).
We use I to denote a cube with sides parailel to coordinate axes.

hereafter. All immaterial constants are denoted by C, Cl""’ c,

SEEREE They are not necessarily the same on any two occurrences.

THEOREM A. (i) A tempered distribution f is in hP (0 < p < =)
. . - : ; P _ -
if and only if N(u) (x) suplx—y|<t<l/2 lu(y, t)| €el¥, where u
Pf. Further, one has ||f]] _ = |IN(u)]]...
hP P

(ii) S is dense in hP and pseudonifferential operators of
class Sp 1 are bounded on nP (0 < P < ).
b N r
(iii) Let y €S so that J Y(x)dx = 1 and J x%y(x)dx = 0 for

every |o| # 0, and £ehP. Then £ - y*f cHP and ||f - y=fl] p S Cll£]] <
H H
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(iv) feh! if and only if £ and rP (j = 1,..., n) are in L,
where o €S, ¢ = 1 on a neighborhood of the origin and (r?f)A =

-(1 - @)i(g5/|gNE.  Further,

 n
WEN 1 = €11y + % lePEly.
h1 1 j=1 ‘J 1

) (hPy# = /DD (0 <p<1),
(h1)* = bmo

Here Bg/g'n‘is the Besov (Lipschitz) space defined by Taibleson.
H

[3] and bmo is the space of all locally integrable functions b

such that SUP| 7| g (1/711)) JI |Ib(x) - bIIdX < o and SUP| 7|51 CVARSD)
J |b(x)|dx < =, where bI = (1/[11)J b(x)dx. (Bg/z'n was denoted
I I >

by A(n/p-n; «, ») by Taibleson.)

(vi) A distribution f is in hP (0 < p < 1) if and only if
there exist a sequence {aj} of (hp, »)-atoms and a sequence {Aj}
such that f = ZAjaj in 8' and lejlp < o, (A function a, supported
in a cube I, is called an (hP, »)-atom if Hall, < |I|-1/p, and

J x% (x)dx = 0 for all |a| < [n/p-n] if |I] < 1.)
I
(vii) If o is a C*-diffeomorphism of R™ onto R" such that

a(x) = x for [x| =1, and £€hP (0 < p < =). Then ||fea]l <
| h

S

Next we give definitions for Besov spaces and Triebel-
Lizorkin spaces by using the spectral decomposition of Peetre ([4],
(51, [61, [7]). Let ¢ be a function in S which satisfies the

following properties:
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(a) supp @ = {1/2 < |&]| < 2} and @(E) > 0 on {1/2 < |g| < 2},

(b) kjj o2 Xe) =1 for |g| # 0.

Let ¢y k = 0, 1,..., be the functions in S given by

o2 ¥, x =1, 2,...,
®y =1 - kilm(Z—kE)-

The homogeneous and non-homogeneous Besov spaces and Triebel-

Lizorkin spaces are defined as follows.

v 1/q
S = {fezsv; IH£]] = { ) [stllwk*fll ]q} < m},
P,q S K20 p
P,q -
L] oo _ ) R 1/q
P,q i Ko P j
P>q :
| r‘w p/q 1/p
S = {fessv; I £1] = [Jt 5 25K, *f(x)lj] dx} . m},
P,q '
=S
= S'. f
Fp’q {fe ’ H l.s
P,q

[J{kjiwzksqlF'l(wtz;ka)f)(x)!q]p/qu}l/p <o),

-1 ‘ . .
where - < s < », 0 < p, q < © and F denotes the inverse Fourier
transform.

It is known that

-0
gP = Foa (0<p <), (1)

(See [6] or [7]). Professor Triebel suggested to the author that
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nP = F (0 < p < ®), (2)

The proof of (2) is based on an idea used by Peetre and
Triebel ([6], [7]) in the proof of (1). We shall use the following
Hilbert space version of a result of Goldberg on multipliers of the

spaces hP. Let {fk} be a sequence in S. Put

l 2 1/2
BRI K [Degr01?] {p

le<

where & is a function in S whose Fourier transform ¢ is of compact

f
support and J d(x)dx = 1.

