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Nonlinear Stefan Problems in One-Space Dimensiocn

(An Approach by the Theory of Subdifferential Operators)

Nobuyuki KENMOCHI

Department of Mathematics, Faculty of Education, Chiba University, JAPAN

Introduction.

In the physical processes we find many phenomena with change of state,
such as melting of ice, recrystallization of metals, evaporation,
condensation and flow in poroué media. Stefan problems in mathematics
represent such physical models and have been studied by many. authors (e.g.,

(3, 4, 6 - 20, 25 - 28, 30, 32, 33, 35] and their references).

The present paper is devoted to the study of Stefan problems for

nonlinear parabolic differential equations of the forms

% _ =f %% - p-2 =

*)  u -8, =1, (**)  u - (Ju T w), = f
in one-space dimension, where B: R -+ R is a given function with B(0) = 0
which is strictly increasing and bi-Lipschitz continuous, and p is a number

satisfying 2 < p < . Equations (¥) and (¥¥) are special cases of the

following general form
-2
(¥x¥) ue - (18, P78 ), = 1,
so we shall deal with equation (¥*¥) in what follows.

Given a non-negative number £, functions g on [0, T] (T is a fixed
positive number), u, on o, 20] and £ on [0, T] x [0, »), our problem (one
phase Stefan problem) is to find a non-negative function x = 2{(t) on [0, T]

and a function u = u(t, x) on [0, T] x [0, =) such that



(E) | u, - (|B(u)xlp'23(u)x)X =f for0<t<T, 8(t) >0, 0<x < &(t)

subject to
(c1) Q(Q) = 20 and if 20 > 0, then u(0, x) = uo(x) for 0 < x < lo,
) IB(U)X(t, O+)lp_26(u)x(t, 0+) =g(t) for 0<t <T,
- (c2
B(u)(t, 2(t)) =0 for 0 <t <T,
(C3) 9§é§2-= - ls(u)x(t, z(t)-)]p'zs(u)x(t, 2(t)-) for 0 <t <T,

where B(u)x(t, x+) (resp. B(u)x(t, X-)) stands for the right (resp. left)
hand partial derivative of B(u)(t, x) at x with respect to x. The unknown

boundary x = 2(t) is called the free boundary.
To this kind of problems there are such approaches as listed below:

(a) difference method (cf. [32, 351),
(b) approach by the theory of nonlinear semigroups (cf. [3, 7,.25]),
(¢) reduction to variational inequalities (ef. [8, 9, 11, 16 - 18, 281),

(d) reduction to nonlinear integral equations (ef. [12, 15, 26, 321),

etc. In this paper we employ (d) with (e). A class of nonlinear Stefan problems
was treated earlier by Kyner [26], in which he established an existence and
uniqueness theorem by employing (d) and by making use of a strong maximum
principle of Nirenberg [29] for parabolic equations with variable coefficients.
But his method is not directly available to our case, in particular to the

case that p >A2 or B is not smooth. Our approach to problem {(E), (Cl) ~ (C3)},
which is different from that of Kyner in some points of view, is based upon
recent results on the existence, uniqueness and stability of solutions to
nonlinear evolution equations involving subdifferential operators of time-

dependent convex functions on Hilbert spaces (ef. [1, 2, 21 - 23, 31, 34, 361).
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Notations. For a (real) Banach space V we denote by I-IV.the norm in
Vv, by V¥ its dual and by (-« , )V the duality pairing between V¥ and V; in
case V is a Hilbert space and is identified with its dual space, we mean by

(r, -)V.the inmner product in V.

By an operator A from a Banach space V into another Banach space W we
mean that to each v in V, A assigns a subset Av of W, namely A is a multi-
valued mapping from V into W; in particular, if Av consists of at most one
element of W for every v in V, then A is called singlevalued. For an operator

A: V> W the set D(A) = {v € V; Av ¥ ¢} is called the domain.

Let ¢ be a lower semi-continuous convex function on a Hilbert space H
with values in (- «, =] such that ¢ § © on H. Then the set D(¢) = {z € H;
¢(z) < o} is called the effective domain of ¢, and the subdifferential 3¢ of
¢ 1s an operator from H into itself defined as follows: z* € 3¢(z) if and

only if z € D(¢), z¥ € H and
(z%, y - 2)y < 9(y) - ¢(2), ¥ yem

For fundamental properties of 3¢ we refer to a book of Brézis [5].

1. Formulation as a quasi-variational problem.

Let 2 <p <oand 0 < T < «» be numbers which are fixed, and set for
simplicity
H = 1°(0, »), X = WP(0, ).

Let B: R » R be a function with R(0) = 0 and assume that B is strictly

increasing and bi-Lipschitz continuous on R, i.e.,

%—glr - ry1? < (B - B (@ - 7)< eglr - 7|

, 4 r, rq &R

with a positive constant CS'



Given a non-negative continuous function &: [0, T] + R and a continuous

function g: [0, T] - R, we define for each t in [0, T]
Ky(t) = {z €% 2(x) = 0, ¥ x> 2(6))

and

lrlz IPax + g(t)z(0)  if z € K, (t),
ply' X '3
(1.1) o o(2) =
>
o otherwise.
Clearly ¢§,g is a lower semi-continuous convex function on H with D(¢E’g) =

Kl(t)' We then consider the nonlinear evolution equation
(1.2) u'(£) + a¢y GBu(t) D£(t)  for o<t <,
’

where the unknown u is an H-=valued function on [0, T], u'(t) = (d/dat)u(t) and

B is the singlevalued operator from H = D(B) into itself defined by
[Bz1(x) = B(z(x)) for z € Hand x € [0, «).

