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* INTRODUCTION

Aggregation in insects, as with other animals, appears
to be a fundamental trait with complex origins. Needless
to say, it has a direct bearing on reproduction and survival,
both of which are vital factors in the population dynamics.

Many ecclogists and mathematicians have been interested
in the aggregation of animals or plants, and have proposed
statistical models to describe‘the spatial pattern of the
distributions, or measures of aggrecation to test departures
of the distributions from randomness (see Southwood 1978).
However, only a few studies have considered the ecological

and behavioural‘éapects of aggregation (Morisita 1952, Breder

1954, Shigesada and Teramoto 1978).

Many factors are supposed to be operating on the

1) Present address: Faculty of Agriculture, Nagoya University.
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aggregation of insects. Morisita (1961) classified ecological
factors that form aggregations into three categories: (1)
response to environmental heterogenity, (2) mutual attraction
with other individuals of the same species (e.g.,gregariousness
or mating behaviour), and (3) reproductive behaviour (e.g.,
issuance from egg-massés or clum?ed eggs with limited movement
of subsequent stages). The effective or dominant factors that
form aggregation will change from species to species. Each
student directed his attention, according to his investigating
objects, to one of these factors. For example,
Morisita (1952}, who studied habitat selection of ant-lion,
directed his attention to the response to the environmental
fish, to the mutual attraction of individuals.

Most colonial insects as we know lay eggs in clusters
and the larvae emerged from each cluster tend to be gregarious

and to stay within a certain range from the cluster. Therefore,
we should take into consideration both the mutual attraction of
individuals and the reproductive béhavioural perfotmance

for the study of gregariousness of colonial insects. In

this paper, we will propose a simple model incorporating

‘both these factors to describe the distribution of individuals,
and show a new method analyzing the aggregation pattern of

colonial insects. We will also describe the application of
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the method to data obtained on the larval distribution of a

colonial insect Pryeria sinica Moore,

MODEL

Generally, colonial insects lay eggs in cluster and
ensuing larvae distribute ' themselves in discrete habitat
units such as trees, shoots or leaves. These habitat units
are usually uséd aé the sampling units and provide natural
bases of defining spatial distribution patterns. Let ﬁs
aSSume; for simplicity,’thatrthese habitat units are arranged
in one-dimensional space (Fig.l). The units are possible
to be numbered, from left to right, one to infinitive. An
egg cluster is aésumed tovbe oviposited near the first unit
where the initial aggregation of hatchlings is made. The
clump size (total nuﬁber of individuals that included in the
aggregation) is expressed as N. Each individual is considered
as both repulsive and attractive to some extent. In fhis |
model, individuals tend to dispersé to the right from the
first unit and return to the leff units to aggregate.

"If the number of individuals in the i-th unit at time t
is indicated by gi(g), the number of individuals moving from
the i-th unit to ;he (i+1)~th unit within a unit time is
represented by Qi;ifl'gi(g) and those from the i-th unit to

the (i-1)-th unit by D.

;,4-1°04 (&), where D, ;4

== 27 =

and By i1
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indicate probabilities of movement of an individual in the
i—th unit to the right adjacent unit and to the left adjacent
unit, respectively. The assumption has a restriction that
the individual moves in unit steps; at each step the individual
does not have probabilities to move from the i-th unit to the
(izm)-th unit‘(m;2).

Then, the rate of change in the number of individuals
in each unit is represented as the folloing differential

equation:

dn,

= "Dy, (8 + Dy yeny(E)
at
dn,

= 21’2.1'_1_1(2) - _D.zll.r.lz(z) - 22,3'22(2) + 2312'r.1_3(_t.)‘
at
day

= 9;71,1'2171(3) - 91,1 l'&;ﬁﬁ
at

D (B TRy By (Y
(1)



Considering that each unit has carrying capacity K, we assume

-rl;+l (£)

Di,j+1 = 0l 1~ < ) formy,; <K
=0 for Eifl 2K
and
- n, (t)
Diyy,i =201~ ) for n; < K
— — 5 —_
=0 for n, 2 K. (2)

From these assumptions, a unit occupied by more individuels\

than X cannot be entered from the adjacent units

and a probability of entrance into a unit occupied by fewer

individuals than K is proportional to a ratio of the vacant

posfs to the carrying capacity. The constants a,; and o,

represent strength of dispersal and aggregation, respectively.
If the number of individuals in the i-th unit, gi(g)

follws eguations (1) and (2), and if a; < aj, Ei(E)

approaches to an equilibrium value n, which satisfies the

‘next equation:

Dil

a«( 1 - (3)

K = K



that is, individuals moving within a unit time from the i-th
unit to the (i+1l)-th unit is equal in number to those moving
from the (i+l)-th unit to the i-th unit at equilibrium.
If a; > oz, then all the individuals disperse infinitely
and no equilibrium can be attained.
We put
Q2

a = , (4)
(o] :

The parameter o represents gregarious intensity, i.e. a

measure of intensity of aggregation against dispersal.

