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1. Introduction. Let R be a ring with identity. The

faithful prime left R-modules in the sense of Page [7], together
with the zero module, form a torsionfree class of R-mod. The
corresponding torsion class is {RA | A has no faithful prime images}
In [2] Handelman and Lawrence has posed the following question:
What can be said about this torsion theory ? The purpose of this
note is to investigate this problem.

After some preliminaries, we. shall define, in the section 3, .
a preradical s of R-mod and discuss its basic properties. In the
section 4 we shall treat the case where the left linear topology
associated with s has the smallest element. In the final secticn
we shall discuss the problem using the localization with respect
to the faithful prime radical B,, defined in Nicholson and Watters
[6].

Throughout this note R will denote an associative ring with
identity and all R-modules will be unitary left R-modules. The
category of unitary left R-modules is denoted by R-mod. For the
notions and términologies about torsion theories we refer to

Stenstrom [81].



35

2. Preliminaries. A functor t: R-mod -~ R-mod is called a

preradical if t(M) is a submodule of M and £(t(M)) < t(N) for each
morphism f: M -+ N in R-mod. A preradical t is called a radical if
t(M/t(M)) = 0 for all M € R-mod. It is called left exact if t(N)
= N\ t(M) whenever N < M in R-mod. To each preradical t we can

associate two subclasses of R-mod, namely

T(t) = {gA | t(a) = A} and F(t) = {;B | t(B) = 0}.

R

Page [7] has defined a prime R-module as a nonzero R-module
whose left annihilator in R is the same as that of any of its non-
zéro submodules, i.e. an R-module M is prime if and only if M % 0
and KR(M) = QR(Rx) for every nonzero element x in M. Then M is
faithful prime if and only if M # 0 and RR(M') = 0 for every non-
zero submodule M' of M, or equivalently, M % 0 and QR(Rx) = 0 for
every nonzero element x in M.

From this definition we have at once

Proposition 2.1. The following conditions for a ring R are

equivalent:
(1) R is a prime ring.

(2) R is faithful prime.

R

(3) There exists a faithful prime R-module.

As is easily seen, the faithful prime R-modules, together with
the zero module, form a torsionfree class of R-mod and the
corresponding torsion class is exactly
{zp | A has no faithful prime imagesl}.

For each R-module M, following Nicholson and Watters [6],

define the faithful prime radical B,(M) of M as

Bo(M) =/ \{M' <M | M/M' is faithful prime}.

The functor By: R-mod - R-mod is then a left exact radical,
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T(Bo) = {gA | A has no faithful prime images} and F(B,) = {;B |

B is faithful prime}\U {0}. Hence the problem posed by Handelman
and Lawrence [2] means investigating the torsion theory (T(Bo),
F(Bo)) .

As to B, we have

Proposition 2.2. The following conditions are equivalent:

(1) R is a prime ring.
(2) Bo(R) = 0.

(3) Bo # 1.
Furthermore we have

Proposition 2.3. The following conditions are equivalent:

(1) By = 0.

(2) R is simple (R has no non-trivial two-sided ideals.)

Proof. (1) = (2). Let a be a two-sided ideal % R. Then
R/a is faithful prime and so QR(R(l + a)) = 0. Since bR(1 + a)
= 0 for every b in a, we see that a = 0. (2) 3 (1). Let M 0
be an R-module. Then, for each x * 0 in M, QR(Rx) is a two-

sided ideal # R and thus we have RR(RX) = 0.

3. The Preradical s. From now on, by means of Propositions

2.2 and 2.3, we can assume that R is prime and is not simple.
For each R-module M, define a functor s: R-mod - R-mod as
s(M) = {x e M | Ix = 0 for some two-sided ideal I # 0}.
Then, since R is prime, s(M) is a submodule of M and s is a left
exact preradical. We can also describe s (M) as
s(M) = {x e M | aRx = 0 for some a # 0 in R}
and hence s(M) = 0 if and only if M = 0 or M is faithful prime.

Therefore the smallest radical s larger than s coincides with B,



and s(M) is essential in B¢ (M) for every R-module M.
Nonzero two-sided ideals in a prime ring are essential in R
as R-modules and so we have

Proposition 3.1. (M) < Z(M) for every R-module M.

It follows from this s < Z and hence B, = s < 7Z = G. As was
pointed.out by [6, p. 240] in general B, does not coincide with G.