By our assumption we see that B is Lipschitz continuous on H with cB as a

1

Lipschitz constant as well as B~ with 1/c, as a Lipschitz constant.

B
Definition 1.1. Let %, g be as above, U, be in H and f in L2(O, T; H).
Then we mean by VP(%, g, uss f) the Cauchy problem for (1.2) to find a

function u in C([0, T]; H) such that

(A1) u € w30, T; H) and u(0) = u
(A2) the function t > ¢y L(Bu(t)) 1s bounded on [0, TJ;.
3

(A3) u'(t) + 3, G(Bu(t)) 3 £(t) for a.e. t in [0, TI.
N b
Such a function u is called a (strong) solution to VP(%, g, Uy s ).

Proposition 1.1. Let &, g, Ugs f be as in Definition 1.1. Then a solution

u to VP(&, g, Ug» f) is able to be characterized by the following system:



u € w20, T; H) with u(0) = u,

(1.3) 4 BWE L7(0, T; X),

B(w)(t, - )€ Ky (t) (hence-B(u)(t, &(t)) = 0) for all té& [0, T],

(1.4) u (6, +) = (JBw) (&, «) P28 (5, +)),

in the distribution sense on (0, 2(t)) for a.e. t & I.s

£(t, »)

(1.5) |B(w)_ (¢, O+)|p_28(u)x(t, 0+) = g(t) fora.e. t€ I,

where I = {t € [0, T]; 2(t) > 0}. Moreover, B(u)x(t, 2(t)-) exists for a.e.

t € Io'

Proof. Obviously (1.3) follows from (Al) and (A2). As is easily seen,

(A3) can be written in the following equivalent form:

(ur(t) - £(t), Z)H + Jols(u)x(t, x)|p_26(u)x(t, X)ZX(x)dX
(1.6) |
+ g(t)z(0) = 0, Vze Kl(t)’ for a.e. t € [0, T].

We see from (1.6) that (1.4) holds and hence (ls(u)x'(t, ->|p‘2s(u)x(t, "y

= u (¢, +) - £(t, +) € L%(0, &(t)) for a.e. t € I_. This implies that
[B(u)X(t, X)[p—ZB(u)X(t, Xx) is an absolutely continuous function of x on

(0, 2(t)) and B(u)x(t, 0+) exists for a.e. t € IO as well as B(u)x(t, L(t)-),
so that by integration by parts we obtain (1.5) from (1.6). Similarly we can

show the converse. ’ Q.E.D.

Now we are going to give a quasi-variational formulation associated with

our Stefan problem {(E), (C1) - (C3)}.

Definition 1.2. Let 20 be a non-negative number, U, be in H, g in

C([0, T]) and f in LZ(O, T; H). Then we mean by QVP(ZO, g, u, f) to find a

O’
couple {%, u} such that

(Bl) %€ W>2(0, T) and 2 > 0 on [0, TJ;



(B2) u is a solution to VP(%, g, Ug> )3

t ) _ t (2(r)
(B3) a(t) = 2, - [Og(r>dr ' Io-uO(X)dX ; [Ojo Flr, x)axdr
- | ult, x)ax for all t & [0, TJ.
0 .

Proposition 1.2. Let 20, g, us f be as in Definition 1.2 and {%, u}

be a solution to QVP(ZO, 8, Ugs ). Assume that g is non-positive and Uss f

are non-negative. Then (1.3), (1.4) and the following (1.5)', (1.7) hold:

(1.5)! |B(u)x(t, o+),|p'28(u)x(t, 0+) = g(t) for a.e. t € [0, T],
L B - e, (6, 2(5)-) [P, (5, LE)-) for a.e. t € [0, TI.

Proof. By Proposition 1.1 we have (1.3), (1.4), (1.5) and B(u)x(t,l(t)-)
exists for a.e. t € I, (= {t e[0, T]; a(t) > 0}). From (B3) with (1.5) it

follows that

2(t)
dgét) = - g(t) + fo f(t, x)dx - Eut(t, x)dx

6)
- g(t) - jo (18w, (5, 0 P28, (t, x)),ax

- I8, (6, 2(6)-)[P%B(w) (&, 2(£)-)

for a.e. t € I . Also, if t € (o, T - I, then u(t, x) = 0 for all x > 0 and

(B3) implies g(t) = 0. Therefore

|B(U)X('C, O+)[p‘28(u)x(t, 0+) = 0 = g(t) for all t € (0, T] - Io
and
dgét) =0= - lB(u)x(t, z(t)—)|p-2s(u)x(t, B(t)-) for a.e. t€[0, T] - I_.

Thus (1.5)' and (1.7) are satisfied. - Q.E.D.
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By the above proposition we see that QVP(%O, g5 Ugs f) is a quasi-

" yariational problem associated with {(E), (Cl) - (C3)}.

Our results on QVP(%O, g, u_, ) are stated as follows.

O,
Theorem 1.1. ILet & > 0, u & H be non-negative, g & C([0, T]) be non-

positive and f € L?(O, T; H) be non-negative. Then we have:

(a) If {2, ul} is a solution to QVP(QO, g u_, f), then u is non-
negative and % is non-decreasing in t.
(b) In addition suppose thatlhbe X, u, = 0 on [20, ) and

ge wlo, T). Then QUP(L,, &, u,, f) has at least one solution.