By solving equation (3), each n, is expressed by the

number of individuals being in the first unit ng:

K ’ |
n. = (5)

B 1+ ai_l- ~§~

( - 1)

n

ju

The value n. is determined via relation,

1

~1 8

n. =N (6)

[N
“ll
l._l

if values of o, K and N are given.
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Unfortunately, hbwever, we cannot explicitly solve the

- equation for Dy and so we use an integral approximation

as shown in Fig. 2. The value n, is expressed as an area of
a square between x=i-1 and x=i, and a continuous curve p (x)

is drawn such as p(i~-%)=n.. Inquiring equation (5)1,

we can give a form

p(x) = ——m8 ™, (7)
l + A a

The constant A is determined by the following approximation,

[To(x)dx = N. (8

We can now integrate (8), getting

=

A= —— (9)

The number of individuals at equilibrium may be approximated

1
lWe put i-3 = x and a®-«/( o 1) = A in the right hand side
N B =1

in eguation (5).
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by

i K A+ o=
n. = J p(x)dx = 1n{ . (10)
i-

i .
= 1 1n a A+a i

By computer calculations the above approximatién'(lO) was
confirmed to correspond closely with the original equations
(5) and (6) (the error is less than 0.1% for K>0, N>0 and
a>1). The equilibrium distributions of individuals among
units are drawn in Figs. 3 and 4 for different values
of a (represented as ln o in Fig. 3) and N, respectively.
We can see that the number of individuals in the left units
come close to carrying capacity K as N increases and that
the-pattern of distribution shows more intense aggregation
for larger values of a. |

If we get a set of observed values of n; in a clump
of size N, we can determine the specific par;ﬁeters
a and K for the clump by the method of least squares.g
However, to obtain® the representative estimates of those
parameters -for a given population, it is desiable to
obtain the estimates from data on several different sized

clumps sampled from the population.

For this purpose, we applied a parameter mean concentration,

proposed by Iwac (1976}, to our model. Mean concentration

is defined as the mean number of individuals per individual
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per quadrat,i.e.,

(AN
I ~1Q
’...'
=}

et = (11)

|
I ~Q
=
(=]

where Ej is the number of individuals in the ifth quadrat,

g is the total number of quadrats contained in the population

area. We replaced his quadrat by our habitat unit, and then,
I nf
n.
_E; .
i=1 1 5
c* = - = } nt. (12)
- © "N —}_
= i=1
I n -
—i
i=1 "

Substituting equation (9) and (10) to (12), c* is represented

as a function of a, K and N:

&) 3
K 1+(a & o1y o7

Y { in 32, (13)

= =) s
1+ (o K -1) « x




The value of ¢* illustrated in Fig. 5 was numerically calculated
for different values of a (represented as ln a in the figure).
We can see that each curve on the graph has a linear part near
the origin and that c* approaches an asymptote K as N increases.
For small values of a, the curves are monoﬁonously increasing
but, for large values, they show wave-like oscillation. The
gradient of the linear part near the origin can be obtained
as follows.

As N is much smaller than E’néar the origin, we can
neg%ect Ei/g and Bi+l/§ in equation (3) and get,

n, = o-*n _ ‘ , (14)
We can determine n. as a function of N and o as
-1

n, = Ne(a - 1)ro =, (15)

Substituting equation (15) to (12), c* can be represented as

T —
{ a -1 .
!\E*:—————-E. (16)
Y o + 1
—
: o - 1
Therefore, the gradient near the origin is
o + 1

If observational or experimental data of distributions
are obtained for clumps of different sizes, we can plot c*

calculated from equation (13) versus N, roughly estimating

10
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the parameter of gregarious intensity a from the gradient of

the curve and the carrying capacity‘g from the asymptote.
The more detail value of o and K can be obtained by the method
of least squares (computer will be indispensable).

