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ANALYSIS OF THE NAVIER-STOKES EQUATIONS
BASED ON GREEN’S FUNCTION TECHNIQUE
M.U.FAROOQ S.KUWABARA
FACULTY OF ENGINEERING,
DEPARTMENT OF APPLIED PHYSICS,
UNIVERSITY OF NAGOYA, NAGOYA

This work describes a novel approach for the numerical calcul-

atlions of incompressible viscous flow problems. For the flow
region one can think of a fluid contained between three fixed
walls, while the upper wall moves in its own plane creating
motion into fluid.

In contrast to the usual finite-difference scheme the Navier-
Stokes equations are solved by an iterative-integral scheme
using Green’s function. The solutions for steady probiem-stream
function and vorticity are computed for Reynolds numbers 0,2,
b,8,16,32,64 and 100 in a square of side unity for the mesh
size 1/10. Checking with finite-difference was in good
agreement.
The analytical part of the time dependent Navier-Stokes
equations is formulated in the same fashion as steady case
and are based on the time dependent Green’s function.The
numerical part of it is in the process of computations and
satisfactory results are expected.
1. INTRODUCTION

Streaming flows past an obstacle and the

viscous flows occouring inside a closed domain have intensive
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numerical literature based mostly on difference scheme, whereas
integral approach in connection with Green’s function have
received comperatively little attention.

Many numerical schemes have been developed for solving steady
and unsteady viscous incompressible Navier-Stokes flow
equations for different regions.

The present problem, being of wide interest has been handled
numerically as well as experimentally by several fluid

(1)

dynamicists. Kawaguchi seems to have been the first to

consider these fluid motions numerically.Further contributions
for such kind of steady problem are done by many workers§2)
On the other hand previous studies concerning time dependent
Navier-3tokes equations are due to Simuni(3 ,Pearson(uv, and
Greenspan(5>. But mest of them are treated numerically by
addopting difference scheme.

Recently R.D.MillS(6> presented the numerical results of the
steady two-dimensional viscous motion within a circular
cylinder generated by the rotation of part of the cylinder wall
for low Reynolds numbers.by applying Iterative-Integral
technique which based on the biharmonic Green’s function. He
compaired and correlated his work to others. Harmonic Green’s
function have been used 1in viscous flow problems"7 :but this
approach still requires the use of finite-difference method for
the solution of the vorticity equation.

Latest related work on the integral representations approach
for the time dependent viscous flows is supported by J.C.Wu

(8)

& Y.M.Rizk who considered time dependent incompressible viscous
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flows involving two special dimensions past non-rotating
finite solids.

The present work is motivated by initiating a programme of
research with the goal of establishing numerical approach
with better accuracy and less time consumption than other
schemes based totally on integral representations using
Green’s function.

The flow problem which 1s interest of fluid dynamicists,numer-
tcal analysts(Kawaguchi, Greenspan), aerodynamicists( Mills)
and laboratory researchers (Ozawa, Pan & Acrivos) is considered
We expect fthat present work will represent the first successf-
ul approach of the totally integral representations based on -
Green’s function to the time dependent internal viscous flow
problem.

2. FORMULATION OF THE PROBLEM
The physical cofiguration of

the box shape mathematical model sketching in Fig.a consists
of three fixed and one moving wall. The movement of the upper
wall creats motion into the incompressible fluid contained

in it. A cartesian co-ordinate (x,y) system is introduced

with its centre at the lower left corner. The region of physi-

cal interest has dimensions .A and L along x and y-axis

rF 5
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FUNDAMENTAL EQUATIONS

The familiar unsteady,viscous and incom-
pressible Navier-Stokes (2.1), (2.2) and continuity equations
(2.3) form a set of three simultanous partial gifféFential
equations in three unknown u,v,and p which could be solved for
many problems.

U,y o UDU-_:--L\M,-\-\)K}U' ----- (2.1)
2t > ¥ >F P

'%%,.\.u,b\} 'U'b\} _____..._,\_P_p%-\—\)i}"l)’ ----- (2.2)

DY o (2.3)
ST 5570

The relation between stream function(+)and velocity components
u,v (2.4) plus the definition of vorticity (X O0(2.5) as the curl

of the velocity vector are given by,
U= 2%
%
Y= —BSE ———————————————————— (2.1)

w= L'b,;__ ---------------- (2.5)

The relation beggﬂén sé%gam function and vorticity is obtained
by using (2.4) and (2.5).