LEMMA 1 (Goldberg [2]). (i) If mecC® and (1 + |x|2)lel/2

ID%n(x)| < C_ for all a, and K = m. Then ||K#f] . < C||£||
& | nP hP
(i) If {m} is a sequence in C such that (1 + [x[z)lal/z
[Z[D My (x){2 1/2 < Ca for all o, and Kk = my, then
12y Kerf ll o s C [ {£ 1]
k "k™7k hP | k nP 22)

We shall also need a maximal inequality for F>

LEMMA 2 (cf. [4], [7]). Let 0 < p < ®, 0 < q < ®, -0 < 5 < @

and f be a distribution in Pp . Then
’

ety p < cliEll o s
(2q) P4

where for each k = 0, 1, 2,...

®§f(x) = sup I T X €ER
e 1+ 277yl
YER

and X is a sufficiently large positive number that. depends on n,

p and q.



43

REMARK 1. Results similar to those in Lemma 2 hold for the

spaces Bp Q é;,q and F; q (141, 17D, This kind of maximal ine-
quality was first introduced by Peetre in the study of Fp q in the

full range 0 <p, q <« ([4]). We also note that the proof of

lemma 2 is to some extent modelled after [1; pp. 183-187].

PROOF OF (2). Since it is known that § is dense in both hP

and Fg 2 it is enough to prove that
? .

I, = Il o for fes. (3)
h .
p 2
Let {rm} be the set of Rademacher functions (cf [8]), and let k

be a positive integer. Keeping k fixed for a moment. Since

k

=0 m(t)@ satisfies the condition in (i) of Lemma 1 with the con-

I
stants Ca independent of k and t, it follows from an identity for
Rademacher functions [8; Appendix 4] and Lemma 1 that

J[ Eolmm*f(x)lz]p/zdx < Cljle{mgormtt)wm}*f(x)‘pdtdx

e} (3o

Letting k - «, we obtain

Pt < c, ||£]P
| pat = e lElD,

eIl o < CIEl - (4)
F h
p,2
To prove the converse, take a function y in § such that supp y <
(1/3 < [£] < 3} and ¢ = 1 on {1/2 = |g| < 2}. Put g, = p(275g),
k=1, 2,..., and let y5€S be so that ;0 =1 on {|g| < 2}. Then

Lemma 1 implies that

Iellp = G0l < calliondllp
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L g aener) @

Hence, by comparing the support of g(t-) and Gk’ we see that
9. x0,%f = 0 unless t < c2 K
t*%x =

for any k = 1, 2,.... This in turn implies that for each k = 0,

sup 1|¢t*¢k*f(x)l < sup X fl@(y)|l¢k*f(x-ty)|dy

O<t«< O<tsc2
C oy +f (x-2) | C. ot f(x)
< C_sup = x).
626Rn 1 + Zk)\lzl)\ 6(pk

Therefore it follows from Lemma 2 that

,‘[kgo 33€<1l¢t*®k*f(X)Iz]l/zllp < C6|I{w§f}lle(zz)

< C7llf” 0
pP,2
’

This, combined with (5), completes the proof of (2).

After (1) and (2) are established, the connection between
Hardy spaces and Besov spaces are easily derived. In partighlar,

we have the following inclusion relations:

0 9] «0

Bpop W < B2 (6)
and

0 P 0

Bop P ° B2 (7
if 0 <p < 2.

.0 p .0

B HP < B 8

p,2 © 7 < Pp,p (8)
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and

BO c hP ¢ BO ) (9)

| P,2 P,P
if 2 s p < *©. |

Finally, we end this section by stating some results on in-
terpolation. The Fefferman-Riviere-Sagher interpolation theorem

~ asserts that
WP, Yy = H, (10)

0<p, q<w 0 <6 <1andl/r=(1-0)/p + 6/q (see [9]). By

using (10), it can be proved that

b oian n
(P, h% g = nt, (11)

where p, q, 6 and r are as above (see [7]).

82.. The spaces hg

We first reéall some facts about weight functions. Hereafter
w is always assumed to be a non-negative locally integrable func-
tion on R".