As this method need laborous calculation of equation
(13}, the following procedures will be convenient. For small

value of a, the next equation is approximately satisfied:

n? =/ {o(x}ax (17
1 = 0

e~ 8

i

As the result, we get

K. -(Tlg-)
c*=K{l-— (1 ~-0a =)} (18)
N+ln a

We can use the above simple equation in place. of equation (13)
for small a. Computer calculation shows that maximum of ‘
errors of c* in equation (18) is 1% for o=3.0 and 10% for
a=6.0. Therefore, whenever the value o obtained by the use
of equation (18) is less than 6.0, we can estimate the value
wiéhin 10% errors.
When the obtained value o is larger, we adopt only K value
 but « because K is little influenced by the approximation of
equation (17). Then.we transfer c* and N obtained from

the data to c¢*' and N' as follows,

11
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100
c*' = %
X
100
N =N a9)
kK
taking the best fitting curve among the graphs with
different o and constant K=100 as shown in Fig. 5.
'APPLICATION OF THE MODEL
Material and acquisition of the data
The applicability‘of our method is now examined on
Pryeria sinica (Zyganidae:Lepidoptera). We will briefly
describe here the bionomics of this speéies. g,'sinica
has a univoltine life cycle in Fukuoka. Adult'emerges at
the beginning of November. A female oviposits her eggs in

a cluster near a wintering bud of the host plant,‘EuonYmus
japonicus. The number of eggs in a cluster ranges from 60
to 180; It overwinters as egg stage and the eggs usually
hatch at the end of Februaiy. The hatchlings feed young
leaves of the host plant in a clump but they separate ‘
themselves into several'sub¥clumps as they become larger.

The larvae of a single clump show a synchronized development.

Fully grown larvae can be seen at the end of May.

12
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Investigations were made at a hedge-row of E. japonicus in
the Experimental Field of the Department of Biology, Kyushu
University K from March to April, 1979. When we found a clump
of larvae at the hedge, it is first examined whether the"
clump is issuance{from a mass of eggs or not. The examination
can be easily made by counting the number of masses of egg-
shells remained near’ the larval clump on the hedge.”  When
the clump was found to be issuance from a mass of eggs, the
number of individuals were counted on each habitat unit
(young shoot of E. japonicus) in which the larvae occurred.

. On the other hand, when the clump was found to be issuahce
from two or more egg masses oviposited separately, no counting
was made, as complicated disturbing factors were supposed
to be operating on the distribution pattern of individuals.
The investigations were made on each instar of larvae from
the first to the fourth (final) instar. As clump

size is usually large at younger larval stages, we settled
artificially small clumps of larvae on shoots tc obtain
additi?nal data. The investigations on these clumps were
madeyé;o or three days after the artificial settlings.
Resui;s

The results of investigations were summarized in Fig. 6

e e TN
(a=-d) . The results on the‘artificially settled clumps are
s e L T
represented by hollow circles in the figure. The curve-linear

13
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regression for the observed relation is‘obtained from the
equation (13) by computer calculation using the method of
leést squares. |

The estimate of a (gregarious inténsity) and K (carrying
capacity) for the first instar larvae are 12.77 and 185.1
respectively (Fig. 6(a)). The strength of aggregation is
12.77 £imes greater than that of dispersal. Values of the
parameter o for the Second, thé third and the fourth instar
larvaé are estimated as 6.00, 2.60 and 1.78, respectively,
decreasing according to the development of the larval instar
(Fig. 7). Values of the parameter K for the second, the
third and the fourth instar larvae are estimated as 77;0,
28.1 and 2.73, respectively. The carrying capacity df
the habitat unit also decreases with the larval development

(Fig. 7).

The estimations of parameters from equation (18) are
also made. vThe results are shown in Table 1 together with
the estimates from equation (13). We can see that K value
does not so differ with two different methods in each larval
instar. However, o value estimated on the first instar larvae
by equation (13) is largely different from that estimated

by equation (18), because the approximation by equation (17)

14
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is not good for large value of a. In this case, we should
not adopt o value estimated from equation (18) but adopt

that from equation (13).

DISCUSSION -
There have been proposed many indices of aggreﬁation

based on quadrat counts. Among them, variance-to-mean ratio,

negative binomial parameter k, I8-index proposed‘by Morisita
(1959) and mean crowding 5y Lloyd (1967) are widely uéed as
good measures of aggregation. As stated by many authurs,
each measure of aggregation is dependent in part on the size
of sampling unit chosen. Morisita (1959) and Iggg (1972)

applied this nature of indices (Id-index and mean crowding

respectively) to detect spatial pattern of individﬁals within
a clump and distinguished different pattern of digtributionJr
of random, aggregated and uniform. These methods are useful
to find clumps where the individuals are scattered throughout
a continuous space. |

On the other hand, investigating the aggregation patter
of colonial insects in their natural field, we are usually
faced by a situation that the individuals.occur'in discrete
habitat which surve as natural sampling unit. Clump siie’
of colonial insects is often able to be measured directly

even when members of the clump may separate themselves into

15
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several sub-clumps. Considering these characteristics of
colonial insects, we proposed a model to analyse spatial
structure of a clump with a new parameter of aggregation, ua.

