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ABSTRACT

Concurrent execution of transactions and various failures occurring during
transaction processing in a distr_ibutéd database system can lead fo an incon_s'is-
tent database state. C_onc_urrenéy con‘trol an_d. recovery scheme play a ce{ltrél ’
réle in the effort to preserve consistency. Thié paper proposes a new recovery‘ )
scheme based on the concept of multiple uncommitted versions of dafabase entitiesn.
This scheme is c_:ompétible with a highly con.c;urrent yet __coﬁsiétenp _schedgle of
tranéactions: A ro'ilgh s.kétch.of an élgori£hm' }qr ciétébaséupciates _th.at adopts

this scheme is also presented in order to show its utility.



1. INTRODUCTION

Co;npo;xer;ts of a dafabase are related'to each other in certain ways. Such
relations are usually called co-nsistency constraints. "Sinée these éonsisten'c’y
constraints canno£ neceséarily be enforced at each primitive action on the compo-
nents (usually called entities) such as read.and write, sequences of actions are
gTOL;ped to fbrm tra;nséctionAs,- which afe the units c;f g:on‘sistem.:y. Each fransac-—
tion must transform the database from one. consistent state to a new consistent
state [2] [3][4] -

Alth'ough: ffansaé_tibns presefvé cbn.sisten'cjr wheﬁ exécuted ohe at a time,
concurrent execution of transactions and various failures occurring during
transaction proéessing can c;:mse anomalies_suéh as lost updates, d_irty read and
unrepeatable read [4] . To prevent these anomalies from occurring, it is required
that : |

1) for a given concurrent schedule of t'ransactions, there exists some serial
schedule that is equivalent to it (schedules that satisfy such a property are
called consistent schedules), .

2) each transaction is either completed or backed out even if failures occur
during transaction proéessing.

This paper proposes a new scheme for recovering from various kind of
failures that is compatible‘ with a highly concurrent yet consistent schedule. It

also shows the utility of the new scheme by presenting a rough sketch of an

‘algorithm for database updates that adopts this scheme.



2. CONSISTENT SCHEDULE OF TRANSACTIONS

;2?1 Definition ng Consistent Schedule
A schedule S for a set ofb transactions Tt1, T2, ... , Tn défiﬁes the binary
relation <as folloﬁs : T1.< T2 if transaction T1 performs action A1 on‘entity E at
some step in S and transaction T2A perf_orms ‘action A2 on E “at a la_.f.er step inﬁS
.én;l i.f A1l is not permutable with A2 .. Let << % be the trans.itive clos‘ure of <.
Then the definition of a consistent schedule can be restated as follows [2] [3] [4] :
S is a consistent schedule if and only if 'thga. _reiati_gn <% is a partial order. E

2.2 Consistent Schedule based on Timestamps

Gray et al. [2] [3] [4] explored a consistent scheduling scheme that:uses a
lock mechanism.l Although ea‘xch transaction has to set an exclusive lock bn any
entity it dirties and a share lock on any entity it reads, it is possible to ensure
that any legal schedule is consistent if each transaction observes a two-phase lock
protocol [2] (i.e. transactions éannot request new locks after releasing a lock).
However, the degree of concurrency achieved by this scheme is not very good
since the two-phase constraint is only' a sufficient condition for consisiency [2] . -
In addition, if one wahts to cope with possible failures during transaction process-
ing, it is necessary to hold all locks to the end of the transaction. This seriously
restricts concurrent execution of transactions since it almost serializes any pair
of transactioﬁs if there is'one or more entity that is needed in exclusive mode by
both of them. In fact, the degree of concurrency in System R, which forces ‘
‘transactions to observe this lock protocol, is reported to bé less than two [5] .
Also, it is subject to deadlock that would be very costly in a distributed envi-

ronment.

On the other hand, a scheduling scheme that uses a timestamp mechanism is



based on the observation that a conbsistevr;t sqpedu_lé of transactions is mere'ly a
sequencing of abtions pérformed -on the underlying eﬁtities by tl;ese transactions .
such that the relation<x is a partial order. Namely; sequencing is directly
controlled using’a timestamp méchanism [1] [1 1] rather than a lock mechan_ism.