Theorem 3.2. The following conditions are equivalent:

(1) Bo = G. |

(3) Bo(M) is essehtial in G(M) for every R-module M.

(3) s(M) is essential in G(M) for every R-module M.

(4) F(s) = F(2).

Proof. We only show that (3) 9 (4). By Proposition 3.1

F(s) > F(z). Assume that there exists an R-module M such that

Il

s (M) 0 and Z(M) # 0. Then Z(M) is a nonzero submodule of G (M)
and so 0 # s(M)/\2(M) = s(M) = 0, a contradiction.

An R-module M = 0 is strongly prime, following Handelman and

Lawrence [2], if for each x # 0 in M there exists a finite subset

F in R such that QR(Fx) = 0. We call a ring R strongly prime if

RR is strongly prime. Then by [2, Corollary 3 to Proposition V.1]
if R is‘strongly prime, then an R-module M # 0 is strongly prime
if and only if Z(M) = 0.

On the other hand, Nicholson and Watters [6] has defined the

strongly prime radical B(M) of an R-module M as

g(M) = () {M' <M | M/M' is strongly prime}.
Hence if R is strongly prime, then B(M) = Z(M) = G(M) for every
R-module M. However R is non-singular and so we have Z = G = B.
Thus we have‘BO < B.

As an application of Theorem 3.2, we have

37
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Corollary 3.3. For a strongly.prime ring R the following
conditions are equivalent:

(1) Bo = B.

(2) Bg (M) is essential in Z(M) for every R-module M.

(3) s(M) is essential in zZ (M) for every R-module M.

(4) F(s) = F(2z).

We now determine the left linear topology L(s) associated
with s. For a left ideal a in R, s(R/a) = R/a if and only if
1l +aces(R/a), i.e. if and only if I < a for some two-sided ideal
I %0 in R. So L(s) is a bounded left linear topology with a
basis consisting of all the nonzero two-sided ideals in R. L(s)
can be also described as

L(s) = {a <

={a

rR | b < a for some right ideal b # 0}
R

A

gR | cR < a for some c % 0 in R}.

In case R is commutative, or more generally R is left duo,

then we have

L(s) {a <

gR | a # 0} and

s (M) {x e M | 25(x) ¥ 0}

for each R-module M. Since R is prime, QR(x) ¥ 0 means RR(X)

essential in R and hence we have s(M) = Z(M) for every R-modue M.
Furthermore Z(R) = s(R) = 0. Therefore s = 2 is a radical.
Theorem 3.4. If R is left duo, then By, (M) = Z(M) for every

R-module M.

Turning to a general case, s does not coincide with Z, as was
pointed out by {2, p. 222]. However, s = Z if and only if
essential left ideals in R contain nonzero two-sided ideals.

Besides commutative rings and left duo rings, examples of

rings with this property are (prime) rings with nonzero socles,



and left fully bounded (prime) rings.
In general, as is well-known, every left Gabriel topology on
R is closed under finite products. However we have

Proposition 3.5. L{(s) is closed under finite products.

Since s is a left exact preradical, it is a radical if and
only if a is a left ideal and there exists a left ideal b € L(s)
such that (a:c) € L(s) for every c € b, then a € L(s). It is easy
to see that this condition is satisfied if R is either left

Noetherian or subdirectly irreducible.

4. 3-fold Torsion Theories. As was pointed out'just‘above,

if R is subdirectly irreducible then s becomes a radical.
Moreover we have

Proposition 4.1. The following conditions are equivalent:

(1) R is subdirectly irreducible.

(2) L(s) has the smallest element.

Proof. L(s) has the smallest element if and only if
MN{a | a € L(s)} € L(s) and this is so if and only if
MI{I | I is a two-sided ideal #% Q} % 0, i.e. R is subdirectly
irreducible.

As to a left linear topology with the smallest element, we
have

Proposition 4.2. Let I be a left ideal in R. Then

(1) L ={a < _R | I < a} is a filter.

(2) L is a left linear topology on R if and only if I is a
two-sided ideal in R.

(3) L is a left Gabriel topology on R if and only if I is

an idempotent two-sided ideal in R.
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Proposition 4.3. For a left exact preradical t, the

following conditions are equivalent:
(1) T(t) is closed under direct products.
(2) L(t) has the smallest element I.

(3) There exists a two-sided ideal J in R such that

t (M) rM(J) for every R-module M.

(4) There exists a two-sided ideal K in R such that
T(t) = {gA | KA = 0}.

