goooboooogn
0 396 0 19800 39-63

39

A HMethod for Synthesis of Data Base Access Programs

Akinori Yonezawa

Dept. of Information Science
Tokyo Institute of Technology

Oh-okayama, Meguro Tokyo, Japan

Abstract

A method is presented for synthesizing programs which answer
to relational database gueries expressed in a language based on
predicate calculus. Given a query at the conceptual level and
the description of physical represenfations of relations (or
predicates), a program is synthesized which manipulates stored data
at the physical (internal) level. The method of synthesis is based
on successive transformations of queries by applying "rules"
which express procedural interpretations of logical formulas.

Queries expressed by recursivelyidefinedrelations(formulas) are

successfully handled by our method. The target language in which
synthesized programs are written is required to support functional

arguments.

Keywords program synthesis, relational database, database
query, predicate calculus, recursively defined
relation, procedural interpretation of predicates,

functional argument

40 1

§1 Introduction

Program synthesis is the systematic derivation of a program from
a specification [Mw79]. IMost research activities in program synthesis
take approaches based on theorem proving technigues. In these
approaches, a program specification is given as a theorem in some
theory and proving the theorem is first attempted. If a successful
proof for.the theorem is found, a program is synthesized by system-
atically extracting information from the proof. A variety of techniques
have been developed corresponding to the variety of underlying
logic svstems; Examples are[GGﬂ ,&H@SJbased on resolution~type
proof procedures, IﬁT?Q] based on‘Gentzen's Natural Deduction System
and 1?79] based on Godel's interpretation.

The deductive approach taken by Reiter [R78] and Chang [078] in
relational data bases can be viewed as synthesis of data base access
programs in which a query is considered as a program specification.
Their approach is also based on theorem proving techniques.

The present paper proposes a neﬁ approach to program synthesis in
the domain of relational data bases. Our method is based on successiye
transformations of queries by a set of "rules" which express
procedural interpretations of logical formulas in which gqueries are
stated. Given a query and the description of physical implementations
of relations(appearing in the query), both of which are written in a
first order language, a program which actually manipulates physically
stored data is synthesized.

We start with an informal explanation of our method.

§2 A Simple Example

To illustrate our program synthesis méthod, let us consider the
following situation. A relation ROOM(Sect,Num) which associates a
room number with the section name it 1 belongs to is defined at
the conceptual 1evelEAN75] in a data base. Suppose a user issues a
ouery 0 to know the set of room numbers which belong to the INFO
section. Regarding the relation ROOM(s,n) as a two place predicate
(which gives the truth value of a statement that a room number n belongs
to a section s), this query is expressed in a familiar notation of
mathemétics as follows: |

Q = {n | ROOM(INFO,n)}

What the user wants is an actual enumeration of the elements of the
set specified by this notation. To obtain such an enumeration, we must
- first know how fhe relation (defined at the conceptual level) is actual-
ly implemented at the physical (or internal) level and then we must
compose a data base access program which does this enumeration by mani-
pulating physically stored data.

To describe how such a relation is implemented at the physical level,
we use a language of first order logic. Suppose the ROOM relétion view
ed as a predicate is implemented as a list of pairs each of which con-
sists of a section-néme and a room number. This can be expressed as:

ROOM(s,n) = Ix(x & ROOML 5 CAR(x)=s 5 CDR(x)=n),
where ROOML is a constant 1ist, s and n are free variables. In our
language, e<¢1l is an abbreviation of a two place predicate which asserts
that e is an element of a list 1. (The definition of the list member-
ship and an axiomatization of listsare given in [CT?ﬂ .) CAR and CDR
are one place functions thch give the first part and the second part
of a pair, restCtively. We call this kind of logical equivalence which

expresses the internal representation of a relation, a phvsical repre-

42

sentation definition (PRD) of the relation.:

Substituting this PRD, the gquery Q is transformed into:
{n] 3x(xéROOML ACAR(x)=INFOACDR(x)=n)}

and by equalitv substitution, we get:

{CDR(x)| 3 x(x € ROOML A CAR(x)=INFO) } (&)
This 1is logically equivalent to:
{CDR(O()I \/(CAR(a):INFO)} (&&)
o ¢ ROOML

wvhere (/ is an index variable ranging over the set whose elements are

the same as those of ROOML., Furthermore, this set is eguivalent to

U£CDR @) | cAR (u):mm} (&&&)
X &¢ROOML
The set expressed by (&&&) is a collection of the second (cdr-) part of

X which is an element of the list ROOML and 'S first (car-) part is

INFO., This suggests a procedural interpretation of the set notation (&&&%
or a program which enumerates all the elements of the set. The following
program is an example of such an interpretation.

S e— @®; Le¢- ROOML;
while L % nil do

begin X « head(L);
if CAR() = INFO then S« S U{CDR(a)} ; (P1)
L e tail(L)

end;

return(s)
This program is, in turn, a procedural interpretation of the set
expressed by the original query Q.