A weight function w is said to be in Aé (1 <p <) if it
satisfies |

p/p'

(4,) | {T%T-le(x)dx}{T%T JIw(x)'l/(P'l)dx} < C

for all cubes I in Rn, where C is a constant independent of I and
1/p + 1/p' = 1.
A weight functions w is said to be in A if there exist c > 0

and r 2 1 such that
(A) C|E| < o|I| implies w(E) = cal/Tw(D)

for any cube I in R™ and any measurable subset E of I, where w(E) =
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J w{x)dx.
E -
A weight function w is said to be in A1 if there exists ¢ > 0
such that
1 .
(Ay) f;w(x)dx < c ess inf w
1 [TT): I

for all cubesI in R™. The condition wegAl is equivalent to w¥*(x)
< cw(x) for almost every x, where f* stands for the (Hardy) maximal
function of the locally integrable function £.

Basic properties of weight functions can be found in [10] and
[11].

Let w be in A_and 0 <p < . A function u, harmonic on S and
symmetric with respect to t = 1/2, is said to be in ha if N(w)(x) =
supr(x)lu(y,t)l ELE; where P(ﬁ) = {(y,t) €S; |x-y| <t < 1/2} and

L8 denotes the space of all measurable functions g for which {|g”p w
)

1/p
= {I[g(x)[pw(x)dx} < »., The space hE is equipped with the norm
[Ju |l = |IN(W ||, .,- This is a true norm only if 1 < p < «;
: hP P,W
W

however, we use this abuse of language for the sake of convenience.
We say that F = (u, Ujseees un) is a Cauchy-Riemann system (in
the sense of Stein-Weiss) if u and uj (j = 1,..., n) are harmonic

on S, and

ne~—g

(B/BXj)uj = 0 on S,

j=0

(a/axj)ui = (a/axi)uj on S, i,.j =0,..., N,
where we put u, = u and X, = t. Further, in the rest of the paper
we shall always assume that u(x, t) = u(x, 1-t) and uj[x, t) =
—uj(x, 1-t) for any j = 1,..., n and for all (x, t) gS when we con-
sider a Cauchy-Riemann system F = (u, Upseees un).v
As usually happened in the study of weighted spaces (cf. [12],

[13]), the behaviors of functions in hg as |x| » o are a little worse
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than in the non-weighted case. This fact can be remedied by ta-
king the weight w in an appropriate class and using the following

harmonic majorization principle for subharmonic functions on S.

LEMMA 3 ([14; Theorem 2]). Let u be a real-valued function

n

defined on S = R° x [0,1], subharmonic on S, and such that lim sup

(z,t) €S, (z,t)+(x,5)u(z’ t) = u(x, §) for every x eR™ and § = 0, 1.
H

Further, assume that f(fﬁ(x, 0)] + |u(x, 1)|)e_"IX|dx < = and

lim suplx|+wu+(x, tye TIXl x| (n-1)/2

= 0 uniformly in t, 0 <t < 1.
Then
0 1
u < Pt*u(-, 0) + Pt*u(-, 1) on S.
Equality holds if u is furthermore assumed to be harmonic on S and

continuous on S.

Similar results hold if S is replaced by any of its substrip.

The basic properties of the spaces hg are given in the next

theorem.

THEOREM 1. (i) If (n-1)/n <p <= and WeA () 4y,

if and only if there exists a Cauchy-Riemann system F = (u, Upseees U

p
then ueh
)

n
with the property that
(f(m 2 P/ 2 1/p
170, = swe {[(ey oo 012) wead) T < e
p, O<t<1 O J .
Further, one has HN(u)IIp,w . HFllp’w.
1

(1) If we€A,, then uehl if and only if there exists feLl

l,
such that rjfEELi, j=1,..., n and u = Pf, where (rjf) = —i(gj/|gl)

A n J
tanhm|£[f. Moreover, HN(u)||1’w ~ llf"l;w + lelrjflll,w.

The proof of Theorem 1 is modelled after [12] and [13], and

is based on the following two lemmas.

