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CHEVALLEY -ALGEBRAS AND CHEVALLEY GROUPS
James F. Hurley
1. Introduction In this note, we introduce and discuss Chevalley

algebras over commutative rings R with identity, describe their arithmetic
structure in the classical (i.e., non-Kac-Moody) cases, and relate that to
the normal structure of Chevalley groups over R . In Section 3, we also
describe recent work of Garland which leads to Chevalley algebras and

groups associated with Kac-Moody Lie algebras. In several places, we
discuss open questions and conjectures. The rest of this section is

devoted to notational preliminaries.

Let L be é finite-dimensional simple Lie algebra over the complex
field, H an m-dimensional Cartan subalgebra, & the set of roots of L
relative to H, and T = {rl, Poseees rm} a simp]é system of roots.
For re o, let L. be the corresponding root space. Chevalley [5]

established the following basic fact.

1.1 Theorem There is a basis B = {erl redo} U {ﬁl, ﬁz,...,ﬁm} ,

where e e Lr . ﬁi € H, such that

(i) [Ei’ ﬁj] 0 forall i and j ,

(ii) [ér’ é—r] = ﬁr , a certain [26, Lemma 1] integral
linear combination of hl s h2,..., hm
. s » - - =:l: -
(iii) If r+s # 0, then [er, eS] Nrs €y where

N is 0 if r+s ¢ o , and otherwise is p +1, where
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p is the largest integer such that s - pr € ¢ .

. == . 2(s,r) = . £y = .
(iv) [hr’ es] e & s(hr) e > where ( , ) is
the Killing form on the dual H* of H . We note that
o _o20s,r) oo
the Cartan integer c(r,s) = ) p - q , where

g 1is the largest integer such that s +qr e ¢ .

Denote by LZ the free abelian grdup on B . This is the Chevalley

lattice of L corresponding to B and is closed under Lie products. Let

R be a commutative ring with identity.

1.2 Definition The Chevalley algebra of L over R s

LR = R ®Z LZ

This is uniquely determined up to isomorphism by L [9, pp. 47- 48] .

Let H, be the free abelian group on {hl, hos «vs hm} . Then we

VA
denote R 8, HZ by HR . Similarly, if EZ is the free abelian group on
{e.|re o}, then Ep stands for R ®, E, . Note that Hp s a subalge-

bra of LR , but ER is only an R-submodule.

2. Classical Chevalley algebras Results on the arithmetic

structure of Lie algebras of Chevalley type tend to take the form of
sandwich relations (cf. Equations (1) - (4) below). We consider in this
section first the ideal structure of Chevalley algebras, and then the
nature of orders in L when the underlying ground ring is an integral-

domain.

Even though L 1ds simple over the complex field, LR is not in
general simple. For an ideal J of R for instance, we can from the

projection homomorphism fJ : R> R/J , produce a homomorphism from LR
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onto LR/J with kernel JLR , which we can identify with LJ . There are
then ideals of LR corresponding to ideals of the ring ‘R . A natural

question then -arises.

Question 1 To what extent is the ideal structure of LR determined

by that of R ?

This question is answered in [10] and [27] , to which the reader is
referred for proofs of the first two results below. Assume that 2 and '3
are not zero divisors in R , and if L 1is of type Am assume further

that m + 1 is not a multiple of the characteristic of R , or a O-divisor.

2.1 Theorem Suppose that I & HR . Then there is an ideal J of
R and a positive integer n such that
(1) ndl, =1 < JLp
Here, n 1is a product of divisors of det C , where C = (Cij) = (c(ri,rj)L
and powers of k = (%, 2)/(s, s) where & 1is a long root and s is a

short root of L .

For fields of prime characteristic, Question 1 has also been answered
by Hogeweij [8] , who determines all ideals of LR even in case R is of
characteristic 2 or 3 or in case its characteristic divides m+ 1 “¥n
type Am . Using Theorem 2.1 , one can obtain the following characteriza-
tion of the circumstances under which all ideals of LR arise from those of

the ring R , again retaining the assumptions on 2, 3, and m + 1.

2.2 Theorem Every ideal I of LR has the form JLR for J

an ideal of R 1if and only if k and det C are invertible in R .

Question 2 What is the situation over a general commutative ring R
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with identity in which 2 or 3 or m+ 1 may be a zero-divisor?