(1)

In thlS sc_lr_leme, eta:ch t_rans}a_ctipn 1s as§i’_gn'ec_i a globally uniq}le timestamp ,_and _
thereby all transact.ions afe totaily ordered. The type manager of each entity
schedules actions on the entity in the timestamp order oi: the transactions that

.. requested the"s;e actions. This distributed (i.e. per-entity-based) sch_eduliné
algorithm guarantees that, for any pair éf transactions T1 and T2 both of which
access the same entities E1, E2 . .En, T1< T2 if and only if the timestamp
assigne;i to T1 is smaller than the timestamp assigned to T2. Therefore, the
relation <% defined by this scheduling algorithm is a partiai order that can be
ext;ended to the timestamp order. Thi; scheme ensures the maximum degreé of
concurrency since it imposes no more restraints than necessary (i.e. , that the
relation <x be a partial order). In addition, it is deadlock free since< * is an
acyclic relation. HoWever, it requires a non-trivial algorithm that énsures that
actions are eventually.exeo:.:uted in the timestamp order even if components of the
system fail or sequence anomalies occur because of communication delays, process-—
ing delays etc.(z). Such an algorithm may ind;xce a greater overhead than the pre-
vious scheme does.

This paper adopts the latter scheme since it

1) realizes highly concurrent execution of transactions,

(1) It is easy to guarantee that every (locally generated) timestamp is globally
unique [13] . In addition, Lamport's method 7] guarantees that all local clocks
are reasonably synchronized.

(2) For example, suppose that both T1 and T2 perform actions on two entities E1
and E2. Then it may happen that E1 gets a requést from T1 before that from T2,
but E2 gets requests in the reverse order. .



2) is deadlock-free, and

3) fits in with multiple uncommitted versions as discussed later.

3. GUARANTEEING THE ALL OR NOTHING PROPERTY OF TRANSACTIONS

3.1 Two-phase Commit Protocol

In order to prevent incaﬁsistencies from occurring when failures () are
_~encou'nte'~red, it .:ﬁust be always possible t.o dgpic}e whether or not to co'mplete 'any__
outstgx}ding transactions and perform the alternative thus selected. Unfortunately,
there exists no finite length protocol which ensures that each transaction is either
coméletéd or backed out in a distributed system in which nodes or communication
lines may fail at any time [4] . Therefore, the second best policy is to relax the
req;lirement for finiteness of the protc;col, but attempt to minimize the time window
during which a failure causes unnecessary delay. This is the main aim of the two-
phase commit protocol that was first mentioned publicly by Lampson et al [8] .

In the two-phase commit protocol, a commit point is estéblished after the first

(2 is successfully completed. If something goes wrong before

phase of commitment
the commit point, the transaction must be backed out. On the other hand, the
transaction must be completed no matter what happens after the commit point (even

though it may cause an infinite delay). The rest of this section discusses recovery

schemes that back out transactions that have failed, that is, transactions that can-

(1) This paper excludes media failures such as head crashes, dust on magnetic

media etc., and serious failures of operating systems. To cope with such failures,
extra recovery schemes such as incremental dump, long~term checkpoint, differential
files etc [4] [9] [14] are needed.

(2) ‘Committing the change of an entity's state means making this change decisive to
the users of the entity.



not be completed because some error has been experienced during their execution..

3.2 Recovery.Schemes

Backout of a transaction consists (;f the following phases :
1) deciding which entities the transaction accessed,
2). restoring the states of these entities to their states before the transaction :
was invoked.
In addition to these, the inform‘ation flow (if any) from the transaction must be un-—
déne and all other transactions affected by éhis'information :flc.)w must also be b_aék‘-\,
ed out (this is called casca;ding of backouts [4].0_1' the domino effect [10] ) In this ;

1

paper, >recovery schemes used to implement the first phase are called transaction- |

~

oriented recovery schemes because the first phase associates entities that were

processed together by a given transaction. Recovery schemes used to implement
the second phase are called object-oriented recovery schemeé because the second |
phase deals with the history of actions performed on a given entity (object) by
different transactions.

A transaction-oriented récovery scheme basically remembers tﬂe identifiers
of the entities accessed by the transaction and requests object-oriented schemes
associated with these entities to restore the states of the entities when something
goes wrong. Audit trails (or %ogs) [4] [14] and recovery caches [6] can be used as
transaction-oriented schemes. However, a backout/commit cache that contains
the actions to be performed in the backout process as well as the actions to b‘e-
per}‘ormed in (the second phase of) the commit process seems to be most appro-
priate [1 2] . |

An object-oriented recovery scheme remembers the history of the changes

of an entity's state and identifiers of the transactions that depend on each state.