The proof of this theorem will be given in sections 2 and 5. In order to

demonstrate the existence of a solution to QVP(ZO, g, u_, f) we shall

O,

introduce a mapping P from a certain compact convex subset S of C([0, T])

into itself defined as follows:
2

t o t (1)
[PRI(t) = Lo = jog(r)dr + J uo(x)dx + IOJO f(r, x)dxdr

0
(1.8)

- ru“(t, x)dx for each % € S and t € [0, T],
O .

where u2 is a solution to VP(&, g, Uys f). We shall show that there is an
element 2 of S satisfying PR = 2 by a fixed point theorem and that the cbuple

{2, uz} is a solution to QVP(QO, g, u_, ).

O,

The problem of uniqueness for a solution to’QVP(RO, 8> Ugs f) remains

11

open, but in the special case that p = 2 and £ = 0 we shall show

Theorem 1.2. If p = 2, then QVP(QO, g U, f) has at most one solution
for 20 >0, ge Cc([o, T]) non—positive,l%)e X non-negative with u, = 0 on

(2, ©) and £ = 0.



2. A comparison theorem for VP(%, g, U, ).
We show the following comparison theorem for solutions to VP(L, g, Uy» ).

Theorem 2.1. Let £ be a non-negative function in C([0, T]), g, g be in

C([0, T]) with g < g on [0, T], u_, U, in Hand £, T in 12(0, T; H). Let u and

u be solutions to VP(%, g, us f) and VP(%, g, u_, ), respectively. Then

O)
we have:

| Ge) - ue)’] | < @) -uesnN™
(2.1) L7(0, L) L°(0, L)

L. +
e[ l@@ - et ) e
s L~(0, L)
for any 0 < s <t < T and any positive number L > 'RIC([O p7)> Where (-H7F
>

stands for the positive part of ( - ).

Proof. Take a sequence {on} of smooth functions on R with non-negative

bounded derivatives cA such that - 1 <0, < 1 onR, on(O) = 0 and

1 ifr >0,

on(r) _ co(r) 0 ifr=20 (as n » «)

-1 ifr<0

for each r € R. Since on([s(ﬁ)(t, « ) = Blw)(t, ')]+) € Kg(t) for all t in

[0, T], we have by (1.6) in the proof of Proposition 1.1

('(t) - £(8), o ([B(@)(E, +) = BW(E, = )Ty
+ f:|s<u>x<t, x) P28, (8, 0o (18@) (¢, x) - B (¢, 0T ax
+ g(t)o ([B@) (5, 0) - BW(E, 0)T%) = 0

and

(@ (6) = F(), o ((B@D(t, +) = BWI(E, )Ty
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mls(ﬁ) (t, x)lp"gs(ﬁ) (t, x)2g ([B(T) (£, x) - B(u)_(t, x)THax
+ 0 X ’ X 9X n X

+ B(t)o_([B(@) (¢, 0) - Bw(t, 0] =0
for a.e. t €[0, T], from which we infer that
(@ (8) = ut), o ([B@(E, ) = B, - )Ty

< (F(6) - £(8), o ([BE) (£, + ) ~ BW(t, - )TNy

- f:{|5<ﬁ>x<ta x) P28 (5, %) - |8, (6, x) [P28(w) (5, 0} x

X giﬂn(fﬁ(a)(t, x) - B(u)(t, X)]+)dx

- (&(6) - g(t)o ([B@ (£, 0) - B (t, 0)I)

(F(6) - £(t), o ([BE(E, *) ~ Bt )Ty

i

- oy (1B G, P28, 6, 30 — 180, (5, 20 [P0, o, 00
E(t

x (B, (5, %) ~ B (&, )0’ ([B@) (&, x) - B (t, )T ax

- (&) - g&))o ([B@ (5, 0) - Bw(t, 0T

(E

(F(£) - £(t), o, ([B@) (£, +) ~ BWI(E, )Ty

for a.e. t € [0, T], where E(t) = {x; B(u)(t, x) > B(u)(t, x)}. Letting n » =,

we get for a.e. t in [0, T]

(2.2)  ('(t) - u'(v), oO([B(E)(t, <) = Bu)(t, - )]+))H < I(i"(t)-f’(t)f’l 1 .
. -(0,L)

Since o ([B(T)(t, X) - BW(t, x¥)T7) = o_([Q(t, x) - u(t, 1" and

= 1 u . 71 = g;- u '
@' (6) = w (), o (A, +) = ult, )Ty = S @(E) - ut) ]Ll(O, L)’

it follows from'(2.2) that

< @) - N

d /= +
S @e) = ue)|
dt (0, 1) rro, 1)

-9 -
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for a.e. t €[0, T]. Integrating this inequality, we get (2.1).  Q.E.D.

Remark 2.1. The technic adopted above is found in Bénilan [3] and

Damlamian [8].
The following corollaries are immediate consequences of Theorem 2.1.

Corollary 1. Let &, g, U, and f be as in Theorem 2.1. Then

VP(L, g, Ugs f) has at most one solution.

Corollary 2. Let &, g, U, and f be ‘as in Theorem 2.1 and further assume
that g is non-positive and Uys f are non-negative. Then a solution to

VP(L, g, Uys f) is non-negative.