We have been following somewhat tedious logicalsteps to obtain a
program for the query. These steps can be short-cut and generalized by
few tvpes of transformation rules. By noting that the existentially
cuantified variable x in (&) behaves as an index which ranges over
the list elemehtS’of ROOML, we adopt an 3 -quantifier elimination rule

of the following form,

lfsm) {s(x)[Qx(P(x)A xocL)} => {s(o()l P(o()AouxL'}

where X is a newly generated variable, s{x) is a term which is con-

structed from variable x,and L is a set or list. o< stands for the

set membership or the list membership. Applying this rule to (&) with
P (x) being CAR(x):INFO and s(x).being CDR(x), we obtain:

)

We can (procedurally) interpret this notation in the same way as (&&&)

(228

{CDR(O()] CAR (o()‘=INFvo(o<R00ML} (9
and may obtain the program (P1).

To generalize a codification process, we introduce an operator pr
which transforms a formula or set notation grinto a program that gives
a procedural interpretation of 37. The above codification process

(from (%) to (P1)).is an application of the following rule.

(CRS1) g_r_({s(x)|xo<L,\p(x)}))_ =3
| geperate [pr(L); Ax.pr(s(x)); Ax.pr(P(x))]

generate[l; o Q] is a procedure which takes a value argument l, and

two functional arguments ¢ and p. This procedure returns a list of
distinet items each of which is obtained by applying a function ¢ to
each element (in a list 1) which satisfies a cbhditidnk(predicéte) p.
Ax.<body) is a notation for a procedure definition declaring x as

the formal argument and <body)as the procedure body. Thus the right-
hand side of (CRS1) denotes an invocation of "generate" with the follow-
ing three parameters:

- a list pr(L) which is the result of application of pr to L,
- a procedure Kx.g{(s(x)) whose formal parametér is x and body,pr(s(x)),

- a procedure Ax.pr(P(x)) whose formal parameter is x and body,pr(P(x)).
Applying this rule(CRS1) to (%) with the instantiations of P(x) by
CAR(X)=INFO, L by ROOML,and s(x) by CDR(X) and using other simple codi-
fication rules, the following program(written‘in afashioﬁyof the LISP

meta-expression [M65])is obtained.

generate[ROOML;)x.§dr[x]; Ax.equal[car[x]; INFO]]

44 5

Note that cdr, car, equal etc(written in small 1etters)denote procedures
defined in LISP. They must be distinguished from functions CAR, CDR, =
vhich are used in our logical language. VWe deliberately leave an

(+)

actual procedure body of '"generate'" unspecified because many imple-
mentations are possible in many programming languages as long as they

allow procedures as parameters and support list structures.

§3 Logical Language and Querv Language

As illustrated in the previous section, both database queries and
physical representations of relations (defined:at the conceptual level)
are expressed in terms of a logical language. To present our program
synthesis method in a formal fashion and make its scope clear, we first
discuss our logical language.

Roughly speaking, the language is an extension of first order predicate
calculus with equality, set membership and list membership.

(;?fzg individual constant (written in capital letters) or variable
(written in small letters) is a term.

-2, If f is-an n-place function symbol (wriften in capital letters) and
tl,..,tn are terms, then f(tl,..,tn) is a term.

3. All terms are constructed through 1 and 2.
We assume that list processing functions such as CAR, CDR, CONS, LIST
and an identity function ID, and a constant NIL are included in the
language. Below we use a special symbol o to stand for § (set member-

ship) or & (list membership).

(formula) :
1, If £t is a term and 1 is a set or list, then te«1l is a formula.

2., If t1 and t2 are terms, tl=t2 is a formula.
3. If P is ann-place predicate symbol (written in capital letters)
and tl1,...tn are terms, then P(tl,..,tn) is a formula.
4, If A and B are formulas, then —ZA, A\/B, A AB and A—B are formulas.,
5. If A is a formula, xisa variable and 1 is a set or 1list, then

VxA, 3xa, \/ A and /\ A are formulas.
X o1l xe< 1l
6. All formulas are constructed through 1 to 5.

—

An example of the body of '"generate" in LISP is:
generate [1; oH p]
= nd[cond{null 1] — NIL;

N))
p(car(1]] °°“S[§£§2§£ije][édr[1); c; plJs

T —> generatelcdr[1]); c; pl]]

where nd [l] eliminates repetitive elements of a list 1.

45

46 | 6

An ﬁ—place relation defined in the data base is considered asan n-place
predicate and user-defined predicates can always be included in the
language.

(set)

1. {}or NIL is a set which denotes an empty set.

2, If tl,..,tn aredistinct terms;gtl,...,tn}iseaset whose elements are
tl,..,tn.

3. If t(x) is a term containing a unique variable x and P(x) is a

(+)

formula with free occurrences of x, then {t(x)l P(x)} is a set
whose elements are distinct terms t(x) such that x satisfies P(x).
then t(x) is a simple variable x, t is considered as an identity
function ID.