Chevalley algebras have also been used to study orders in split simple
Lie algebras L over a field F which is the field of fractions of an
integral domain D . Such algebras have a Chevalley basis over F , and
we can identify L with F ey LZ . The results below generalize the

principal theorems found in the Ph.D. dissertation of M. Harvey Hyman [16].

For a more complete discussion, consult [14] . We first give the basic
definition.
2.3 Definition An order in L 1is a lattice (i.e., a finitely

generated D-module whose F-span is L) X which is closed under multipli-

cation.

We can then regard X as a Lie algebra over D . The Chevalley algebra
LD is, of course, a natural order to consider in L , and is called in this

context the Chevalley order . In the remainder of this section, X stands

for an arbitrary order in L .

2.4 "Theorem If X:g_LD , then there is an integer n as in
Theorem 2.1 such that
(2) nJLDEXELD, |
where J is the smallest D-submodule of F such that JL, = X . If D

is Noetherian, then J 1dis a fractional ideal.

Observe that J 1is well-defined, since we have X < J'Ly for the
D-submodule J' of F generated by 1 and all coefficients of elements of

X expressed as F-linear combinations of the Chevalley basis elements.

Let D denote the integral closure of D in F and L' = Ey & Hy'
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where HD' is the lattice of coroots,

HD' = {(heH |r(h) eD forall rec} .

We have the following result.

2.5 Theorem (a) Suppose rank L is at least 2 and 2 has an
inverse in D in case L s of type Bm or Cm . Let D be a Noetherian

domain. Then for any order X o Lp »
D
(b) If D s integrally closed and Noetherian, (e.g.,

(3) Lyexelt

a Dedekind domain), then for n as in Theorem 2.1,

(4) nly! = X =1,

D

These results describe essentially the nature of orders which contain
a certain fixed order LD . It is perhaps worth noting that, even in the
case of a Dedekind domain, infinite descending chains of orders are easily
produced. If, for example, a € D is not invertible, then the chain
LD:_aaLDga2LDga3LDE>
is an infinite descending chain of orders. It seems to be appropriate then
to study orders which contain a fixed order such as L '. Such orders were

D
referred to by Hyman as comprising the superstructure of the order L

D °
One can ask the following question, whose answer one would expect to be

related to the ideal structure of LRl (cf. [11]).

Question 3 What is the superstructure of the order LD' ?

3. Kac-Moody Lie algebras and Chevalley algebras We con-

tinue the notation of preceding sections. Garland [6] considers Kac-Moody
Lie algebras LE associated with an m +1-by- m + 1 affine Cartan matrix

C obtained from a classical Cartan matrix C , and shows that over the
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complex field such algebras have an integral basis closely related to the

Chevalley basis for L . We discuss this from the more general viewpoint of
Moody [20] first, and then specialize to the affine case to state Garland's
theorem on Chevalley bases and pose two questions which arise naturally from

his construction.

We begin with an n - by - n generalized Cartan matrix (GCM) A =

(aij) , that is, a matrix of integers such that for all i and j ,
aij < 0 if i#¢],
a;; = 2 for all i= 1,2, ..., n, and
aij = 0 if and on]yv1f aji =0

Let K be any field of characteristic zero. Let Ll = Ll(A) be the Lie

algebra defined by a set {hi’ €ss fi}.n of 3n generators with defining

1=1
relations
[hi’ hj] = 0, for aT1 i and j ,
[ei, fj] = 61j h, , forall i and j,
(5) [hi’ ej] = Ay 85 for all i and j ,
[hys 51 = - a;; f;» forall i and j,

i}

(ad e)7%i5" H(ey) = 0 = (ad £)THITI(E) for ir3, .

i, j= 1,2, ..., n. Thus, Ll is the quotient of the free Lie algebra
on these 3n generators factored by the ideal generated by the elements

obtained by rewriting each equation as an expression equated to zero.