Proof of (a) of Theorem 1.1: ILet {&, u} be any solution to
QVP(QO, g,‘uo,‘f)..Then,'according to Corollary 2 to Theorem 2.1, u is non-

negative as well as B(u). Therefore
B(u)x(t, 2(t)-) <0 for a.e. t € [0, T]

and by (1.7) of Proposition 1.2

aett) 5 g for a.e. t € [0, T1,
dt =
which shows that & is non-decreasing in t. Q.E.D.

3. Some lemmas.

Throughout this section we fix 2 € C([0, T]) and g ¢ w1’1(o, ™), and
assume that £ is non-decreasing and non-negative. For simplicity by ¢t we

denote the convex function ¢E e given by (1.1).
3
First of all we show a lemma on the t-dependence of ¢t.

Lema 3.1. With C = (|glg(rg pp) + DP 2D + 1, p' = p/(p - 1), we
have

- 10 -
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(3.1) 0°(2) 2-¢, Vselo, T, VYzeKls),
o°(z) - 65(2) < Clalt) - g(s)](5(z) + ),
Vs, telo, TIwiths<t, Vze K, (s).

(3.2)
Proof. Let 0 < s <Tand z G—Kﬁ(s). Then for any § > 0 we observe that

%(s) a(s) 8]z |P
2] < [ e < | gt

2(s) . 1-p!'
6] IZX|de + 8 p'JZ,(S,)

s §5P o (s)
= 8¢7(2) - 6g(s)z2(0) + ——7—

-1 we have

>

so that by taking § = (lg|g(rg gy 1)

2(s).
) = Y 7, Pax + g(s)200)
| .
lElo(ro, 1p® " MD

25 - slelgpo, T]))JO ,)IZX Yax >
>-C
and for any t > s
$°(2) - 6°(z) = (g(t) - g(s))z(0)
S amy,
p

Dlg(t) - g(s)|(4%(2) +

§
1- ‘Slglc([O, T

A

Clglt) - g(s)|(°(z) + C).
Q.E.D.

A

 Thus (3.1) and (3.2) hold.
Next, we consider the regularization ¢§, 0<Axg1, of ¢t as is defined

by
t 1 2 .t :
¢ (z) = inf {z3|z - ylg + ¢ (¥}, z € H.
A et X H

- 11 -
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In what follows, without proof we shall use some of well-known properties of

¢§ such as

(1) ¢§ is finite, continuous and convex on H,
(ii) the subdifferential 8¢§: H= D(8¢§) + H is singlevalued and

Lipschitz continuous with 1/A as a Lipschitz constant,

(111) J% = (T + 23¢")™! 1s contractive on H and a¢§ = (I - Jl;)/)\,
(1v) I7z = 3Ge + (1 = D3%2) for u, A > 0 and 2 €1,

(v) ¢5(z) = |z - 3%212/(20) + ¢°(3t2) for z € H,
A ATH A
ete., for which we can refer to a book of Brézis [5].

Lemma 3.2. ¢§(z) >-Cforany t € [0, T], A € (0, 1] and z € H, where

C is the same constant as in Lemma 3.1.
Proof. By (3.1) of Lemma 3.1,

$3(2) = 5xlz - 32|12 + 0% (3%e) 2 ¢%(te) 2 - c. Q.E.D.

Lemma 3.3. Let C be as in Lemma 3.1. Then we have:

(1) 5%zl < lzly+2v@, Ve e o, 11, Ya e (0, 11, Yz e 1

. t 2 v Y v .
(11) [3¢y(2) |y < 5zl + /2¢), Yt elo, T, YA e (0, 1], Yz e H

(111) - € £ 05(2) < $(lzly + /2)|zly,  165(2) - 5(z))]

A

2
$zl+ |zl + 2720 |2 - 2], Yt erl[o, T], YA e (0, 1], Vz, 7, € H.

Proof. Using Lemma 3.2, we observe
t _ Lith2 t,.t 1,412
02 ¢,(0) = 2]J10|H +¢7(30) 2 2]J10IH - C,
so

|7%]; < /¢, V& € [o, 1.

Making use of the relation ng = Ji(xz + (1 - A)ng), z € H, we see that

- 12 -
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t t t t
IJAOIH < |J10|H + (1 - x)lJlolH < 2|Jlo[H
and hence
(3.3) %l <2/, VYielo, 7, Yael(o, 1l
Since JJ; is contractive on H, we have by (3.3)

t
lJXZlH

A

t t t t
1582 = 350l + 13501 < Izly + 1950lp.< ot 2720
for any t € [0, T], A € (0, 1] and z € H, which shows (1). Next from (i) it
follows that
-t 1 t 2
13¢>\(Z>IH = X—Iz - szlH < 'X(IZ'H + /2C)

for any t € [0, T], A € (0, 1] and z € H. Hence we have (ii). To show (iil)

we note that

05 (2) - 630z < (303(2), 2 = 2Dy < |305(D) ||z = 2 |

v

05(2) = 6%(27) 2 (305(2), 2 = 2y > = 305z |yl2 = 2y
and

63(2) < 1365 (2) ] 4lz]

for any t € [0, T], A &€ (O; 11 and z, z, € H. From these inequalities, (ii)

and Lemma 3.2 we derive that
l¢§(z) - ¢J§(Zl)| < {|8¢§(z)|H + |a¢§(21)|H}|Z -zl

2

H
and
- ¢ < o%e) < E(Jaly + V2O 2]y
for any t € [0, T], A € (0, 1] and z, z; € H. Thus we get (1ii). Q.E.D.