Furthermore, if this is the case, I = J = K and t is a
radical if and only if I is idempotent.

Now we assume that R is subdirectly irreducible. Then s is
a radical and so s = By. L{(By) has the smallest element
Io = {\{I | I is a two-sided ideal % 0} which is nonzero
idempotent by Proposition 4.2. T(B,) is closed under direct
products by Proposition 4.3 and hence we can find a subclass C of
R-mod such that (C, T(By), F(By)) forms a 3-fold torsion theory
in the sense of [3]. Furthermore using Proposition 4.3 again,

Bo (M) = rM(Io) for every R-module M and we have

T(Bo) = {A | IoA = 0}

It

{zgp | IA = 0 for some two-sided ideal I # 0}

and

F(Bo) = {gB | rg(Io) = 0}
= {;B | ry(I) = 0 for all two-sided ideals I 4 0}.
By [3, Lemma 2.1],
C={M]| IM=M}
= {gM | IM = M for all two-sided ideals I 4 0}.

Summarizing these facts, we have
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Theorem 4.4. The following conditions are equivalent:

(1) R is subdirectly irreducible.

(2) There exists a subclass C of R-mod such that
(C, T(Bo), F(By)) forms a 3-fold torsion theory.

(3) There exists an idempotent two-sided ideal I, such that

Bo (M) = rM(I 0)
for every R-module M..
Mdreover, if this is the case, C can be given by
{gM | IM = M for all two-sided ideals I ¢ 0}.

Proof. We only show that (3) = (l1). By Proposition 4.3,
L(Bo) has the smallest element I,. Let I be any two-sided ideal
$# 0 in R. Then I € L(s) < L(Bg). So I, < I and I, < (”\{I | T is
a two-sided ideal # 0}. If I, = 0, thethO(M) = r,(I,) = M for
every R-module M. Hence we have B, = 1 which contradicts to the
assumption that R is prime by Propositioh 2.2, Thﬁs we have
M{1I | Iis a two-sided ideal 4 0} # 0. |

Assume.again that R is sﬁbdirectly irreducible. Then
(C, T(By), F(By)) forms a 3-fold torsioﬁ theory for some subclass
C of R-mod. Can this 3-fold torsion theory be extended to a
4-fold torsion theory ? If this can be extended to a right-
hand side and becomes a 4—foid torsion theory, theniF(Bo) becomes
a torsion class and we have F(B,) = R-mod because R ¢ F(By) .
Hence By, = 0 which contradicts to the assumption that R is not
simple by Proposition 2.3. On the other hénd, if this can be
extended to a left-hand side, then this must have length 2 by
[3, Proposition 4.6] and so C = F(By), a contradiction.

Thus we have
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Proposition 4.5. If R is subdirectly irreducible, then the

3-fold torsion theory (C, T(By), F(By)) can not be extended to

any 4-fold torsion theory and hence it has length 3.

5. Localizations. Let M be an R-module and t a left exact

radical. Let M, be the localization of M with respect to t and

n M - M_ the canonical mapping. As is well-known, both Ker(nM)

M* t

and Coker(nM) are in T(t), M_ is in F(t) and M, is t-injective.

t t
The following lemma shows that these properties characterize the
localization Mt'

Lemma 5.1 ({4, 2.2]). Let M and X are R-modules and let
f: M - X be an R-homomorphism. Suppose that Ker(f) and Coker(f)
are in T(t). Then:

(1) There exists a unique R-homomorphism h: X - M_ making

t
the diagram

commutative.

(2) Ker(h) = t(X).

(3) h is an epimorphism if and only if X/t(X) is t-injective.

Note that, if in particular M and X are rings and f is a
ring homomorphism, then h is a ring homomorphism.

Let M be again an R-module and t a left exact radical. For
the natural homomorphism mw: M -+ M/t(M), by Lemma 5.1, there exists
a (unique) R-monomorphism h such that the diagram

M —T s M/t(M)

w7

Me
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is commutative. Again by Lemma 5.1, M/t (M) = Mt if and only if

M/t(M) is t-injective. Thus we have

Proposition 5.2 (cf. [1, Théoré&me 1]). The foiiowihg

conditions are equivalent for a left exact radical t:
(1) M/t(M) = Mt for every R-module M.
(2) Each element of F(t) is t-injective.

(3) F(t) is closed under homomorphic images.

In case t(R) = 0, these are also equivalent to the following
conditions.
(4) t=0.