For an n-tuple (kl, k2,..., kn) of integers, we define subspaces

Ly(k,» k . kn) as follows. Ll(O, 0,..., 0) = H(A) = the abelian sub-

1> Koseeo
algebra of Ll spanned by {hl, h2,..., hn} . If (kl’ k2’ v kn)
consists of nonnegative (resp., nonpositive) integers, then Ll(kl, k2, cees

kn) is the subspace of Ll spanned by all products [eil’ [eiz""[ei,r-l’
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e.ir]"' ]] (reSPeCtiVe]y, [f"l’ [f.lz: b [f f.ir]"']] )s where ej

i,r-1°

l(kl’ k2,4...,

kn) is defined to be 0 . Each of these subspaces is seen to be finite

(resp., fj) occurs lkjl times. For all other n-tuples, L

dimensional, and Ll is the sum of all thg Ll(kl, k2, ceus kn) over all
members of Z" . This gives us a " - gradation of Ll. There is a unique
graded ideal Rl maximal among all graded ideals which intersect the span
n ' o
of {h;, e, f.} | only in zero.
i V=

3.1 Definition The Kac-Moody Lie algebra LA is Ll/ Rl .

Notice that if A 1is a classical Cartan matrix and K is the complex

field, then Rl = 0 and LA = LC is a classical simple Lie algebra.

We denote the images of hi’ e. f. , H(A) , and Ll(kl’ k

i 22 e
kn) by hi s €5 s fi . HA . and» L(kl, k2, cees kn) respectively. We
define Di : LA - LA for each i =1, 2, ..., n, to be multiplication by
the scalar ki on L(kl, k2, cees kn) . This is then a derivation of LA .

Let D0 be the n-dimensional subspace of commuting derivations spanned by

D D . Let D be a subspace of D0 andvform the semi-direct

1° D2, eees D
product algebra L& = Dx LA with component-wise addition and multiplica-
tion by scalars, and Lie product [ d+ & , d'+ 2" ] = [d, d'] + (d(2")
- d'(2) + [2,27) . Let HAe = DxH < LAe , an abelian subalgebra
which acts via scalar multiplication on L(kl’ Kps «ovs k) . We further
. eyk
define 15 Aps +ees A € (H™) by
(6) [h, 61] = a.(h) e.

Thus

, - for h e HAe , 1=1,2, ..., n.

aj(hi) = a5 i, j=1,2, ..., n. Henceforth we assume that D is
so chosen that {al, a2; cees an} is a linearly independent set. This is

possible since, for instance, D = D0 will serve, although it is often

convenient to use a smaller such D . Observe that ai(Dj) = aij for 1, J
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ranging between 1 and n . We can now define the roots of LA.

3.2 Definition Let a e (H®)" . Then L% = {xe Ly | Thy x] = a(h) x

for all h e HAe}. A root of LA relative to HAe is a member a of

(HE)* f . a . -
or which L% # 0 . The set of all roots is denoted by A A(A) .

The positive roots A, = A,+(A) consist of all roots which are non-
negative integral linear combinations of al, Qs wevs A - The negative
roots A_ = A _(A) are defined to be the negatives of the positive roots.
Notice that L, = H, and L = H, ® 12 e § 12
A A A a el ~ ta e ’

3.3 Definition The GCM A is symmetrizable if there exist positive

rational numbers A;» dp» ---» G, such that diag ( Gys Gps +ees qn) A s

n
a symmetric matrix.

Henceforth, we assume that A 1is symmetrizable. Then we can define
*
a symmetric bilinear form on the subspace of (He) spanned by A by

setting

(a'i’ aJ) = q1a1J ’

for i,3=1,2,....,n. Then q, = (a,, ai)/2 and we set
L |
hi = 5 (ai’ ai) h, e H 5
for i= 1,2, ...,n. For ¢ = }" X;a; » we also define
i=
1 _ n t
h' =% . x:he'oy
and use this to transfer (, ) to H by defining (h;", hy') = (a;, a;) >
for i, j = 1,2, ..., n, and then (ha', hb') = (a, b) for any a

and b in the span of A.

* *
For i=1,2, ..., n, we define the Weyl reflection w; : (H&) > (H%)

by

=
—

[+)]
~—

]

a - a(hi) a;
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Thus, in particular, from (6) we see that Wi(aj) = 3 3352 for

i, 3= 1,2, ...,n. The Weyl group W of L, 1is the subgroup of

*
Aut (H®)  generated by all the Wi . We define the set A (B) of real

roots to be w({rl, Poseuns rn}) , and the set of imaginary roots AI(B)

to consist of all roots which are not real.