The following lemma is due to Attouch-Bénilan-Damlamian-Picard [1]

(or Picard [31]).

- 13 -
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Lemma 3.4, Tet v ewl’l(o, T; H) and 0 < X < 1. Then ¢§(v(t)) is
differentiable at a.e. t € [0, T] and its derivative is integrable on

(o, T]. Moreover, with the same constant C as in Lemma 3.1 we have

t
B4 ) - e < [ S frayogsgter,
S

(3.5 S4hwe)) - @ekv(e)), v (£))y < Cle (B (@S (v(e)) + ©)

for a.e. £t € [0, T].
Proof. let z € H. Then by Lemma 3.1 and (iii) of Lemma 3.3 we observe

that for 0 < s <t < T
05(2) - 85(2) < o°(352) - $°(35)
(3.6) < cle®) - gls)](63(z) +©)

t
<o) lgr(o)ar
S

with
o(2) = C{2(|zl, + V20) |zl + CI.

From (3.6) we see that

£ t
t —— ¢A(Z) - c(z)folg'(r)ldr

is non-increasing on [0, T], so that ¢§(z) is differentiable at a.e. t in

[0, T], its derivative is integrable on [0, T] and

t
B1 @ - 6@ < [ e for any 0 <5 < t <.
) S
Moreover,
(3.8) (@) < cle' (@] (65(2) + ©) for a.e. r € [0, T1.

Next, let v € W->1(0, T; H). Using (3.7) and (3.8), we have

- 14 -



15

BEw(6) - $(v()) = (3w, v(b) - v(s)),,

§:¢§(V(S)):'¢§(V(S>)
(3.9)

A

t
| Sews)ar
S

T
CJ g () (¢ (v(s)) + C)ar
S

A

for any 0 < s <t < T, from which (3.4) follows just as (3.7). Besides,
dividing (3.9) by t - s and letting s + t, we obtain (3.5) with the help

of (iii) of Lemma 3.3. Q.E.D.
Finally we show

Lemma 3.5. For each A € (0, 1], the operator v - 3¢§.)(v(-)) is

Lipschitz continuous on L2(O, T; H) with 1/X as a Lipschitz constant.
Proof. As was seen in the proof of Lemma 3.4, t - ¢;(v(t)) is

measurable on [0, T] for each v in wl’l(O, T; H) and hence for each v in

L2(O, T; H). Now we consider a function @A on L2(0, T; H) which is defined

by

. |
oMv) = j $ivenas, Y v erio, T; m.
0

A

Obviously ¢” is finite, continuous and convex on L2(O, T; H) (cf. Lemma 3.3).

It is also easy to see that the subdifferential BQX: L2(O, T; H) -

L2(O, T; H) is a singlevalued operator with D(BQX) = L2(O, T; H) and
o' v) = 30l ) (v(-)), Vverio, 5 m,

so that 8¢§(v(t)) is (strongly) measurable in t € [0, T] for every v in
L2(O, T; H). Since 8¢§ is Lipschitz continuous on H with 1/A as a Lipschitz
constant for all t € [0, T], so is BQA on L2(O, T; H) with the same

Lipschitz constant. R.E.D.
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4, Existence and stability of solutions to VP(&, g, Uss ).

We first establish an existence theorem for VP(%, g, u_, f).

o’
Theorem 4.1. Let & be a non-negative and non-decreasing function in

1,1

C([0, T]). Let u, be in KQ(O), gin W?>(0, T) and f in L2(0, T; H). Then

VP(L, g, ugs f) admits a (unique) solution.

let 2, g, Uy and f be in Theorem 4.1. Then in order to construct a

solution to VP(4, g, Ugs f) we consider an approximate problem of the

following type:
(1.1) ul(t) + B(cbz,g))\(Bu)\(t)) 3 £(t),

u)\(o) = uO’

where 0 < A <1 and (¢E g)A is the regularization of ¢z g On account of
3

lemma 3.5, the operator v - 3¢( )(Bv(')) is Lipschitz continuous on

L (0, T; H) with cB/A as a Lipschitz constant. Therefore for each A in

(0, 1], there is a unique function u, in w ’ (0 T; H) satisfying (4.1)

A
a.e. on [0, T] and uA(O) = u,- We want to show that for a certain sequence
{An} with A+ 0 (as n » «) u, converges to a function in Cc([0, T]; H) and

n
this limit is a solution to VP(&, g, uss .

For simplicity we denote ¢E g by ¢t again, To get estimations for
3
{ux; 0 < A < 1} which are independent of A, multiply (4.1) by (d/dt)BuA(t).