V’Z{\)-:——-UJ --------------- (2.6)
Introduction of stream function automatically satisfies the
equation of continuity (2.3). The dynamical equation of vortic-
ity (2.7) is established by differenciating (2.1),(2.2) with
respect to y and x respectively, subtracting and using (2.3),
(2.4) and (2.5) ,bw DL\V)w) :\)v7'w

2t 'aot, y e (2.7)
Wheve 2w _ d _ ¥ aw

-—-——-—

'b(l)ﬁ) X,.—E; 3’

I=
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The pressure p has been eliminated by this process. For the
present problem on fixed walls the velocity of the fluid
vanishes while on the moving one it 1s prescribed arbitrarily

parallel to itself.

U=o0= VW oLdx Lo Y=o (2.8a)
U=o0=V otde b, X=0-——-—m==- (2.8b)
U=0=v edeb, X=w—"""""777" (2.8¢)
U=y VY=o ottlea, Y=b__________ (2.8d)

DIMENSIONLESS FORM
For simplicity and convenience all the
quantities are transformed in dimensionless form since these
are useful in numerical computations. The dimensionless variab-
les (capitals) are defined by taking reference length L and
velocity U of the left and upper wall respectively.
NTX/U 3 Y=%/L 3 =YWL , v= V/L
A= ofL 5 Y= P[OL; W=wl/T
T= s V74 (2.9)
The dimensionless forms of the vorticity (2.10) and the dynami-

cal equation of vorticity (2.11) are given by,

VAU Ry7e J— (2.10) g
W/aT= —dWW)d(%,Y)= RV W-———2.112)
Too= —R DLW, w)/py) Eree e
R/: UL/)) is the Reynolds number

The boundary conditions demand that on the fixed walls the

Wheve

normal and tangential gradients of stream function vanish, while

on the moving wall normal gradient is unity.

W=0=2W/OX 05Y&); X=0 memmes (2.122)
W=0= QWY 0LrEA;Y=0 oo (2.120)
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W:O'—'—DW/&X oYLl , k= A (2.12¢)
Y=o 5 DWy=1  oXe A N=Lo oy

3. STEADY PROBLEM

We initiate with the steady problem. The
region of numerical interest, flow equations and imposed
poundary conditions are sketched in Fig. b. Differential flow

equations in the form of integrals are prepared as the bases

of /c;Yur nume/rif:é approach.p‘ W=v 3\4;/0!_:
$=o|f 2 _
Lo || yw=—w ;Y=o
v '%%zd'vw-.--m)(w, CQ_‘”‘_.
~% Fig. (b) : A

= 3\07'0‘(‘ X

The two-point funec. ie Green’s function G1(X,Y; X Y) is defined
uniquely by the delta function relation (3.1) and the prescribed

boundary condltlons (3.2) in the follow1ng form,

T R DR NS SEE R (2 — (3.1)
G, X) =0 Xe&IN,XETNOT ______(5.2)
¥=X,Y and ¥=X,Y

INTEGRAL EXPRESSION FOR ¢ (X,Y) AND w(X,Y)
Starting with the

Green’s identity and substituting g=w(i:f3 and é=Gl(£,;;X,Y)
A e P

| (§94-979 L= (§2F _g 2£ > ds

v 112 on” on

Right hand side of (3.3) vanishes due to the prescribed
boundary condition (2.12) and (3.2), while the left hand side

using (3.1) and (2.10) yields,

WY // WS Gy (K, 0 AN "
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In the similar manner . (3.1),(3.2) and (2.1la) provide

the expression for vorticity.

W)= R g DWE) KNG @(,k,o‘t{-r b(v_w ) ?a_@%@’,md{
6, () /an’= DN e F (3.5)

CONSTRUCTION OF GREEN’S FUNCTION (IMAGE METHOD)
In the theory of
7
function there existsfunction f(Z,Z) analytic with respect to Z
/7
except at Z=7Z and whose real part i1s the required Green’s func.

7 7/
GL(X,Y;X,Y).

/ 7 7
GL(X,Y3;X,Y)=Re(f(Z,Z2)) ——mmmmmmmmmeee—- (3.6a)
where,
A A
Z=X+1Y and Z=X+iY
. / 7. o 7
As T— 7 01(X,7;4,9)=Re €1/27 Log(2-7)) ——mmmmmemm (3.6Db)
4
PR = ¢
- z2 [
+ 4
4+ Ve ./
A e _i 4 « & ’i
a ‘: 4 A J::II/::/J/’ '3 7’(
- —i. * PS z -1:—
Y .—
L aa I
V AR T 218 p
Consider the basic region ABCD having a positive charge Z and

on which the boundary condition (3.2) is satified. Due to (3.2)
/

Z is reflected periodically with periods 2A and 2i along real
and imaginary axis respectively. KEEﬁris the periodic region.
Here we introduced elliptic theta function which is doubly
periodic and has paramount importance in numerical calculatioﬁs
due to 1ts rapid convergence. Expression for theta product
(3.7) and periodicity relationships (3.8) are given by,