Now suppose that A is a classical m-by-m Cartan matrix C . We
take D =0 , so that H® = H , and LCe = LC is a-classical Lie
algebra over K . Our form ( , ) on HC* is just the usual transferred
Killing form from L . Using our notation & for the set of roots of LC .

the set T of simple roots determines the positive roots &, (C) . Let

ro € @+(C) be the highest root. We set Pm+1 - -0 ° and form the
affine Cartan matrix C where Eij = 2(r1, rj)/(ri, ri) , i, 3 =1,
2, ..., m+ 1. Then C s a symmetrizable generalized Cartan matrix with

associated Kac-Moody Lie algebra La .

Next let K[t, t-l] be the ring of Laurent polynomials over K . We
define the infinite dimensional Laurent polynomial Lie algebra
— -1
T = Kt,t"1e K LC s
with Lie product [fex, goy]l = fgo[x,y]l for f,qg e K[t, t'l]
and X, y € LC . Note that from thé decomposition of LC into H. and

the sum of the root spaces L’ , we obtain

~

- -1 r n
L = K[t, t7]e H. & ) L o Xnez+uz't®KLC‘

red
Now to avoid ambiguity, we write ei*, fi*’ hi* for €5 fi’ hi in LC s
s * . * Y‘O
i 1,2, ..., n and hr for hr in HC . For o » choose ey € L

* To - * )
and fO e L so that [eo*, fo*] 2hr0 / (ro, ro) . The following

theorem of Kac [17] and Moody [21] helps to describe the set of roots of
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LE . In our next result, we identify 1® x in L with x in LC .

3.4 Theorem There is a unique monomorphism § : LE > L such that
ale;) = e, alfy) = £, a(h) =h™,i=1,2, ....,m, Gle,;) =

* ~ _ -1 * ~ _ *
t@fo , w(fm+l) = t " ®e; ,and w(hm+l) = 2h

kernel of & 1is the one-dimensional center of LE

= n * * - m
Z]_=lk1.h1. + hoyq > where r, Ei=1ki r;

_ro/(ro, ro) . The

and is spanned by hl*

- We define D Lo =~ LC to be the (m +1)-st degree derivation,

m+1° ¢

and define D to be the one-dimensional subspace of DO spanned by

D+ 1 It is easy to check that {al, dys woes am+l}.1n the resulting

*
(He) is then a linearly independent set [6, p. 487] . Note that &

isomorphically maps
(7) ) .18 N ) " e ¥ tn@LC

) + -
a e A+(C) reo, nel UZ

and similarly for za e 2 (C) L% . We thus identify the two sides of (7).

For reo , r = Z j=1 MyTy » Ny o€ Z° or n. e€ Z for all i, we

€

* m
define a(r) e (He) by the formula a(r) = Zi ca; . We define the

=1 n']

Lie algebra derivation DO :L>L by DB (t"®x)= nt"ex for nelz

0
and x e Le - Then [6, p. 487] DO °® = §° Dm+l Setting
B m e
1= ) ) k;a; + a4, € (")
1 =1
it follows from Theorem 3.4 that
A L(C) = {a(r)} u {a(r) + nm} U {m3} +
reo, red - nel
e It

3.5 Proposition (Kac [17, p. 287]) Let A bea GCM . Then the

root a € AI(A) if and only if ja 1is a root for all integers j # 0 .
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It now follows that AI(C) = {nl}n e 7 - {0} and ZXR(C) = {a(r) +

ni} Using our identification (7) above, the root spaces

nelZ ,rebd
a a n r -
LY of LC are therefore L= t' @ L (where a = n + a(r) ,re?d

and ne Z) and L = t" ¢ He (where ne Z-1{0} and a =n1 ).

Next suppose that K is the complex field. We take 9; = (ri, ri)/Z

i=1,2, ..., m+1, so that q; > 0 for each i . Then diag (ql, dos

~

vens qm+1) C s a symmetric matrix with 1ij-entry (ri, rj) for i, j=1,

2, ..., m+1 . Notice then that with this choice of a4; > (ai, aj) =

(ri, rj), for i, j=1,2, ..., m + 1, and hence for a e;A(E) , we have
2(a, ai)/(ai, ai) e Z for i=1,2, ..., m+ 1. For each real root
a = a(r)+nm , we define e, € 12 = theL" by e, = the ér ,

where ér is as in Theorem 1.1 . For each-imaginary root n1 , we define
for i= 1, 2,..., m and each nonzero integer n , ei(n) e " =

the HA by ei(n) = the ﬁi . Note that {ei(n)} T=1‘ is a basis for

" = " Ho for each ne Z , and that {hys hpsenns o g} is a basis
for HE . |
3.6 Definition The set B = {h;} "' U {e} U
it =1 a’ ae AR(C)
{ei(n)}?]=]d noez is called a Chevalley basis for Lg .