4. If S1 and S2 are sets, then S1,S2 (intersection), s1Us2 (union),
and S1 - S2 (difference) are sets.

5. If S(x) is a set notation containing a free variable x and 1 is a
set or list, then L) S(x) (indexed union) and [} S(x) (indexed
intersection) are sggé} xe< 1

6. All sets are constructed through 1 to 5.
The restriction that only a single vardiable is allowed in the term t(x)
of the definition 3 is not essential; we can easily extend our method
to accomodate more :than one variable.
The queries we allow are classified into two types: a set-type (or
open [GMN78) queries and formula-type (or closed) queries.

(query)
1. A set-type query is of the form {t(x)[P(x)} defined in 3 of the set

definition above and it requeststhe system to listup all the elements..
2. A formula-type query is a formula defined above and requests the
system to return the truth value (yes or no) of the formula

evaluated in the data base.
Since the definition of queries above allows very general formulas in
first order predicate calculus, a general program synthesis method
should include an algorithm for a universal theorem proving of such

formulas. But dur synthesis method restricts itself to queries which

+) x can be a bound variable if it is existentially quantified.

(+)

can bé answered by searching physically stored data.”’.

§4 Logical Transformation Rules
Our method of program synthesis is based on the successive trans-
formation of queries by two kinds of rules: logical transformation rules
and codification rules. We shall discuss the former ones in this section.
As the example in §2 suggests, general algorithmic structuresof

-

synthesized programs are summerized as " Given a source of data

items, check each data item one by one as to whether it satisfies some

¢
i

conditions and if it meets the conditions, do something on the item or
report the truth value of the conditions." This general algorithm is
usually used in a nested manner. VROOML (in the example in §2) is such
a source of data items. Successful synthesis of efficient programs
depends upoh the discovery and choice of data items sourceswhich may

(

be implicit in formulas.
The implicilt source are often found through quantifiers in formulas.

Simple examples are set notations and formulas of the following forms.

[st0]3yRx,y) v L)}, Fz(P(z) zel)

where s(x) is a term and L is a set or list . Queries of these forms

Are evaluated by instantiating y or z with each element of L one by one,.

Thus these existentially quantified variables behave like index variables

ranging o#ef L; To express this we employ’ the following rules. (Index

variables should not have name conflicts with other variables.)

(Es2a) {s(x)] FIy(ROx,y)veel) } =3 {s00) | R(x,00, 0L

(EL1a) iz(Iz’(z?.)/\xz. ocL) =3 \/P(O()
R KL,

L is the source of data items in these rules. If such explicit sources

are not found,»ﬁhich is a more. general case, we have the following rules.

+)We can, if necessary, employ any of theorem proving technlques that
have been developed by many researchers.

48 8

(£2) [s(0)| Iy RG] =3 {sG0] Rix,00,a gfylo}]
(FL1) 3z(P(2),0(z)) => \V P(X)
A aefzlo(z)}

An explicit set (or list) L is replaced by the set specified by a
predicate Q. Sometimes there are cases where the sources are hard to
find;‘for gxample, |

{s(x)‘ay(R(x,y)AS(x,y)} , {s(xﬂ‘ayA(x,y)} , JzB(z)
where A(x,v), R(x,y%AS(x,y) and B(x) cannot break inté the patterns of
(Es2) or (EL1). In such cases, we must introduce the domains of
quantified variables to create the sources of data items. This is

expressed as:

(£53) {s(x)| Iy(Rx,¥)zS0x,y)]} =9

(x)| x¢domain(R.1) \/S(X,d)
fatx | Ao\g{le(x,y)j

(Es4) }s(x)3ya(x,v)] " =2 fS(X)IA(x’d)/\‘X 5d°main(A°2)}

(EL2) F2zB(z) =3 VB(0<)
o« £ domain(B.1)

domain(T.n) denotes the domain of a variable in the n-th place of a
predicate (relation) T.
The procedural interpretation of (ES3) is that the set is obtained

by selecting x (from domain(R.1)) by the condition\\// S(x,X)
 e{y|R(x,y)}

and applying s to such x.

For: formulas containing universal quantifiers, similar rules are
adopted by the‘same motivation. A list of transformation rules for
quantifiers is shown in Figure 1. Notice that A (and) in the case of
3—qu;atifier§ is replaced by -— in the\/-quantifier case. Rules for
other logical symbols and simplification rules for set notations are
given in Appendix, Besides these rules, we use the rules for replace-

ment of logically gquivalent formulas, for renaming of bound variables,

for equality substitution (ESU) and for definition substitution (DSU).

Universal Quantifier

(as1) sl Vz(p(z) 2 R(x, 2] =5 |

(—-a)

(AS2) §s<x>1VZ(R(x 2= s(x,2)) -
{s(x)lx gdomaln(R 1%\
(AS3) {s(x)[VzA(x {% == s(x)’x gdomaln(A.lb«
(AL1) VzB(z) =3 N\ B)
o ¢ domain(B.1)
(aL2) Yz(p(z)—>0(z)) => /No©)
aE{zlP(z)}

Existential Quantifier

s(xﬂ /\ R(x,X)
ds{ZIP(z)g

fs(o] Vz(ael 5R(x,20) | =2 {s(x)] 0{\’5(&0{)}

/\

o £ domain

(251) {s(x0)]qx(P(0),00xN]} =3 {s©0] P, efx]0 (0}
(--a) {s(x)[Fx(P(x)px<L)}] =3 {s(O)|P(x), &L}