We then have

(W) (8), GgBuy (6))y; + (305 (Buy (£)), eBu, (63D = (£(8), Sebu, (6))y

for a.e. t € [0, T]. We note here that

(w (8, JBu, (6)) > HdBu (012,

g

(£(1), §gBuy () < ol PO + ﬂ——1dt Ju(e)]

- 16 -
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and by Lemma 3.4
t d d t . t
(305 (Bu, (£)), ggBu, (£))y 2 Gpdy (Bu, (£)) = Clg' ()] (6, (Buy (£)) + C)

for a.e. t € [0, T], where C is the same constant as in Lemma 3.1. Therefore,

(1.2) Eg—elg—gaugw 15+ $07 (B, (8)) < Iy (6)6) (B, (8)) + Iy (6)

ror a.e. t € [0, T], where
K, (£) = Cle’ (0], ky(8) = ¢l (0)] + e3lece) |5
Applying Granwall's inequality to (4.2), we have
£ 0 T T B
(4.3) ¢y (Bu, (£)) < {97 (Bu,) + f0k2<r)dr}exp(fokl(r)dr) =C
for all t € [0, T] and
CROI S <c+ o) + jT{c'k () + k() ar.
cB dtmm A LZ(O, T, H) 0 0 1 2

From (4.3) and (4.4) we obtain the following lemma.

Lemma }4.1. There is a positive constant M such that
<c M) )\ G (O 1]
—_ B > 3

|Bu, (+)] < M (hence |u, |
A b2, Ty H) T Myla2o, T H)

and
~ccobeu ) <m, Yoero, 1, Yae(o, 13,

where C is as in Lemma 3.1.

This lemma guarantees that {Bu,(-); 0 < A <1} (hence {u,; 0 <A < 1})
is relatively compact in C([0, T]; H), because the natural injection from

X into H is compact. Now we can choose a sequence {An} with A ¥ 0 such
that
Bu, (+) > Bu(-) in ¢([0, T]; H)

and
- 17 -



18

uﬂ +u! weakly in L2(O, T; H).

Evidently u € W>2(0, T; H) and u(0) = u_. Putting uf(t) = aqf; (Bu, ().
n

we see that ui =71 - uﬁ > f - u' weakly in L2(O, T; H). Also, since
_ 1 t t, .t
HA(E) = 3 (B, (4) - Ty Bu(6)) € 3¢7(3; Buy(6)),

we get

Jg\r'l)Bun(-) ~ Bu(-) in 12(0, T; H),

so the demi-continuity of the operator v -+ 8¢(')(v(-)) in L2(O, T; H) gives
£(t) - u'(t) € %%(Bu(t)) for a.e. t € [0, T].
Moreover

¢%(Bu(t)) < Liminr ¢°(% Bu (t)) < liminf ¢}

(Bu (£)) <M
e n . e n

for all t in [0, T]. Thus the function u is a solution to VP(L, g, u_, f)

O,

and Theorem 4.1 was completely proved.
Next, we show a stability theorem for VP(R, g, uo; £).

Theorem 4.2. Let 20 and L be numbers such that 0 é:lo < L and denote
by A the set {2 € C([0, T]); % is non-decreasing in t, 2(0) = %, and
2(T) < L}. Let g € W20, T), u € X with u_ = 0 on [%, =) and

fe L2(O, T; H). Then there is a positive constant K such that

|u2|w1’2(0 ™ 2K, lqbz’g(Bug‘(t))] <K, V¢ e o, T,

for every & € A, where uz is a unique solution to VP(%, g, Uys ).

Proof. As is easily checked, the constants M in Lemma 4.1 and C in
Lemma 3.1 can be taken so as to be bounded, as long as & varies in the set

A. From this fact the conclusion of the theorem follows. Q.E.D.

This stability theorem plays an important role in solving

QVP(SLO, g, u

o? f).

- 18 -
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5. Proof of (b) of Theorem 1.1.

Throughout this section, assume that % o2 0, uoé X 1s non-negative

l’1(0, T) is non-positive and f € L2(O, T; H)

with ug = 0 on [&, @), g €W

is non-negative, and let A be the set {& € C([0, T]); & is non-decreasing

in t, 2(0) = & and 2(T) < L} with L satisfying

A lo T

u (x)dx - J g(r)ar + /IT|f|
0

2

1°(0, T; H)

.1) L> g +J
(5 | o 0

We now consider the operator P on A which is defined by (1.8).

Concerning this operator P we have
1,2
Lemma 5.1. P(A) CANW?7(0, T).

Proof. let & € A. Then [PL1(0) = 2_ and PR € w2(0, T), since a unique

solution W to VP(L, g, Uss f) belongs to W1’2(0, Ty H). By Proposition 1.1
we have

a 2(t) 2(t)

—{P](t) = - g(t) + f(t, x)dx - u, (£, x)dx

dt 0 0 +

2(t)
- a) - [ B, 0P ab (6, ) 0x

- [8uM), (5, 2(8)-) [PPRY)_(8, 2(8)-)

for a.e. t € I (= {t € [0, T]; #(t) > 0}). Also u* 1s non-negative by

Corollary 2 to Theorem 2.1 as well as B(ug). Hence
Bu™)_(t, 2(t)-) <0 for a.e. t €1,

from which it follows that (d/dt)[PL](t) > O for a.e. t € IO. For a.e. t in

[0, T] - I_ we have
SPR1(E) = - g(t) 2 0,

because ug’(t, x) =0 for all x > 0 if t € [0, T] - I,- Therefore P4 is non-

-19 -
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decreasing. By (5.1), [PRI(T) < L. Thus PL € A. Q.E.D.

Lemma 5.2. P is continuous on A with respect to the topology of
c(fo, Th.