We now are in a position to state Theorem 4.12 of [6] , which serves

to explain and justify the terminology in the preceding definition.

3.7 Theorem ‘ﬁ is an integral basis for LC . In fact, the

equations of structure are

+

(1) [ea, eb] =+ (p+ 1)ea+b if a+b#0, where a = afr)

+n , b=>b(s)+3j1 , r,sed, n,je Z,and p as
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in Theorem 1.1 .

] =h_, an integral linear combination of hy

(i1) [ea, e_ a

h

a
UREE hm+1. for all a e AR(E) .

(iii) If a= a(r) +m , b=a(-r)+j1, red , and
. ) .
n+j=2% # 0, then [ea, eb] =t"® hr is an
integral linear combination of ei(i),..., em(z) .
o _ * . .
(iv) [ei(n), ej(-n)] =n ¢y 2h1 / (rj, rj) is an integral
Tinear combination of hy, h2, cens hm+1
(v) [hi’ ea] = (2(a, ai)/(ai, ai)) e, for ae ARSC)’ i=
1, 24..., m+1.

(vi) [es(n), ;1 = (2(r, r;)/(rys ry)) e

atm ° where i =1,

2, ....m, n#0 disin Z and a = a(r) + jr ,
reoe ., jel.

A11 other products of elements in B are zero.
This result: raises immediately the following question, in view of the
results set forth in Section 2.

Question 4 If the free abelian group (Le)Z is formed, and for a

commutative ring R with identity I , the Kac-Moody Chevalley algebra

(LE)R = R® 7 (LE)Z is constructed, then what is thé ideal structure of
(LE)R , and in particular, how is it related to the ideal structure of the

Chevalley algebra LR[t, t'l]

This question is currently under investigation by the author and J.
Morita. Theorem 3.4 has been generalized to a form which appears useful

in considering Question 4.
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Garland [7] goes on to construct groups of automorphisms analagous to
Chevalley groups of classical simple Lie algebras. In [6] , he already
constructs (Theorem 5.8) a Z-form UZ(E) of the universal enveloping
algebra U(LE) of LE which is analogous to UZ in [19] . He then
proves (Theorem 11.3) the existence of a VZA which is invariant under
UZ(E) . He is able (Lemma 10.4) to exponentiate scalar multiples of e, >
a e AR(C) , the Chevalley basis elements of Theorem 3.7 above, and obtains
automorphisms of VA » and can thus define Chevalley groups for LE over

a commutative ring R with identity. This brings up another question.

Question 5 What is the normal structure of these groups G and

how does it relate to the ideal structure of (LE)R and of R ?

Garland [6, p. 495] remarks that the groups G have an infinite
dimensional completion é which is a central extension of a Chevalley group
with rational points 1n}the field of formal Laurent series. Thus there may
be some relation between Question 5 and recent work of Morita [22] on |
Chevalley groups over rings of Laurent polynomials, For a general idea of
why one would expect some relationship between ideal structure of the Cheval-
ley algebras (LE)R and the normal structure of the Chevalley groups G,

refer to the next section.

4. Chevalley groups over rings We continue the notation of

Sections 1 and 2, but remove the bars from the Chevalley basis elements in
Theorem 1.1, Let U be the universal enveloping algebra of L . Let UZ
be the Z-algebra generated by all erm/m! , red, me Al {0} . Then
[19, 26] under the adjoint representation , each generator of UZ preserves

LZ . If p 1is a faithful finite dimensional representation of L on a
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complex vector space V , then there is [26, p. 17] a lattice M idnvariant
under UZ . Let Ei be the part of L which preserves M . (If o = ad,
then [i = LZ of Section 1.) We can form the Chevalley algebra LR =

R &, L, as before, and Tet exp(ter), teR,red,acton Re,M

in the natural [26, p. 21] way, and we label the resulting automorphism
xr(t) . The group Ep(@, R) generated by all such xr(t) is the e1¢mentary
subgroup of the Chevalley group Gp(@, R) of L over R . The latter group
consists of the points in R of a Cheva]]ey—Démazure group scheme [4, §5]
associated with L and p , which depends only on @ and the lattice of
weights of p . When this is the lattice of fundamental weights, Gp(@, )

is universal, and Gp(@, C) . is simply connected  [26, p. 89] over the com-
plex field €. In this case, Gp(@, R) = Ep(@, R) when R 1is a field, Tocal

or even semi-local ring, or a Euclidean ring.