(zs2) {s(0)] Iv@xyp0N) =5 {st|rGL0p0ely fon]
(——a) {s(0)] Bv(RG,yQy=L)} =3 [sCGO[ROx,0p8<L]
(E83) [s(x) | Iy (REx,y)pSCx, ¥y} =3

(ES2)

}s|3yalx,y) -

gs(x)‘ xfdomain(R. 1)

\v/ s(x,X) ~ }

Qe Ly IRGGYY
2 {S(X)IA(X,O()/\didomaln(A.Z)}

(--a) {s(x)]axB(x)} = {s(d)lB(d)A of Edomain(B.l)}
(EL1) 2z(P(2),0(2)) =3 Va(x))
agfz IP(z)}
(--a) Fz(P(z) zxl) =3 V p)
, oL

(EL2) 2B(z) =3 V BW)

' o . £ domain(B.1)
(EL3) Fz(t=z,P(z)) =3 P(t)

Figure 1

Transformation Rules for

43

A(x,X)

(A.2)

Quantifiers

}

30 10

§5 Codification Rules

To obtain a procedural interpretation (i.e., program) for a set
notation or. formula, we use the codification rules listed in Figure 2,
Most rules are expressed by recursive applications of a codification
operator pr., Namely, an application of pr on a set notation or formula
results in a procedure (in the target language) whose arguments contain
pr operator applications. Though procedures (or procedure invocation,
more precisely) in the rules are written in a style of LISP meta-
expressions, actual implementations of the procedures may be written
in other languages as long as they have functional argument facility
and support list processing capability.

The 'informal meaning of each procedure is stated below. Note that
in i-union and i-intersect, each element of a list 1 is used as an
index for generaliéed union and intersection operations, and f

is a function which generates a list for a given index value,

generate[l; c pJ : 1list up items (without repetition) each of which
is obtained by applving a function ¢ to each

element of 1 which satisfies a predicate p.

some-meet?[}; pJ : ask whether ornot some element in a list 1

satisfies a predicate p.

all—meet?[;; p] ¢ ask whetherornot all the elements in a list 1
satisfy a predicate p.

i—union[}; f] : return a list whose elements are the union of sets
which are obtained by applying a function f to each

element in a list 1.

i—intersect[}; f] ¢ return a list whose elements are the intersection
of sets which are obtained by applying a function

f to each element in a 1list 1.

11
¢set 51
(CRSO) r({x,.xxL}) = pr(L)

(CRSl) {s(x)!xoc LAP(x)}))
penerate[_p_(L), Ax.pris(x)); Ax. or(P(x))j

(--2a) pr({s(x)]*x‘ocL}) = generate[_p_g(L); Ax.g_z:(s(x)) H TRUE]\

" (CRS2)) Vre)h =3
(E_ is lto<L g?}anerate[g_r_:(L);)\x.B_g(s(x)) : Xx.gI.‘(P(X)):]

(crs3) pr((J s(£)) =3 i-union[pr(L); At.pr(s(t))]
teL

(--a) _gg({s(x),P(x,t)AtocL}) T i—union[p_g(L);)\t.P_z_*({s(x)lp(x,t)})J

5

(Crs4) pr(ﬂ s(t)) =%(i-intersecthE(L); Xt.gz(S(t))J
texL

(CRSS) B_E(SUT) > union[Lr(S); EE(T)J

0

(CRS6) pr(SM)T) = intersect[pr(s); pr(T)]
(CRS7) or(s - T') == delete[p’_:_‘(s); EE(T)J
(crs8) priis(t)]) =3 1ispr(s(t))]

(CRS9) E_g(:{trl,...,tn}) =3 list[p_r(tl),...,g_g(tg)]

<formular
(CRLO) pr(s(t)e<L) =2 some-meet?[ag(L);)x.equal[x; Eg(s(t))]]
(CRL1) \/P(t)) =3 some—meet?[g_x;(L); kt.gz;(?(t))]
' toCL '
(CRL2) (/\ P(t)) == all-meet?[pr(L); At.pr(P(t))]
tecL ‘

(CRL3) pr(yp) =3 not pr(p) (CRL4) pr(pVa) =3 or[pr(p); pr(a)]
pr

(CRL5) (paa) =% and[pr(p); pr(a)]

<term - |
(CRT1) pr(CAR(t)) =9 car{pr(t)] (CRT2) pr(CDR(t)) =3 cdr[pr(t)]
(CRT3) pr(CONS(t1,t2)) =5 cons[pr(tl); pr(t2)]
(CRT4) pr(tl = t2) =3 equal[pr(ti1); pr(t2))

(CRT5) pr(t = NIL) = null[pr(t)] (CRT6) pr(ID(t)) =3 id
(CRT7) E_r_‘(<c6nstant—or-variab1e)) == <copstant-or—variable>