Proof. Suppose that ln'e'A and & > % in c(f{0, T1), and denote by u,
and u the solutions to VP(Zn, g Uy ) and VP(L, g, ug> f), respectively.
Then, on account of Theorem 4.2, there is a constant K such that

t ' v
(5.2) lu | 55 <K, oy, Bu (t))] <K, ¥n, Yte€ [0, T].
W<(0, T; H) n°&
We note here that for each n the following holds:

T
O(ur'l(t) - £(t), Bu (t) - w(t))yat < o(w) - ¢(Bu ),

(5.3)

Vwe 1P, T; X) with w(t) € K, (£) for a.e. t € [0, T,
n

where

o(w) = ler]w (t, x)|Paxdt + ITg(t)w(t 0)dt.
Plolg 7 0 ’

By (5.2), {un} is relatively compact in C([0, T]; H). We want to show that
u > u in C([0, TJ; H). For this purpose, let {un } be any subsequence of
k
{u_} such that u_ -+ u (hence Bu_ - Bu) in C([0, TJ]; H). Then we have
n n, n,

Bunk(t) + Bu(t) weakly in X for each t € [0, T],
Bu +Bi weakly in 1200, T; X)
K
ul - a' weakly in L2(O, T; H)
k

and by the way

o RCHOMES S Y ¢ ¢rlo, 7],

u ew1’2(o, T; H), u(0) = Uy

- 20 -
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b liminf ®(Bu_ ) > &(Bu).
(5.%) k> g T !

Now denote by Z the set
{v e 1P(0, T; X);5 v(t) € K, (t) for a.e. t € [0, TI}.

let v be any function in Z and € be any positive number. Putting vg(t, X)
= v(t, x + €), we see that Ve(t) € Ky (t) for a.e. t € [0, T] and for all

n

n sufficiently large. Hence, taking n = n

" with w = v and letting k > =«

in (5.3), we obtain by (5.4)

T
[ @ - ), B0 - v e < 00 - wem.

Furthermore, since v_ » v in Lp(O, T; X) and @(VE) > ®(v) as e ¥+ 0,

T
J (' (t) - £(t), Bult) - v(£))dt < o(v) - o(Bu).
0

This inequality holds for every v in Z, which is equivalent to
£(t) - W' (8) € 39, G(Bi(t))  fora.e. t € [0, T]
3

(cf. Kermochi [21; Proposition 1.1]). Thus u is a solution to VP(%, g, Ugs f).
By the uniqueness of solution we have u = u. Therefore it must be true

that u > u in C([0, T]; H), so that Pg_~> PL in C([0, T]). Q.E.D.

Proof of (b) of Theorem 1.1: Consider the following subset S of A:

Il(t) - Q(S)l é:!t - Sllglc([O’ T]) )
S=4 2EN; + /[t = s[Lif] , + /[t = s[K\,
L°(0, T; H)

for all s, t € [0, T]

where K 1s the same constant as in Theorem 4.2. Obviously S is compact and
convex in C([0, T]) and P(A) C S. Taking Lemmas 4.1 and 4.2 into account,

we see that P is continuous on S with respect to the topology of C([0, TI1)
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and P(3) C S. Hence, by a well-known fixed-point theorem there is % € S

such that P2 = £ and 1t is easy to see that the couple {2, ul}, ul being
a unique solution to VP(&, g, Uys f), is a solution to QVP(RO, g U, ).

Q.E.D.

6. A uniqueness theorem in a special case.

Throughout this section we assume that p = 2, & >0, g ¢ c(fo, TI)

wLs2

is non-positive and ug € X (= (0, »)) is non-negative with u, = 0 on

[%55 ).

Let {2, u} be an arbitrary solution to QVP(%O, g, u

U, 0). Then we know

the following facts (cf. Proposition 1.2 and Theorem 1.1):

(6.1) & is non-decreasing with 2(0)

20 and u is non-negative;

(6.2) ut(t, °) - B(u)xx(t, *) =0 a.e. on [0, 2(t)] for a.e. t € [0, T1;

u(0, x) =u (x) for 0 < x < &, ult, x) = 0 for x > 2(t) and

(6.3) { © |
B(u)x(t, 0+) = g(t) for a.e. t € [0, T];
(6.4) g%_t_)_ = - B(w), (£, &(t)-) for a.e. t € [0, TI.
We define
t
v(t, x) = J B(u)(r, x)dr for x>0, 0 <t <T
0

and note that

: t
v (6, %) = B, 1) 20, v (6, %) = [Oe<u>x(r, x)dr.

Now, let n be any function in X. Then we have by (6.1) - (6.L4)

J:vx(t, *)n,dx

t (2(r)
- jojo Bw), (v, -In dxdr

- 220-
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"

t  (r)
jo{- JO B, (7, Indx = B (7,04)n(0) + B(w), (r,2()-In(A(x))}ar

]

£t 2(r) t t
. _ _ [Taalr)
- JO[O ut(r, Yndxdr (JOgdr)ﬂ(Q). JO I n(L(r))dr
0 t (%)
- jwu(t, *Indx + J uondx - ([ gdr)n(0) - J ndx,
0 0 0 0

i

from which we get the following lemma.

Lemma 6.1. Let {&, u} be a solution to QVP(QO, g, u_, 0) and v be as

o)

sbove. Also let p be the inverse of B. Then

I(t; v, n) = I:D(Vt)(t,x)(vt(t,X) - n(x))dx + [va(t,x)(vxt(t,x) - nx(x))dx
t
- quO(X)(vt(t,X) - n(x))dax + (J g(r)ar) (v, (£,0) - n(0))
0 0

+ r(vt(t, %) = n(x))dx < 0
. <

for all t € [0, T] and all n €Y = {n € X; n is non-negative and n(x) = 0

for all sufficiently large x}.