While Gp(@, K) is simple over a field K in almost all cases when o

ad , Gp(@, R) has normal subgroups arising from the ideal structure of
R in a way that is reminiscent of the ideals of L, . For notational
simplicity, let us fix o and & and delete them from our notation for the
groups. Let fy e G(R) -~ G{R/J) be the natural epimorphism induced by
reduction of the ring R modulo the ideal J . Then G(R, J) = Ker fJ

is of course a normal subgroup of G(R), as is fJ'l(Center G(R/J)) = G*(R, J).

4.1 Definition A congruence subgroup of G(R) is a subgroup N

such that

(8) G(R, J) S N < G (R, J)

Note the resemblance between (8) and (1). Also note that if N is any

congruence subgroup of G(R), then N 1is necessarily a normal subgroup. For
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letting (X, Y) stand for the group generated by all commutators (x, y) =
xyx 1yl for xeX and yeY , we have (N, G) < (N, G*(R, J) <
G(R, J) = N for any congruence subgroup N . Hence in particular, we
have G(R, J) = (G*(R, J), G*(R, J)), which finishes the proof of the.

following basic result.

4.2 Corollary Every congruence subgroup is normal, and the factor

*
group G (R, J)/ G(R, J) 1is an abelian group.

The study of normal subgroups of G(R) has focused on congruence
subgroups. We begin our description of the present status of this study

by stating the following result of E. Abe [1] .

4.3 Theorem Suppose G(®, €C) 1is simple and simply connected as a
Lie group. Let R be a local ring such that- R/M # GF(3) and char R/M

» C» F

n ne fa - Suppose also that R/M # GF(2)

# 2 if L dis of type Al s B
or GF(3) in types B, or G2 . (Here M s the maximal ideal of R.)
Then G(R) = E(R) and the only normal subgroups of G(R) are congruence

subgroups.

4.4 Theorem [12, 13] . Let R be any commutative ring with identity,

with 2 and 3 not zero divisors in R and n + 1 not a zero divisor if L

is of type An . Let p= ad . Then corresponding to an ideal I of LR

there is a normal subgroup GI of E(R) generated by x.(t) such that

P
te, e I and by all iterated conjugates of Xr(t) by elements of the

form Xyr(ul) , xr(uz), x_r(u3), etc. This G; is the normal closure in
E(R) of the subgroup generated by all xr(t) such that te eI . If L

is not of type Cn , then GI = GI. if and only if 1IN ER = I'N ER .
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The next theorem actually holds more generally [3] , but for simplicity

of statement, we restrict ourselves to the following version.

4.5 Theorem (Abe - Suzuki) Let G be simple and simply connected

as a complex Lie group, and have rank at least two. Let R be a Noetherian
ring or a direct product of fields. Let Spm (R) = { M| M is a maximal
ideal of R} . If & is of type B, or G2 , assume for all M e Spm (R)

that R/M-# GF(2) . If o s of type B, > C ., or F, , suppose for

n
all M e Spm (R) that char R/M # 2 , and if & is of type G2 , suppose
that char R/M # 3 . Let GO(R) be the subgroup of G(R) generated by
all xr(t) for teR, re & and by all h(yx) = diag ( x(kl) s een ,‘

x(kn) ) for a certain [1, pp. 475-476] set {i » Ay} which generates

10 e

the additive abelian group P generated by the weights of p, and arbitrary

x € Hom (P, C*) . .Then any subgroup of GO(R) which is normalized by E(R)

(in particu]ér, any normal subgroup of E(R) ) satisfies for a unique ideal J
E(R, J) = N = 6 (R, J) ,

where E(R, J) 1is the normal closure in E(R) of all xr(t) ,teR,reao.

That is, E(R, J) = GI , where I = JLR .

4.6 Theorem [13] Suppose & has a single root length and rank at

least two, with p = ad . Then Xr(t) has normal closure G; , where I
= JLR for J the principal ideal in R generated by t . The same result

holds if ¢ =B, n > 3, o0r Fp if r s a long root.

Comparing the preceding result with [18, Satz 3] , the following

question is suggested.