Figure 2 Codification Rules

52 | 12

§6 Récursive Relations and Recursive Programs

To accomodate a wide variety of queries, it is often necessary to
use relations which are not stored explicitly in the data base, but are
logically derivable from explicitly stored relations. (This kind of
relation or a set of relations may be called aavieﬁ'in the data base
literature [D?S]J Wheﬁ a relation is defined solely in terms of
explicitlyAstored relations, no complications afise and we can simply
substitute the derived relation by its definition. But a consideration
is needed when the definition contains itself, namely the relation

is defined recursively. Such an example is ABOVE(x,y)-relation

(a block x is above a block y) which is derived from ON(x,y) relation
(a block x is on a block yv) where the ON relation is assumed to be
explicitly stored. The definition is:
ABOVE(a,b) = ON(a,b) Y 32(0N(a,z) A ABOVE(z,b)).
(Assume that free variables a and b are universally quantified.)
Using this ABOVE relation, we can issue a query
Q = {e | ABOVE(A,e) }
which fequéSts to return a set of all the blocks below a specfied
block A. To synthesize a program for this query, first we sﬁbétitute
the above definition for the formula in the query (after appropriate

instantiations of free variables (a¢A, bee)).
=3 {e,ON(A,e)Vﬂz(ON(A,z)AABO_VE(z,e))} | (§)

Our strategy to deal with the recursion is to leave the recursive
occurence of ABOVE(z,e) in the formula intact and substitute a physical

representation definition of ON for the two occurences of ON. Suppose

the ON relation is implemented as a list ONL of pairs where the first
part of each pair represents a block on top of a block represented by

the second part. This is expressed as:

13
33
ON(a,b) = Ix(x¢ONL ACAR(x)=a ACDR(x)=b)
Substituting the right-hand side for ON in (§), we obtain:
an(xéO‘NL’A CAR'(x)=A,\CDR(x)=e)\/ }
=7 e’BZ(BX(XGON‘L/\CAR(X)aA/\CDR(X):Z) AABOVE(z,e))

Factoring common. expressions by the laws of change in the order and

{+)

scope of quanfifiers)and the distribution law of an existential
quantifier.and V, the query is simplified into:

=> {e|3x [(erNLACAR(x?=A)A(CDR(x)=eV3.z(CDR(x)=zAABOVE(z,e)))J}
Several applications of logical transformarion rules are in order.

=5 {e[(cDR()=eV 32 (CDR(0) =24 ABOVE (2,)))\ O £ {x | x<ONL CAR (x)=A} } by(ES2)
=2 {e' (CDR(ot).—.eVABOVE(CDR(ot),e))Ao(gﬁg[xéoNL,\CAR(xﬁA}g by (EL3)

= U {elCDR(O\):eVABOVE(CDR(o(),e)} by (SE3)in Appendix

of £fx | X€ONL \CAR (x) =A }

1]
]

U ({CDR(O()}U{elABOVE(CDR(o(),e)}) by (SE2),(SE7a)in Appendix
ote{x | x€ONLACAR (x)=A }

Now we use codification rules.

UiCDR (d)}uge | ABOVE (CDR((X) , e)})

pr({e|ABOVE(A,e)]) =3 E()
' x| x€ONL, CAR(x)=A

o &

=3 i-union [pr({x|x€ONLACAR(x)=A}); Ao pr(jcor)}U{elABOVE(CDR ©,e)})]
by (CRS3),

== i—union[generate[ONL; id;)\x.equal[car[x]; A:D; ‘
Ad.union[1ist [car (K]} pr({e|aBOVE¢CDR(0),e)})]] (3%)
by (CRS1,CRT1, CRT4, CRT7, CRSS, GRT2)

Here we wish to eliminate the pr operator applied to {e\ABOVE(...)}.
To do so, we need the following special codification rule which

introduces recursive invocations of the program to be svnthesized.

)3 5 VAo (x) = x(r(x)Vo(x))

14

54

Let Q(a) be a query containing a free variable a. When the result of
codification of Q(a) contains occurrences of pr(Q(t)) where t is a term,

namely,

it pr(qa)) becomes Plpr(a(t)) ,
then pr(Q(a)) = f[a] where Ax.f[x] ==€Z>(f[93(t)])(+)

Applying this rule to (§§), we obtain a program for the original query.

pr({e[ABOVE(4,e)]) = above[A]

where

Y

above[z] = 1—union[generate{ONL; id; Ax.equal[car[xj; z]J;
M.union[1ist [cdr[a]]; above [cdrlx]]]]

Note that if for same x, above(x,x) holds, the synthesized program does

not terminate.

§7 Internal Representations of Relations and Domains

Physical representations for‘the relation exemplified in §2 and §6
are simple list structures of depth bne, which can be thought as a
sequential file. In this section we shall consider more complicated
representations and show the versatility of our logical language in
expressing various physical representations. Furthermore, the domains
of variables will be discuséed.

Suppose two relations, ROOM(Sect, Num) and EMP(Loc, Name) are defined
at the conceptual level in a data base. If the location of each
employee is identified with a room number in the ROOM relation, the
two relations do not have to be represented independently. The two

relations can be put together and implemented as a single tree structure

+) Using the LISP label operator, we may express this' as

pr(0(a)) = 1abellr; I (erpr()]]

15 55

which'may be viewed as a hierarchical file. (See the figure below.)