R.ec‘overy 'schemés'proposgd so far, such as a careful replacement, muitiple copies
and differential files [9] [14] , canneither reéliéé sufficiently concurrent execution
.of mutually dependent transactions nor control the cascading of backouts.

This paper proposes a new object——orienfed recovery scheme that permits
highly concurrent execution of transactions. This scheme uses multiple uncommitt-
ed versions of entities ; it is an extension of careful replacement [1 4] . In this
scheme, whenever a transaction tries to perform an action on a given entity
for the first tixf)e, a new version-of the eﬁtity is created and »the actua.l acti_on (and- ’
.all subsequent actions) are performed on thi.s ‘n.ew version. A transaction can
crea:té a new version before the immediately preéeding transaction has committed
the bﬁr‘rent version, although the co;rxmitment of the new version must be deferred
until the current one is committed. Each version continues to exist until the
imrﬁediate_aly succeeding version is cor‘hmifted. Each version contains additional
information such aé the timestamp value assigned to the transaction that performed
the action (i.e. created this version). Therefore, this new scheme -records nﬁt
only the complete history of the state changes of the entity caused by uncommitted
actions, but also what transactions depend on each version. This‘makes it pos-
sible to control .the ca_'scading of backouts caused by the backout of an uncompleted
transac;tion. Because of this capability, a transaction can safely access an entity
before its predecessoi‘s have committed their accesses to that entity, and there~
fore transactions car; be executed highly conéurrently.

Note that although multiple uncommitted versiong are somewhat similar to
Reed's tokens [1 1] , there is one cru;::ial difference : the former provides a power—:-

ful concurrency control whereas the latter does not.



3.3 Guaranteeing Complete backout/comniitment

In order for a transaction to be complétely backed out (/committed), actions |

performed during the backout pfobess (/the second phase ;of the corﬁmit procé'ss) :

1) must not bé lost even if a failure occurs, |

2) must be repeatable (idempotent {4] (8]) (1) since if a failure occurs during

a backout (/commit) process, this process may have to be repeated.

Stable storage [8] that holds‘ obje;:ts safely across failures pla;ys an important
role in satisfying the first requirement. In pa‘rticula‘tr, implementing versions of‘
entities and backout/commit caches in such stable storage satisfies this require-
ment. To satisfy the second requirement, different methods can be chosén. One
method is to reduce the actions performed durinig the backout (/commit) process
to a sequence of write actions that are well known to be repeatable [8] . Another
method is to preirent the actions from being performed more than once by using a
mechanism that provides an unique identifier (such as a timestamp) for each invoca-

tion of an action.

4. AN ALGORITHM FOR DATABASE UPDATES

This section presents a rough sketch of an algorithm for database updé.tes
that uses multiple uncommitted versions coupled with a consistent schedule based
on timestamps (for more details, see [12]). It will help the reader undez;stanc‘l the

implementation aspects and the utility of the proposed recovéery scheme.

(1’) Repeatability (or idempbtency) of actions means that performing them several
times produces the same result as performing them exactly once.



4.1 Assumptibﬁs

This paper considers a distribﬁted deitabase' system that consists of a ‘set of
hédes interconnected via communication lines. anch node; consists of a sét of sub-
systems ; data ma'nagem.e-nt subsystems and transaction management subsystems.
A transaction management subsystem consists of transaction management proc‘esses
that execute transactioﬁs, one at a time, by _com'municatin'g with dafa management
sdbsystems. Each data mar‘xagem'ent subsystem maintains a portion of the database
(i.e. a sét of entities) and controls accesses to them. It consists of type managers
of entities and data fnanagement procésses that access entities at the request of
t.ransaction management processes. A transaction management process retrie_ves»
(/updates) the content bf an entity by sending a read (/Write) message toAthe data
management subsystem that maintains the e;ntity. The message is r;ceived by one
of the idle data management processes of the subsystem. Then this process
accesses the entity (Figure 1).