_10_
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LEMMA 4. Let & be a continuous non-decreasing function on
[0,o] such that ¢(0) = 0 and &(2A) < c1¢(x) for all ) > 0. Let
w €A _and u be a harmonic function on S such that u(x, t) = u(x, 1-t)
for (x, t) €S or u(x, t) = -u(x, 1-t) for (x, t) €S. Then there

exist c¢ and C, not depending on u, such that
cf@(NO(u)(x))w(x)dx < j@(A(u)(x))w(x)dx
< Cj@(N(u)(x))w(x)dx,

where . 1/2
Alw &) = {Jfr(x)tlhn[g'(a/axi)“(y’ JANELY

and

N (u) (x) = sup |uly, t) - uly, 1/2)].
r(x)

LEMMA 5. Let u be a harmonic function in ha, (n-1)/n < p < o,
wszpn/(n—l) and F be the Cauchy-Riemann system associated with u
as in (i) of Theorem 1. Then there exists F(-, 0) EL&X--PXLa =
(LS)n+1 such that F(x, t) - F(x, 0) almost everywhere and in (Lg)m'l

as t >~ 0. Further,
NC[E]) (x) < CL(|E(+, 0)] @ 1)/ya(xyqn/(0-1)

n .
] F(-, . If = 1, then the
for all x€R , and “Fllp,w || F( 0)[lp’w (If n
number (n-1)/n = 0 in the conclusion of the lemma should be replaced

by any q such that p > q > 0 and w€A .)

p/q

REMARK 2. By (ii) of Theorem 1, we can identify h; (wezAl)

. 1 . i ~
with the space of all L _-functions f for which Hth1 = ||f“1,w

W
+ Z?[Irjfﬂl,w < o, We shall frequently use this identification

hereafter.

- 11 -
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COROLLARY 1. Let g €S such that y = 1 on a neighborhood of

the origin, and let w eAl. Then a function f is in h& if and only
fel&vand r?feELi, 1 < j < n, where (r?T)A = -(l—w)i(gj/lgl)% for
TeS'.

§3. Makimal function characterizations of H& and hi

We begin by recalling the definition of Hg ([12]). Let weA_

n+l

and 0 <p < . A function u, harmonic on the upper half space R,

= R% x 10,[, is said-to be in HE if N(u) (x) = sup|x_y!<t!u(y, t)| €

La. The space Hg is equipped with the norm Hul“ﬂ) = HN(u)]]p’w.

w
If weAp, then it follows from [13] that u €H. if and only if u is

the Poisson integral (on the half space) of an L&—function f whose
Riesz transforms le,..., Rnf are in Li. Here, by ij, jo=1,...,

n, we mean the pointwise limit

i Y5 _ T ((n+1)/2
ij(x) = lim Cnf , >Ef(x—y)T;_l__dy, c, = __%E__%771.

e~>0 |n+1 - n+l

n : .
Furthgr, HN(u)I]l’w ~ Hflll,w + 1 ”ijlll,w‘ By this reason, we
identify H' with the space of all L. -functions f with ijeL‘}J, j =

1,..., n.

THEOREM 2. Let weA_, 0 <p < « and f be a measurable func-
tion with Jlf(x)|(1+|x|)-n_ldx < », Then the following statements
are equivalent.

(A N(H) () = sup0<t<mlwt*f(x)l ELg for some yeS with
Jw(x)dx = 1.

(B) N(fH)(x) = suplx_y'<t|wt*f(y)[ ELE for some ¢ as above.

= p
(C) N*(£) (x) sup o EBOSUPIX-y{<t|®t*f(Y)I €L, where
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By = {@ €S; %
al Ny, B[N,

and N0 is a sufficiently large number depending on n, p and w.