ORG — (K/// root

“ \
. . //()
- \4

vee € .. employee

section name

room number / location

e'n, L

ORG is the root of the tree structure. The implementations of ROOM

and EMP by this structure are expressed as:

ROOM(s,n)= FxIy(x ¢ ORG , CAR(x)=s , y & CDR(x) o CAR(y)=n)

EMP(1,e)= Jx3y(x €ORG, y <& CDR(x) 5 CAR(y)=1 5 £¢CDR(y))
An implementation of a derived relation EMPSECT(e,s) defined as
EMPSECT(e,s) = 3z(Rdor.i(s,z) A EMP(z,e})
can be expressed by |

EMPSECT (e,s) = 3x3y(x €ORG ACAR(x)=s y € CDR(x) , e <& CDR(y)).
Using this physical representation definition, an efficient access
program for a query Q = {e‘EMPSECT(e, INFO)} can be synthesized. The

actual derivation of the program is given in [Y80]¢

The ON relation in §6 can be implemented as a tree structure in which
a block represented by a parent node is on the block(s) represented by

its child node(sg). (See the figure below, ONR is the root.)

ONR — 5 (A ())
J' \ ON(A,B) and ON(A,C)

...)) (C.(o.-)) o hold.

g/// \\N ON(C,D) holds.,
o-o)) ‘ “

This physical representatlon of ON is expressed as:

ON(a,b) = Bx(REACHABLE(ONR,x)ACAR(x)=a/\ v(yéCDR(x) ACAR(v)=b)) (X)

where REACHABLE(xX,v) = y ¢&x Vaz(z € XA REACHABLE(CDR(z),y))

56 16

When the ON relation is implemented as above, the physical representa-
tion of the ABOVE relation should be expressed as:

ABOVE(a,b)= I x(REACHABLE(ONR,x)ACAR(x)=2a p (XX)
3y (REACHABLE (CDR(x),v)ACAR(y)=b))

But we lack a general theor¢wto prove the eqguivalence between the
right-hand side of (XX) and the following formula which is obtained by
substituting (X) for the occurrences of ON in the definition of ABOVE,
3 x(REACHABLE (ONR, x)ACAR (x) =a o3y (y€CDR(x), CAR(y)=b))V .
3 z(3x(REACHABLE(0NR,x)ACAR(x)=aA3 y(yéCDR(x)ACAR(y)=z))/(ABOVE(Z,b)) xxx)

Fortunately we do not need such a theory to s&nthesize a program for

the query {e]ABOVE(A,e)} under this representation,if we apply the
codification rule for recursive predicates to (XXX). An actual

svnthesis of the program is given in [Y80].

Notations of the form,domain(P.n), are used in logical transforma-
tion rules to express the domain of veriable (or "attribute" in the
data base terminology) in the n~th place of a predicate (or relation) P.
When we use domains of variables in the process of program synthesis,
actual enumérations of domain elements must be somehow provided. We

assume that a list of domain elements a2an always be prepared for each

variable used in relations which are definéd at the

conceptual levél of the data baseEyQSuch a list is introduced as a
constant list into formulas in our logical language. The following
example illustrates the use of such a list as well as the treatment of

universal quantifiers in our method.
Q = {r[VsRoom(s,r)}
This query means " list up rooms which are common to all sections",.

This is transformed by the rule (AS3).

=3 domain(ROOM. 2 ROOM(&X,

{(#) The work of POpplestone[P79] addresses some aspect of this problem.

(¥¥) This assumption corresponds to the domain closure axiom in [R78},

17

The physical representations of ROOM is assumed to be the one defined
in §2 and the domain(ROOM,2) and domain(ROOM.1) are assumed as constant
1ists RMUM (room number list) and SNAM (section name list),respectively.

Thus,

3 .
=3 {r | r ¢ RNUM /\ x(x ¢ ROOML A CAR(x)=(A CDR(x)=r)
{ | Nue SNAM A A X)=r }

Using the rule(ELla) and several other codification rules (e.g.,

CRS1,CRL2,CRL1), a program for the query is synthesized as

== generate[RNUM;
id;
Ax.all—meet?[SNAM;
M. some—-meet? [ROOML;
)\(%. and[equal [car [ﬁ J; &]
equal fedr[g]; x]] 11]

§8 Discussions

8.1 Optimization_ Though thé efficiency of a synthesized prOgramk
depends'mainly upon the simplicity of logical formulas before the
application of codification rules, optimization of synthesized programs
is often useful, For example, when a syvnthesized program contains a
certain nested use'bf "generate" programs (i.e., an invocation of
"generate'" appears as an actual argument of another 'generate" program),
Fhe nesting can be eliminated. Furthermore, combinations of ?generate"
énd other programs (such as "all-meet?", "some-meet?'" etc) can bd
optimized. Typical cases of these optimizable combinations are given
below.