For convenience, this paper classifieé read messages into readr messages
(i.e. read-only messages) and readu messages (i.e. read messages that are fol- -
lowed by write messages). An access to the database via a readr message is
called a read-only access, Ia.nd an access via two messages, a 1.'eadu message and
a write message, is called an update access. The set of entities to be updated by
a transaction is called its update set, and the set of entities to be read is called
its read set. For the sake of simplicity, this paper assumes that

(a) the update set of a gi;ren transaction T is a subset of its read set,

(b) T performs an (either read-only or update) access to each entity at most
p Y

once.
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4.2 Representation of Entities

It is assume-d that “database.entities are ;r"epfesénted in thé stable storage in
the following way. - Each entry of an entity descriptor consists of the following
fields : v#, acc, s, a‘ddr.' The v# field conta_ins the version number, whit_:h is
equal to the timestamp of the transaction that created this version (by'an access-
request). The acc field indicates whether the access was read-only or update. "
The s field indicates the current state of this version, ‘which may take on one of
the féllowing vaiues :

1)‘ -dirty : already read, but not yet'writtéx'l (meaningless in the case of read—
only access) )
2) dependent : already accessed., but not yet prepared for commitment
3) prepared : prepared for commitment
4) committed : already committed
5) discarded : already discarded because of failures, sequence anomalies
etc.. |
The addr field contains the address éf the storage cell that contains this version (1)
Entries of a descriptor are sorted in the timestamp order (Fi gure 2).

4.3 Processing of Read Actions

A transaction can access an entity before preceding transactions that accessed
the same entity commit their accesses. The only constrvaint‘ on concurrency is that

accesses to the same entity must be performed in the timestamp order.

When a readu action is invoked, the type manager processes the request in one

(1) If the acc field is "read-only", this version shares the storage cell with the
previous version.
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of the following ways, debending on the timestam;-) value ts assigned to the re-
questor.

1) If ts is greater than the ve’rsioxf number of the current version, thé type
manager creates a new version (that is, creates a new descriptor entry)
whose version number (v#), state (s) and access mode (acc) are "ts",
"dir};y" and "update", and returns the content of the (former) current ver-
sion, .except when the current versioﬁ is "dirty", in which case creation -'
of a new Aver:'sion is deferred (that is, the respective data management
process is suspended) until the current version becomes "dependent".A

2) Ifts is.smaller than the version numbéx: of the current version but greater
than those of the committed and prepared (if any) versions, the type manager

a) discard$ the versions whose version numbers are greater than ts
b) creates a new version and returns the content of its immediate
predecessor (that is, the closest older version).

3) Otherwise, th® request is rejected (1).

Processing of a readr is similar to that of a readu éxcept that

1) even if ithe action is not the latést one, it is not neceésary to discard the
vefsions that have greater version numbers. Instead, it is sufficient to
insert a newly created, but outdafed version immediately before these
versior{s, .

2) the state and the access mode are set to "dependent' and "read-only" .

(1) Requests older than some "prepared" version are rejected since it is highly
probable that such a version will be committed. Moreover, according to the two-
phase commit protocol, once a version is in the "prepared" state, only the transac-
tion management process that originated the transaction may abort it (and thus
discard the "prepared" version).
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respectively,
3) if the queue of waiting processes is not empty, then the type manager wakes
up the process that has the smallest timestamp. -

4.4 Processing of Write Actions

When a write action is invoked and the version created by the corresponding
(preceding) readu action is not "discarded", the type manager acquires a free
storage cell fér.the new version, writes the content of'the buffer into it, and chan.ges
the state to "depe.zndént". Otherwi§e, it returns as "discarded". If the queue of
waiting processes is not émpty, the type manager wakes up the process that ha;s
the Smallest tirr-nestamp. Each version, unless discarded, is deleted when it and a
ngawer version are committed.

4.5 Commitment of Transactions

The central principle of the commit protocol proposed in this paper is that no
transaction can commit the versions it created until the states of all previous ver-
sions of these entities become "committed". The commit protocol is basically a
two-phase commit protocz;l but it is éonsiderably different from others [4] [8] [1 1}
because it must co~operate with the concept of multiple uncoﬁmitted versions.