Ix°0Pel|,, < 1}

(D) N(u)(x) = suplx_y|<t|u(y, t) | eLa, where u is the Poisson
integral of f on the upper half space, i. e., u(x, t) = Kt*f(x)

and K, (x) = c t(|x|? + t3)~@*1)/2,

Further, NI, x INCOIL, o » INCODIL, = NG I, -

The proof of Theorem 2 follows closely the paper [1] of
Fefferman-Stein. We need nonetheless modifications. We also
point out that the equivalence between HN+(f)|| and ||N(f) |

p,w pP,w
was not proved in [1]. The proof of (A) => (B) of Theorem 11 in
[1] depends on the finiteness of the I’ -norms of two auxiliary
functions ug

and U%,, and the inequality HU: C |ju*

N N”p < gN”p'

Since the constant C in this inequality depends on N which is a
number depending on f, one would obtain the inequality. ”N(f)“b

< C HN+(f)|H) with C depending on f. However, granted the finite-
ness of IIN(f)Hp’w, it can be proved that C is independént of £

as follows. Let B > 1, x€R™ and PB(x) = {(z;s) ER2+1; |z-x| < Bs}.
Then there exists ¢ > 0 such that {(z,t); Ii—yl < ét} c FB(X) for
all (y, t) with |ly-x| < t. Fix such a (y, t). Let r be a number
such that 0 < r <1, 0 < r < p and wezAp/r. Put u = ws*f, U =

sIVzuI and NB(U)(X) = SuPPB(x)IU(Z’S)I’ For z€B = {z€R™; |z-y|

< ét}, the mean value theorem gives
luly, )17 = N (@ ()17 + TN W )]

Noting that B c {z; |z-x| < (1+c)t} = B', we derive from an inte-

gration over B that

- 13 -~
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n + .
ues 1 = (] ey ¥FaTaz + v co1”

n
s(12°] IN"(W)T1* ) + TN (W) ()17, (12)

on the other hand, the proof of (B) =>(C) implies that

INg @) [l 5 Cq INQOYI, s Co IINQ I, e
. This, combined with (12) and the weighted estimate for the Hardy

maximal function [10], gives

il < {2

Since»C3 is independent of c, by choosing c¢ small enough, we ob-

IN* @I, * clIN@IL, )

tain the required estimate.

The above proof also serves as an example on how to deal with

the weighted case.

THEOREM 3. Let weA_, 0 < p < «» and f be a measurable func-
tion with j|f(x)|(l+[x|)-n71dx < o, Then the following statements
are equivalent. »

+. : .
| (A)'" N = sup0<t<1|¢t*f(x)] e;& for some yeS with
Jw(x)dx = 1.
(B)!' N(f)(x) = suPF(x)lwt*f(Y)l elﬁ,for some { as above.

* = : . o]
(C)' N#*(f)(x) SuP¢<5313uPr(x)l®t*f(Y)l €L, where

By = {¢ €S; HanBQIL” < 1}

and N1 is a sufficiently large number depending on n, p and w.
(D)' Pf is in hg.

Further, [IN'(E)Il, o, = INCE Il = INSCOIL, L~ 1P
. w

Theorems 2 and 3 allow us to derive the connection between H*

-.14 -
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and h;. Assume hereafter that w EAl unless otherwise stated.

1

COROLLARY 2. (i) H is continuously embedded in hi.

(ii) If ¢ is a function in S such that Jw(x)dx = 1 and

Jxa¢(x)dx = 0 for all |a| # 0, and £€hl, then £ - yaf €H]

Hf' Y=t ” 1 SC”f” 1°
H h
W W

and

§4, Atomic decompositions

We first define atoms in our context. A function a, supported
in a cube I, is called an (H&,q)-atom (1 <q <= «) if the following

two conditions are satisfied:

: 1/q -
(1) {ﬁ%jlla(x)lqw(x)dx} cw(n L

(ii) f a(x)dx = 0.
I

A function a, supported in a cube I, is called an (h%,q)—atom
(1 <q < ») if the condition (i) is satisfied and

(i) J a(x)dx = 0 if |I| < 1.

I

The atomic decomposition was first studied for Hp(Rl) by

Coifman ([15]) and was later extended to HP (R") by Latter ([16]).

The study in the context of space of homogeneous type is given in

[17] with many extensions and applications of Hardy spacés.