It is usually taken for granted that the clump size is
highly variable among clumps. Though this high degree of
variability often makes the estimation of measure of the
aggregation so imprecise, no study seems to have been made
on the variability of the ciump size. As shown in Figs. 5
and 6, c* has curve-linear relationship to the clump size
N. Single estimate of a for a clump indicates only a
specific value of that clump. We should know species
specific o from the relatidnshi§ between N and c* for the
study of gregariousness of an insect species. If equation
(13) represents the true nature of aggregation, we can see
it by measuring aggregations on three or more clumps with
différent clump size.

We considered that the distribution of individuals is
partly determined by a balance between dispersing and aggregating

strength which are expressed as o; and a,; in our model. Similar

16



132

Breder measured distance between nearest neighbours, explaining

the exsisting mechanism of schooling of fish by a balance
between repulsion and attraction of the individuals.

Kennedy and Crawley (l.c.) analyzed distribution of

aphids, Drepanosiphum platanoides on a sycamore leaf in the
similar way, and found that they repel one another up to a
certain distance despite that they exhibit gregarious behaviour.

They termed such a behaviour spaced-out gregariousness,

suggesting that it would be fruitful to consider every insects
are solitary and gregarious at the same time, i.e. both
repelling and attracting conspecifics. We applied this idea
to our method that use discrete habitat units in spite of the
distance measurements. In this case, there exist a maximum
number of individuals that enter a habitat unit. In this
sense, our model belongs to one of density dependent models,.

in which case the movement depends on the density of the entered

unit.
Kennedy and Crawley (l.c.) used both terms attracting

and repelling in loose sense referring only to changes in
spacing, without necessarily implying directed movement. In
our model, we assumed the directional movement of individuals

from a center which will be taken place by the reproductive

behaviour of colonial insects. The directional movements
are seen other than colonial insects. For example, Morisita

(1950) studied density related movements

17
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of adult Gerris lacstris (Hemiptera:Gerridae) among several

adjacent small ponds in the study area. Adult density

became higher in one of those ponds than the others in the
early periods of the adult immigration from hibernating

sites. As it seemed to reach a saturation density, a fraction
of individuals on that pond became to emigrate‘onto other
ponds. The rate of emmigration increased with the density

of that pohd. These adult movements determined the distribution
of individuals among the ponds. Similar density dependent

movements are found in many insects, e.g., ahids Aphis glycines,

Rhopalosiphum maidis, R. padi and Macrosiphum granarium (Ito

1952,1960) , sugar cane bug Cavelelerium saccharivorus (Murai

1977), several species of dragon flies of Anisoptera (Moore

1964, Higashi 1969) and Zygoptera (Moore 1964).

Morimoto (1972) reviewed the studies on the insect
aggregations. He stated that the group size of larvae

differs among different species or differnt larval stages of

the same species. As already made clear, however, the group
size (number of individuals in a habitat unit in our model) is
influenced not only by the intensity of aggregation of the
insect but also by both the clump size and the carrying capacity
of the habitat unit. These components will be required to be

distinguished. In our model, they are represented separately

by the parameters o, N and K, respectively. Using these parameters,

18



134

we will be able to make a comparative study among different

species of colonial insects.

SUMMARY

A model is constructed to describe gregariousness of
colonial insect larvae which occur in discrete natural habitat
units. The model is based on the assumption that the
distribution of individuals in a clump is determined by a
balance between aggregative and dispersing movements of
individuals. The model includes three parameters, i.e.,
clump size, carrying capacity of habitat units and intensity
of aggregation against dispersal. The modes of effects of
fhé;é parameters on the distribution of individuals are
analyzéd.

Several methods are developed to estimate these parameters

from observed data, and their applicabilities are

investigated. Application of these methods are described

on the larval distribution of a colonial insect Pryeria sinica
Moore. |
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Table 1. Values of parameterscﬂ and K estimated from equation (13)

and (17).

Estimate from equation

Estimate from equation

17)
. A X A K
1st instar larva 12,77 185,1 7.69 198.4
2nd " 6.00 77.0 5.32 77.3
3rd " 2.60 28,1 2,53 28.2
4th " 1.78 2.73 1.79 2,71