(POR1) generate[generate[1; Ax.c[x] ; Ax.p[x]] ;
AV.s[y] s

- Av.alvl] : .
=3 generate[l;)\x.s[C[XJ:] ;)\x.and[p[XJ; q[c[x]]_]]

(POR2) some-meet? [generate[l; Av.cly] Ay.q[y]] H AX.p[XJ] |
=3 some-meet?[1; Ax.and{p[c(x]]; a[x]]]

(POR3) all—meet?[generate[_l; Av.clyl ; /\v.q[yJJ ;s Ax.p[x]]
-3 all-meet?[1; Ax.ornot[alx]]; p [c[x]]11]

58 18

It éhould be mentioned that Burstall and Darlington's optimization

techniques [BD77] for recursive programs are also applicable,-

8.2 Heuristics To synthesize an efficient program without "detour",
we sometimes need heuristics guiding us when and which rules we should
employ. We have the following rather general heuristics.

1. The rules whose left-hand side has an explicit membership
predicate o< (e.g., AS1, ESla) should have the higher priority.

2. The rules whose right~hand side has a domain notation (e.sg.,
AS2, AS3) should have the lower priority.

3 In handling a set-type query, the rules which are applied to a
set notation should have priority over the rules which are applied
only to formulas. For example, the rules AS1, AS2 and AS3 have
priority over the rules ALl and Al2.

Beside these heuristics, we can use a set of heuristics which are based
on Reiter's method [R?SJ for relational algebraic interpretations of
queries that are expressed in relational calculus. (For more

discussion, see EYBO] o)

8.3 Completeness and Termination

Our method for program synthesis is '"complete" in the sense
that for any query written in our logical language, we can always
synthésize a program for the query. (See the remark at the end of
§3.) Our method is also "complete'" in the sense that a synthesized
program returns all and the only answers to a given query if the
synthesized program terminates., As noted at the end of §6, a
synthesized program "above[a] " does not terminate if ON(x, x)
or ABOVE(x, x) hold for some X.

19 | 59

8.4 Further VWork

To construét a firm théoretical foundation for our appréach is a
good research topic. For example, it is interesting to establish the
correctness of our logical and codification rules in some theoretical
framework, Another example might be to develop a general theory in
which we can show the equivalence of two predicates at least one of
which is récursively defined (See §7 for an example)._

Finally, we should not forget to remark that mechanization of our

method is an interesting and promising project.

Acknowledgements

The author greatly benefited by several intensive discussions with
K. Furukawa at ETL who gave him the seed of this research. The

comments of H. Kakuda and his careful proof-reading were valuable.
References

(AN75) ANSI/X3/SPARC Study Group on Data Base Management System,
Interim Report. Bulletin of ACM SIGMOD Vol.7, No.2 (1975)

[BD77) Burstéll,R.D;, and Darlington, J.,"A Transformation System
~for Developing Recursive Programs" JACM Vo.24,No,1 (1977)

[c78] chang,C.L.,"DEDUCE 2: Further Investigations of Deduction in
Relational Data Bases" in Logic and Data Bases Plenum Press

S (1978)

ET?i] Clark,K.L. and Tarnlund,S.A.,"A First Order Theory of Data
and Programs" Proc. IFIP-77 (1977)

D77]) Date,C.J.,"An Introduction to Database Systems" 2nd Edition
Addison Wesley (1977) v

[GG@ Green,C.,"Applications of Theorem Proving to Problem Solving"
Proc. IJCAI-69 (1969)

EMN?@ Gallaire,H., Minker,J. and Nicolas,J.M., "An Overview and
Introduction to Logic and Data Bases" in Logic and Data Bases
Plenum Press (1978)

EA79] Hanson,A; and Tdrnlund,S.A., "A Natural Programming Calculus"
Proc. IJCAI-79 (1979)

(165) McCarthy;J.-et'al., "LISP 1.5 Programmer's Manual" HMIT Press
(1965)

60 20

[(w79) 'Manna,z. and Waldinger,R.J., "A Deductive Approach to Program

(p79)
[r78]
[s75]
(wLeg]

(veo]

Synthesis" Proc.IJCAI-79 (1979) 7

Popplestone,R.J., "Relational Programming'" Machine Intelligence
Vol.9 (1979)

Reiter,R., 'Deductive Question-answering on Relational Data
Bases" in Logic and Data Bases Plenum Press (1978)

Sato,M., "Towards a Mathematical Theory of Programming Synthesis"
Proc. IJCAI-79 (1979)

Waldinger,R.J. and Lee,R,C., "PROW: A Step toward Automatic
Programming Writing" Proc. IJCAI-69 (1969)

Yonezawa,A, "A Non-theorem Proving Approach to Synthesis of
Data Base Access programs" in preparation.