1/4 L
0L(Z,q)=24 SinﬂZE(l—2q2LSiﬁ“Z+qu) ——————————————— (3.7)
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izt =@
Ol@+TD=-M @D (3.8)
‘b GD(F>(!'TT.EQ> 15':. 0017/00‘

!‘ (J" ) wl: Period along real axis

w?: Period along Imaginary axis

M= g ngo (2412)

In terms of theta function the anaégplc functlon f(Z Z') is expressed by,
6,(z- 243
{(2,2)= —L—ﬂo& (‘ )G‘( > (3.93

The expression for the derlvatlve on %he leé; iéiloa) and lower (3.10b)

walls are obtained by taking real and imaginary parts of the derivative of

£(Z,2") with respect to Z'. On the other walls the sign will be opposite.

G1%,$) _ =D& = % ’c> .f(z 2)\ = (5.102)
N~ tj Z=XKeV, =S exV
,()G/QX 5)_ —'567/ Ra _,;,}E(z,z) ---------- (3.100)
n’ .
g z;:) 0 °8 =3 (zﬁ 3
3 'LTY %} G, (-Z___ Y6, (z-rz )
£(Z,2') is an analytic function of 7! whose real part is also the requlred

Green’s function.

INTEGRAL EXPRESSION FOR VORTICITY ON THE BOUNDARY

In getting (3.4) the
tangential conditions are satisfied,While the normal conditions will provide

the informations of vorticity on the boundary.

V== [[ wids G odx’
12
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W 0}( )= —R“ %OP)W) Gg,()l( \X)(’t\x "\'( (A)(S)'bén (S’X)dg
v 26 > 13

fw(w)z - “6.@{’)&)[ (( R{[ AW g o iy oK

B e
v & + w(s>%§7_‘»_,(sx>d§
D
= W'y G (%) X = [ 336 (| @ %08 (< oo
Rgm )G %) X'~ 356 a0 o

‘L.'s

0, 05) ’QGI ;)Cﬁ.,

! NMED H & (EX) ey (¥ AW S
S v on’ on

= N EdE
Un ()= RA(S- (wm F s,y

Wheve N (€)= é@ﬁ,(s X) QGHOX 9 olX
2Mm”

A(S> Jj\noxwen (g&é’)ob\x
X)) o ]) Y, w)/'a(x\f) &1 (KX ) olX

e B (5,8 )= RA-Wn($)= B
IS e (3.11)
In the equation (3.11)F(S,S’5 and B(S) are xaown and hence

~ ”
(D(_S)can be computed .
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NUMERICAL PROCEDURE

The integral expressions (3.4), (3.5) and
(3.11) for Y(X,Y), w(X,Y) and‘BQS) respectively are developed
for the numerical calculations of stream function and vorticity
for steady flow inside a square domain.
The following steps include the procedure of calculations.
Stepl

The Green’s function Gl(X,Y;f,fs inside a square with side
unity is computed with mesh size 1/10 for the whole region once
and preserved in four dimensional array except for X=Y=f;§ ( the
singularity behaviour) which required large deémands on storage
for all permutations of (X,Y;ii?).”Otherwise, wé shouid have to
compute G1 for the whole region in every iteration, which would
lead to large computing times due to sine and log functions..
Step?2

In the same fashion derivatiyof Green’s function and FG%S;)
are calculated and preserved.

Step3 \

The integral equations (3.4) and (3.5) are then solvéd
iteratively with due considerationto (3.11) with mesh size 1/10
for Reynolds numbers uptothO at each mesh point of the square
region of length unity. The region of singularity 1is treated
seperately in (3.4).

Stepl

Numerical results— streamlines and equivorticity curves

are plottedby automatic plotter and are shown for Reynolds

numbers 0,32,64 and 100.

10



94

k=64 R=100

STREAMLINES Fig(1l)

RESULTS AND DISCUSSIONS

Streamlines are shown for Reynolds numbers_0,32 -
64 and 100. For 4low Reynolds numbers symmetric flow pattern is obtained

and the vortex centre is shifted towads right (since the movement was
11
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R=32

— R=100

Equivorticity curves Fig.(2)
from left to right) as the Reynolds numbers increased. The flow pattern
(streamlines) and the equivorticity curves from this scheme have resemblence
with those obtained by‘finite—difference méthod. As a check the same problem
is solved by difference scheme at each mesh point and is found in good

agreement.