Proof. We set for simplicity

J(ty n) = f:p(vt)(t, -)ndx + [va(t, *)ndx - fouondx

t 0
+ (J gdr)n(0) + J ndx for n € Y.
0 0
As was seen above, J(t; n) > 0 for all n € Y and J(t; vt(t, <)) = 0.

Therefore I(ty; v, n) = J(t; Vt(t, -)) = Jd(t; n) < 0. Q.E.D.

Proof of Theorem 1.2: ILet {&, u} and {2, u} be two solutions to

QVP(QO, 8> Ugs 0). Then with the same notations as above it follows from

- 23 -
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Lemma 6.1 that
0 2 I(t; v, v (t, +)) + I(t; v, v, (£, *))

00

J e 0 - e, DI, 1) - Tl xax

+ r(vx(t: X) - \-7X(t3 X))(th(t’ X) - \-,X'C(t’ X))dX
0

- 2
) °) - VX(t, .)lH

1d
Z 2 551Vx(t
for a.e. t € [0, T]. This gives
IVX(t’ <) - ‘_,X(t, ')IH h IVX(O’ ) - GX(O: ')IH =0
= 7. R.E.D.

e., u=1uas well as %

= \_’t’

for all t € [0, T], so 2
The technic adopted above is found in Duvaut [11].

Remark 6.1.

Some remarks.

7.
Let 20 >0and g, u, f be as in (b) of Theorem 1.1 and let {&, u}

A.
be a solution to QVP(lé, g U f). Further assume that g ¢ Wl’z(o, T). Then
0 ). It is not

2 E-Wl’g(O,KT) and u is a unique solution to VP(L, g, u
difficult to verify that the family {¢z g; 0 <t < T} satisfies the following:
b

for each s, t € [0, T] and z € Kz(s) there is zq € Kl(t) such

that
(7.1) |z1 - le < CO{Ig(t) - g(s)| + |a(t) - 2(s)|}(|¢§;g(z)|l/2+1)’
|¢E,g(zl)—¢i,g(z)l hS CO{|8(t)—g(s)[+|2(t)—2(s)|](|¢i,g(z)]+1),

where CO is a positive constant independent of s, t and z.

In fact, if we take for z given in Kz(s)

- 24 -
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zl(x) = z(%%%%x), 0 <X <o,

then we obtain inequalities in (7.1) with a positive constant CO independent
of 8, t and z. Under (7.1) it can be shown (cf. Kenmochi [24]) that the
function t - ¢E g(Bu(t)) is absolutely continuous on [0, T]. This implies

3

that t > |B(w(t, -)]X is continuous on [0, T], so that g(u) € C([0, T]; X).

B. Let &> 0, g <0 be in wl’E(O, T) and u,, T be as in (b) of Theorem 1.1,
and let h be -in L2(O, T). Then by QVP(QO, g, u,, h) we mean the problem
to find a couple {2, u} satisfying (Bl), (B2) of Definition 1.2 and the

following (B3)' instead of (B3):
%o
h(r)dr + j u_(x)dx
g ©

t t

(B3 at) = 2 ~ f g(r)dr + J

0 0

£ (r) oo
+ J [ f(r, x)dxdr - J u(t, x)dx, v t € [0, TI.
400 0

This integral equation (B3)' is corresponding to Stefan condition of the
following tyﬁe:

ast) _ -

2L - e (6, 1(6)-) [PTPBw, (5, 2(6)-) + h(E) for 0 <t < T.

In this case we should notice that the free boundary x = %{t) is not
necessarily non-decreasing in t. However the same approach 1is possible to

P2, 8, u,, £, h).

C. TFinally we consider the problem to find a couple {%, u} satisfying
(7.2) u - B(u), =f for0<t<T, a(t) >0, 0<x<at),
subject to
(7.3)  2(0) = %, and u(0, x) = u (x) for 0 < x < Lo

(7.4) Bk, 0) = go(t)’ for 0 <t <T, Bk, 4(t)) =0 for 0 <t <T,

- 25 -
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and

(7.5) QL) - _ g (6, a(t)-) o0 <t <,

where £ > 0 is given as well as uy > 0 in w1’2<

0, ») with u, = 0 on [sao, ®),
£>01in1°(0, T; H) and g_ 2 0 in W>3(0, T). By means of the family
{52 g ; 0<¢ ézT} of convex functions on H given by

220

1 2 .
Ej:]le ax ifz e Kl,go(t>’

© otherwise

with

K2 e (t) = {z ¢ Wl’2(0, o); z(0) = go(t), z(x) = 0 for 2(t) < x < o},
3 O -

we can similarly give a quasi-variational formulation assoclated with system

{(7.2) - (7.5)}, in which (7.5) is transformed into the integral equation

2 2 t %o ®
L(t)° = o+ 2j go(r)dr + 2[ xuo(x)dx - 2[ xu(t, x)dx
0 0 0
t 2(r)
+ 2[ J xf(r, x)dxdr, Y ¢ e o, Tl.
0’0

Also in this case we can show the existence and uniqueness (in case f = 0)
of a solution to this quasi-variational problem by modifying the arguments

developed in sections 2, 3, 4, 5 and 6.
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