21 61

Appendix ' Other Logical Transformation Rules

(

(sE0) {s(x)|B(x)} =3 {s(o<)]B(o()Adadomain(B.l)}
(se1) {s()[P(x)ya()} =3 [s@)[P@E) e [0(x)}}
> s P Istofot}
s> {sx)]p}Y [sto]oto]}

(-—a) {s(x)] P(x)0(x)}

It

1]

(SE2) {s(x)lP(x)AQ(x)}

(,E) . teL > U (x)|R(x,t)
(SE3) {s x)]R(x)/\\ xec J > td-és x) |R(x }

(sE4) = {s(x)] Vire0} =5 U {0 R(x,)]

tocL tocL
S a {s(x)IR(x,t)}
t<L

(ses) {s(x)] /N R(x,0)]
toCL

(sE6) {s(0|vB(x)} =3 {s(@)|o gdomain(B.1) - {x|B(x)}]
(sE7) {s(x)] x=ey) PN} = {sCc)P(}

(-a) [sx)|x=e(y)] =9 [slct¥y))]

(SE8) Sx|xgs} =2 s

() fsGo|xef P =9 {solpx)]

(s29) Js(o|R(x, D P(e(tE fe] o} =3 |
{s(x)’R(x,t)At ¢ {y[Q(y)}g if Q(x) implies P(x).

(5E10) {s(x)| R(x,t)AP(t)e(t)e{olz)a(z)}} =3
{s(x)IR(x,t)AQ(t)} if Q(x) implies P(x).

62

Department of Information Scinences
Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo, Japan

Research Reports on Informa@ion Sciences
_Series C: Computer Science

"A Note on Extending Equivalence Theories of Algorithms,"Kojiro Kobayashi,

" February 19TL. '

"Generalizations of Regular Sets and thier Application to a Study of
Context-Free Languages,'" Masako Takahashi, May 197h.

. "The Firing Squad Symchronization Problem for Arbitrary Two-Dimensional

Arrays," Kojiro Kobayashi, November 197L.

"Generalized Parenthesis Grammars and a Description of ALGOL," Masako

Takahashi, February 1975.

c-1
c-2
c-3
c -4
c-5

c-T.
c - 8.
c-9.
C-10.
C-11.
c-12.
c-13
C-1k
c-15.
Cc-16
C-17
c-18
¢ -19.
C - 20.
C-21.
C-22
c-23

. "Minimum Firing Time of the Two-Dimensional Firing Squad Synchronization

Problem," Kojiro Kobayashi, May 1975.

"A Report on & Symposium on Structured Programming and Experiences with it,"
Izumi Kimura, March 1976.

"A Hashing Method for Fast Set Operations," Masataka Sassa & Eiichi Goto,
June 1976. -

"A Minimal Time Solution to the Firing Squad Synchronization Problem of
Rings with One-Way Information Flow," Kojiro Kobayashi, September 1976.

"V-Tape, a Virtual Memory Oriented Data Type, and its Resource Requirements,"
Masataka Sassa_& Eiichi Goto, January 197T7. .

"Rational Relations of Binary Trees," Masako Takahashi, March 1977.

"The Firing Squad Synchronization Problem for a Class of Polyautomata
Networks," Kojiro Kabayashi, April 1977.

"On Positive Rational Relations of Binary Trees," Masako Takahashi ,
May 1977.

"On Teaching the Art of Compromising in the Development of External
Specifications,”" Izumi Kimura, June 1977.

"On Proofreader”s Programming," Izumi Kimura, August 1977.
"On Minimal Firing Time of Firing Squad Synchronization Problem for
Polyautomata Networks," Kojiro Kobayashi, September 1977.

"Eliminating Unit Reductions from LR(k) Parsers Using Minimum Contexts,"
Takehiro Tokuda, April 1978.

. "A Specification Technique for Abstract Data Types with Parallelism," Akinori

Yonezawa, April 1978.

. "Modelling Distributed Systems," Aki Yonezawa & Carl Hewitt, September

1978.
"A Pattern Matching Macro Processor," Masataka Sassa, October 1978

"Specifying and Verifying Software Systems with High Internal Concurrency
Based on Actor Formalism,” Akinori Yonezawa, January 1979.

"A Historical, Generalistic, and Complementary Approach in Introductory
Computer Science Education,”" Izumi Kimura, January 1979.

"An Axion System for Rational Sets with Multiplicity," Masato Morisaki &
Ko Sakai, January 1979.

. "On Multitape Automata,”" Hideki Yamasaki, February 1979.

c-2h,
c-~-25
c-26.
c-2T.
c - 28.
c-29.

63

Department of Information Sciences
Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokye, Japan

Research Reports on Information Sciences
Series C: Computer Science
(.
"Design and Implementation a Multipass-Compiler Generator,”" Masataka Sassa,
Junko Tokuda, Tsuyoshi Shinogi & Kenzo Inoue, April 1979.

. "A Derivation of Cook's Simulation Algorithm by Program Transformation,”

Osaum Watanabe, October 1979.
"p Note on Continuous Lattices," Kyoji Yuyama, December 1979.

"One Method for Constructing Self-Reproducing Programs," Kojirc Kobsayashi,
January 1980.
"A Double-Layered Text Editor," Hiroyasu Kakuda & Tekashi Tsuji, March 1980.

"Eliminating Unit Reductions from LR(k) Parsers Using Minimum Contexts = A
Revised Version of the Report C-16(April 1978)," Takehiro Tokuda, May 1980.