12
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I}, UNSTEADY PROBLEM

For the next stage attention is directeqd

to unsteady or time dependent problem inside a box and is

h in Fig.(C).
shown in Fig % W"“’ \-\)-‘-0
\ \&:0 \\L{;:i
Y¥—w
(V=5 Yw={R (W)
()
O v -V
~ =o =°
F'\,% (C) . W\W;a Wy=o0
Nt

Starting with the flow egquations (4.12) and (4.13)

v2¢(X,Y,t)=—w<X,Y,t) ——————————— (4.12)
(725 Ju=-R3(V,0)/8(X,Y) —mmmcmmem (4.13)
where, ‘ "
£ZR™IT putting in (2.11a)

In formulatihg the present problem the time dependent Green’s
function is defined by (4.14),(4.15)—delta function relations
(4.16)—boundary conditions and (4.17)—time dependent boundary
conditions. Using Green’s theorem (4.19), equations (4.12) and
(4.13) are transformed into integral forms (4.18) and (4.20).
Similar to steady case (4.21) is®repared to compute vorticity

on the boundary.
Li=y L—z==\;;‘%?5
T_,_.-_- v}-i--a?_-t ( adjoint to L2)
LiGiOGY)=§ &%) o o)
L&E-6XE)= SO §(¢t-€) x¥eg s

13



&I(X,X/)=é,,@¥,‘6)'&<’;6§=o oo (4.16)
XEDS , XeS+dS
é;_@( [ X"é)—- o t(‘t/. -------------- (4.17)
YO = -ﬂw@x Y GKK) oL — j QY G (S5 dE
= -//wox t) &,(sx’sk)dx ST
T s 7 - 7N I T |
S (UGUr—v L) oxolt = [ ( (Y~ DU Yol
to S to 93 o on’
_.(f U ) UCT>GL)X ‘f’ﬂualo\ U’(f-o)d% ______ (4.19)
U= Qzéﬁ(t Xt)
U WX )

(X, t>~—Rf ffj(‘v,w)@@( €5 X, X dt

*waK t)_.@csx-x t)cisdfc
—-—.g‘w@(t‘))%@( o, X t) - (4.20)

VEL)=-|| { RS [—R f SI T($,00) 8, (K3 %,6) oK ol
Co

+§ (wc G (CE; X ) ol Sdf //w(* "0?(”"“}&

to 2S
_—7
Yixt)= R ﬂll/ J cv’,cﬁ Y& LN G OdK X

14

u‘e)
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Y A n 7 s " s
_(f fwEH 2, (4,0 Q¥ dS Aol
n.

S 2§

+ mg W (X, 0 Gy (¥, 50; Y1) GuO¥ O ddH
= N |
QBQJQS,*3) s 7. A s 70N 9

o =R S ““ J(W,w) G»@‘ﬂcﬂ)tﬁ‘w & Sy dxdX
. to X
_ § (g ( B (<6 (s TR ED 28 &, d€ dX'dt
to
+ {[[] w6806 0051 %%L@",s>d}%’ctx'
> % . |
Wn(s,t)= RA(S,t)— g ( W (<Y RS, s t)d<df
+to 0S
Whev e. TR

| %; (§45%,£) 28 (X, X dX= F (€4, 5:t)

ﬁ? t , /?{T) -, 7
f ( B (S0 F(S,ts St)dsdt =RASY-PESD)—

to 05 U (S5t)

= TS

The known functions F(é,ggs,t) and T(S,t) will provide the

-—,
informations of W(,S;'tﬂ)

In constructing time dependent Green’s function G2 by Reflection

(W.21)

method (Fig.d) the following steps are taken into consideration

\&i 2 E (x Jo,sx-o)-— Slx-%y S(t-£) )
Bt XL)=0 +7€ (4.29)

15
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Fundamental solution satisfying conditions (4.22) and (4.23)

is found to be,

N s 7 / , ”
E&t;Xt)=—Rn(£-1 exh (XX T L\/-\/ﬂ

AT (D Z4 (-
where H(é—t) is the step mmmmmmmmmm oo (4.24)
function. 7
., o t7%
-H(t-t)= .
| T <4t
also, .

hOGH) =) enp[ =X ]
bt Lt
vy N N rpe sl poe e, RALL)

X

7/
+ o X

L
-
\
AR,

PP PFTFFTRIFFTIFF 2777

-f 7 +.*x -.x -t

3
o]
AN
®)

L
B B B B AN SN

14 A — - e
Fig. (d)

A

G, bt %)= 6;0«—% £ t)+a,_@<+% £-t)
-G, (X X, £ot) — G (XX, £-1)

b

—————————————————————— (4.25)
QX0 = E j F (X+ 4ade t2me;, )
S (4.26)
’r 7 ’
K=Xel+Ye2 and K=Xel+Ye2 €1,e, are unit vectors

16
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