Question 6 Is E(R, J) = Ker fJ‘ E(R) at least in the single root

length cases?
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E. Abe has been able to answer Question 6 affirmatively in case the
exact sequence 0 -3 =R > R/ =+ O splits. It would be
interesting to find other conditiohs on R which provide a positive
answer. Swan [29] states without proof that Question 6 has a pbsitive
answer in the case of the stable group E(R) for any commutative ring
with identity. Silvester [24] makes a similar statement in the nonstable

case. (In both these claims, @ = An .)

4.7 Theorem [13] Under the hypotheses of Theorem 4.6 (first part),
the normal closure of a product Xr(tl) xs(tz) where r # s in E(R) is

G, where I =4JdL

I R for J the ideal in R generated by tl and t2 .

Theorem 4.7 also holds for products of three root elements, but in

general no such fact is known. This 1éads to the following question.

Question 7 Under what hypotheses on R and & can Theorem 4.7 be

extended ?

Suslin [28] has shown that E(R) < G(R) for o = An , n>2,
and in fact has shown that E(R, J) < G(R) in that case. He even showed
normality in GLn(R) » a still larger group. This raises another natural

question.

Question 8 Under what‘hypotheses on R and @ is E(R) < G(R)

and E(R, J) < G(R) ?

This question relates directly to the Kl-functor on Chevalley groups
of Stein [25] . Let rank & > 2 . St (o, R) stands for the group
generated by xr(t) , teR, redo , subject to the relations

(R1) xr(t)xs(u) = xr(t + u)
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(R2) (% (t), x () = I Xipieles o thud)

. . b ..
ir + js e o irtjst-ijrs
where r+s e o and the product is taken in some

fixed order , with Cijrs e Z forall ir+ js e @

Since the relations (Rl) and (R2) hold , we have a mapping w: St(R) -
G(R) whose image is the elementary subgroup E(R) . By definition, the
group Kz(@, R) 1is the kernel of thé map w ,and K (&, R) = Cok 7 =
G(R)/E(R) as a homogeneous space. Question 8 can therefore be rephrased in

the language of algebraic K-theory as follows.

Question 8' Under what conditions on & and R is Kl(®, R) a

group ?

In [25] , Stein gives the following partial answer to this form of

the question.

B,C,D ,or G

4.8 Theorem Let & be one of the types An’ n> G0 Dy o -

Let R be a ring whose maximal ideal space is Noetherian of finite dimension
d . Suppose also that if & is of type An , then n > d+1; if ¢
is of type Bn , then n > d+2; if o is of type Cn , then n >

(d +2)/ 2 ; if ¢ 1is of type Dn » then 'n > d+2; and if ¢ s
of type 62 , then d < 1. Then E(R, J) < G(a, R) .

Finally, Silvester [23] considered the ring R = K<X> freely gehera—

ted over K by a set X of noncommuting indeterminates. For & = An .

he considered GE(R), the subgroup of GLn(R) generated by all xr(t) and
all hi(z) = wr'(z)wr.(—l) , i=1,2, ..., n , where wr(u) =

xr(u)x_r(-u'l)xr(u) . In addition to this group , he also considered

GEU(R) , the group generated by symbols xr(t) and hi(z) with the usual
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relations [23, p. 37] in GE(R) . He showed that the natural homomorphism
f : GEU(R) - GE(R) 1is an isomorphism, in which circumstance R 1is said to
be universal for f . Consideration of the analogous notions for general

& leads naturally to the following question which is currently under joint

investigation by the author and E. Abe.

Question 9 Under what conditions on R and ¢ is f an isomorphism
for more general root systems ? In particular, is it an isomorphism in the
case of R = K[X] , the free commutative K-algebra generated by a set X

of indeterminates, at least in the single root length systems ?

Silvester's results for the case R = K<X> was a major tool in

showing that KZ(An’ K<X>) = K, (A_, K) . Thus the answer to Question 9

2 Yn
bears directly upon the question of computing K2(¢, K[XT) which is raised

by E. Abe [2] in his article in these Proceedings.

In a similar vein, if R s a commutative ring with identity, then for

® = A_, Center En(R) = 0

n the group of n-th roots of 1 in R [15].

n b
Passing to the stable group, Center E(R) = 1. For more general & , we

can pose the following question.

Question 10  What is the center of the group E (@n, R) ? What is the

center of Ep(R), the direct limit of Ep(@n, R) for the classical 2, ?
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