(5) Every R-module is t-injective.
(6) M = Mt for every R-module M.
Since By is a left exact radical and B,(R) = 0, we can apply
Proposition 5.2 to By.
Let M be an R-module and t a left exact radical.. Consider
the following diagram:
M
|
M

t

where v denotes the inclusion map. If we assume that

Tw/em ¥ EM/tM))

(*) gN € F(£) 2 E(N)/N € T(t),
then by Lemma 5.1 there exists an R-isomorphism h: E(M/t(M)) -~ Mt

such that hvm = Conversely if h: E(M/t(M)) - M, is an

My * t
isomorphism and hvrm = v holds, then E(M/t(M))/(M/t(M)) = Mt/nM(M)
€ T(t) and so (*) is valid. Thus we have

Proposition 5.3 (cf. [1, Théoréme 2]). For a left exact

radical t the following conditions are equivalent:

(1) For each R-module M there exists an isomorphism h such

10
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that hvm = nM.
(2) For each R-module M in F(t), there exists an isomorphism
h such that the diagram

M — E(M)

Wl

Mt
is commutative.
(3) If M is an R-module in F(t) and M' is an essential
submodule, then M/M' is in T(t).
(4) If M is an R-module in F(t), then E(M)/M is in T(t).
It_is to be noted that, if t = G, then the condition (3) (or
(4)) is automatically valid and so we can claim that
M, = E(M/G(M))
for every R-module M.
The equivalence of (1) and (3) in the next proposition has

given by [1, Théoréme 3].

Proposition 5.4. For a left exact radical t the following

conditions are equivalent:

(1) (i) T(t) is stable. (ii) 1If M is an R-module in F(t)
and M'is an essential submodule, then M/M' is in T(t).

(2) (1) T(t) is closed under injective hulls. (ii) If M is
an R-module in F(t), then E{(M)/M is in T(t).

(3) G £ t.

(4) If M is an R-module and M' is an essential submodule,
then M/M' is in T(t).

(5) If M is an R-module, then E(M)/M is in T(t).

(6) If a is an essential left ideal in R, then R/a is in

T(t), i.e. 2 X t.

11



(7) If a is a left ideal in R, then E(a)/a is in T(t).

Proof. We only show that (1) = (4). Assume (1) and let M'

45

pe an essential submodule of M. First note that t(M) is closed in

M, i.e. t(M) = E(t(M))M\ M. Since E(t(M)) e T(t), E(t(M))NM
¢ T(t). Hence E(t(M))MM < t(M) and thus we have t(M) = E(t(M))
N\ M. Now M' + t(M) is essential in M and so (M' + t(M))/t(M)
is also essential in M/t (M) because of the closedness of t(M).
Hence by assumption M/(M' + t(M)) e T{(t) and thus M/M' ¢ T(t).
In addition to Theorem 3.2, the following theorem will also
give some conditions that B, to be coincide with G.
Theorem 5.5. The following conditions are equivalent:
(1) Bo = G.
(2) If M' is an essential submodule of an R-module M; then
M/M' has no faithful prime images.
(3) For every R-module M, E(M)/M has no faithful prime
images.
(4) 1If g_is an essential left ideal in R, then R/a has no
~faithful prime images. | )
(5) Fof every left ideal glin R, E(a)/a hés no faithful
prime images. | |
Finally in closing this note we shall give a relationship
between two localizations R and R, of a strongly prime ring R.

Bo B8

Assume that R is strongly prime and put R = Q¢ and R, = Q (R)

Bo G max

= Q. Let n: R+ Q and ng: R +~ Q; be the canonical maps. Then by

Lemma 5.1 there exists an injective ring homomorphism h: Q, = Q
such that the diagram

R 9% g,
T’Il’/
h
Q

12
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is commutative.
By [2, Proposition IV.1], Qo is also a strongly prime ring.
Applying Lemma 5.1 to Qo-mod, there also exists an injective ring”

homomorphism k: Q - Qmax(Qo) making the diagram

Qo —Eﬁ Q
m, A
Qmax(Qo)

commutative, where N denotes the canonical map. Hence we have a

sequence of ring extensions

R<Qo <0290 (Qo)

and QmaX(Qo) is a rational extension of Q. However Q has no
proper rational extensions. Hence Q must be equal to Qmax(Q°)'

Thus we have

Theorem 5.6. If R is strongly prime, then RB =Q (R, ).

max ' Bo
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