In the‘first phase, a transaction management pfocess sends prepare messages
to all involved data management subsystems to confirm that the versions it accessed
afe eligible to be committed. 'When the type manager receives the requési , it per-

forms one of the following operations, depending on the state of the designatéd,
version and the state of the immediately preceding version :
1) changes the state of the de'sigr;ated version to "Prepared" if the designated

version is "dependent" and the immediately preceding version is already

committed,
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2) suspendé the data management process until the state of the immediately
preceding _versi.on is charilged to "committed" o'r "discarded" if the des-
ignated version is "dependent" and the immediately preceding version is
not yet committed, |

3) returns as "discarded" if that version is already "discarded".

If all return messages ai'e "prepéred", a commit point is established and then the
second phase begins. Otherwise the transaction management process sends undo
messages .to all involved data management subsystems to backout the transaction.’
This is done by executing the set of actions (i.e. "send undo message" in this case)
saved in the backc;ut éache associated with this transaction.

Once begun, the second ‘phase must be completed no matter what haépens.
The transaction management process sendsnt.:ommit messages to all involved data
management subsystems to commit the vergions the transactioﬁ created.
This is done by executing the set of actions (i.e., "send commit message" in this
case) saved in the commit cache associated ;vith this transactioﬁ. When the type
manager receives the request, it

1_)_ changes the state of the designated version to Ycommitted",

2) deletes the older committed version,

3) if a data management process is waiting for this version being committed,
wakes up the process. |

Sending of a commit r'nessage is repeated until it is successfully proces'sed;
When the transaction managerﬁent ‘process confirms that all éommit messages were
suc.cessfully processed, the whole commitment process is completed..

4.6 Backout of Transactions

Backout of a transaction occurs either when the transaction is aborted be-



14

1k

cause of a failure (1) of any participants in the transaction processing or when it

is involved in a sequence anomaly. A transaction is also backed out when transac—

tions on which it depends are backed out. Suppose that T-is the transaction that

must be backed out. The backout of T causes all transactions that depend on'T (in

terms of the relation <x) to be backed out. This cascading of backouts is done in

the following way.

1)

2)

,3)

4)

The transaction management process executing T sends undo messages to

all involved data management subsystems. This is done by executing the’

set of actions saved in the transaction backout cache.

“When a data management process receives the undo message, it requests

the appropriate type manager to delete the version created by T by invok-
ing an undo action. If the access mode of the version is "update", the type
manager not only deletes the version, but aléo changes the states of all
newer versions (if any) to "discarded".

When a data management process invokes a write or prepare action on one
of these discarded versions at the request of the transaction ‘management
process that created it, the type manager returns as "’di_scarded". Thén
theldata management process returns a "discarded" reply to the transaction
management process that sent the write or prepare message to it.

Each transaction management process that has received a "discarded" reply

must also be backed out by following the above procedures 1) 2) and 3).

(1) This does not include failures that occur during the second commit phase. -
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¢ CONCLUSION

S

The main goal of this papef was to deveioP a new recovery scheme that
'realizes not only.reliable but also highly concurrent execution of transactione ina
distributed database system. This paper proposed multiple uncommitted versions
(coupled with a backout/commit cache) as such a recovery scheme, and sﬁowed .
that this new scheme setisfied ‘the above requirements. The new scheme is in
g;tﬁking contrast to other recovery schemes proposed so far that suffer (to a
considerable exf‘ent) from the serious restraint that "no transaction cén access any
entity until all previous transactions that acces‘sed the entity are completed”.

The ;nemory overhead induced by this new scheme may be sufficiently low since,

)at a'n); given time, each of the vast mejority of entities is expected to have only

jone version. The processing overhead may also be acceptable since, in a normal

i situation where sequence anomalies do not occur frequently, the overhead is al-

' most comparable to that induced by careful repiacement.

Several extensions of the new scheme will be possible. First,b if a versien

| is read—only,_ it is not necessary for later versions to wait until it becomes com-

mitted. That is, a later version could be committed once the immediately preced-

| ing update version was; committed. Second, if the older committed versions were

: not deleted, then an old read request could be processed (without creating a new

ﬁ version) long after subsequent versions had been committed ; this is what the mul-
tiple versions of Reeci's scheme [1 1] provide'. Third, the assumption in Section
4.1 that any transaction- performs an access to each entity at most once could be
removed by slightly extending the timestamp mechanism. Namely, if each time-
stamp were composed of a tfansaction id part and an access id part, then it would

be possible to decide whether two different accesses were performed by the same
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transaction.
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