THEOREM 4. A function f is in Hi (resp. hé) if and only if
there exist a sequence of (Hé,w)-atoms (resp. (hé,w)-atoms) {aj}

and a sequence {Aj} such that

£ = £ in L} and Tl < e

- 15 -
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Further,
. . 1 1
f ~ 1nf{2 Ay £ = Zx.a. L>, a.: (H ,»)-ato s}
111y 151 jaj in Ly, agi (=) -aton
W
and
. . - . 1 . 1 _
IIthl = 1nf{Z|Aj], f Ijay in L,» aj: (h,,,) atoms}.
w

It is obvious that (Hi,m)—atoms (resp. (hi,m)-atoms) are (Hi,q)-

atoms (resp. (h&,q)-atoms). A partial converse is true.

PROPOSITION. Let W'EAq (1 <q < «) and a be an (H&,q)-atom
(resp. (hi,q)—atom). Then there exist a sequence of (Hi,w)-atoms

(resp. (hé,w)-atoms) {aj} and a sequence {kj} such that

. 1
a = zX.a. in L d .}l « C
325 w‘an ZIAJI ,

where C is a constant not depending on the given atom a.

The atomic decompositions provide us an easy way to describe
dual spaces. Since the dual onHé was characterized earlier by
Muckenhoupt-#Wheeden by the Fefferman-Stein method ([18]) and by
Garcia-Cuerva by the atomic decomposition method ([19]), we give
only the result for h&. We need one more definition. A locally

integrable function b is said to be in bmo if |[|bj[** = max{suplI|<1

(l/w(I))Jilb(x)beIdx, sup|II21(l/w(I))JI|b(x)!dx} < o,

COROLLARY 3. (i) The dual of h% is bmo  in the sense that,
if L is a continuous linear functional on hi, then there exists a

unique b Ebmow with the property that
Lf = Jb(x)f(x)dx

for any f which is a linear combination of (h;,w)-atoms; and con-
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versely, any such L, initially defined for linear combinations of
(hé,w)-atoms, can be uniquely extended to a continuous linear

. 1
functional on h . Further, ||L|| = Hb]];*.

(ii) A locally integrable function b is in bmow if and only

if max{suplll<1(1/w(I))jI|b(x)-bI|qw(x)1-qu, sup‘Ilzl(l/w(I))

Jllb(x)lqw(x)l'qu} <o, 1 <q < .

Proofs of the results in sections 2-4 and related matters are

given in [20] and will be appeared elsewhere.

85. Remarks and comments

Our first remark concerns the results of Garcia-Cuerva. In
the paper [19], Garcia-Cuerva studied the space HE(RE) = HE of
analytic functions on the upper half plane, where 0 < p\< ~ and
weA . He has obtained, among other things, the atomic decomposi-
tion for any fEELg whose Poisson integral is the real part of a
function in Hg; here q > qq = inf{s;'wezAs} and 0 < p < 1. Hence,
although there is an overlap, his results in casé wezAl and p = 1
do not entirely contain ours for Hi(RE). The main difficulty in
the case weA_ is that we are not able to prove the existenée of
boundary values in the sense of distributions of functions in Ha
and also to find a way to explicitly express these boundary values
in terms of the corresponding harmonic functions in Hg.

Another possible approach to weighted Hardy spaces, bypassing
harmonic functions or analytic functions, is to study the space of
all tempered distributions f whose non-tangential maximal functions
N(f)(ELE, where the weight function w may not be in the class A_.

At least, if weA_, then equivalence between (A), (B) and (C) (resp-
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(A)', (B)' and (C)') in Theorem 2 (resp. Theorem 3) holds for an
arbitrary f€S'.

Our final remark is about the Triebel-Lizorkin spaces. The
jdentities (1) and (2) in section 1 suggest the possibility of cha-
racterizing F;’q and F;,q via traces of solutions of differential
equations. This type of characterization is well-known for Besov
spaces ([3], [21], [22], [23]). Another subject that should be
worth studying is weighted Besov‘spaces and weighfed Triebel-Lizorkin

spaces and their relations with weighted Hardy spaces. The prepa-

ration for such a study has been given by Triebel ([24]).
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