goooboooogn
O 396 0 19800 64-103

64

June 9-11,'80
at Kyoto Univ.

Design of a View Support Subsystem of a Database Sysfém

Yoshifumi Masunaga

Research Institute of Electrical Communication
Tohoku University
Katahira 2-1-1, Sendai, Miyagi 980
Japan

Apstract

In this paper, an architecture of implementing a view
support subsystem of a relational DBMS is described by intro-
ducing the LUP(Local view Update Processor) concept with the
view defining tree. That is, the LUP is a processor handling
the translation of update, which initially stays at the root
(i.e. the view) and then comes up step by step to a leaf (i.e.
a base relation which is used to define the view) of the tree.
If all 1UP's in the tree succeed in reaching certain leaves,
then the update'execution will be initiated. The induced
structural integrity constraint, the update modification rules
and the augmentatiﬁn rule are introduced as theoretical basis
for describing the actions taken by a ILUP. The actions of a
LUPare described in detail, and the update execution control
is also described. If is noted that the formal description of

the meaning of a view is essential to define such IUP func-

tions. Two examples are given to demonstlate this architecture,

It should be stressed that the behavicr of LUP's on the view
defining tree just corresponds to a way of implementing the

view update translation mechanism,.

65

66

Tr.e Table of Contents

1. Introduction
2, Views
2.1 Definition
2,2 View Defining Tree
3., View Update Problems
4, View Support Subsystem
4.1 LUP
4,2 Theoretical Foundations

4.2.1 Induced Structural Integrity Constraint

4.2.2 Update Modification Rule

4.2.3 Augmentation Rule
4.3 IUP Functions

4.3.17 Preliminaries

4.3.2 Deletions

4.3.2.17 The Expanded Direct Product

4"3.2.2 Unlon
4.3.2,3 Difference

4.3.2.,4 Projection
4,3.2.5 Restriction
4.3.,3 Insertions
4.3.3.1 The Expanded Direct Product
4.3.3.2 Union
4.3.3.3 Difference
4,3.3.4 Projection

4.3.3.5 Restriction
4.4 Update Execution
4.4.,1 Execution Control

4.4.2 Additive Side-effect Control

5. Examples s
5.1 Example 1 -Deletion-
5.2 Example 2 -Insertion-
6. Concluding Remarks

SRR NS

12
14
14
16
17
17

17

19
19
20
21
22
22
23
23
24
25
26
27
27
27
28
30
30
31
33

67

1. Introduction

Modern DBMS architecture tends to take the three level
construction to provide the physical and the logical datz indé-
pendence as proposed in the ANSI/X3/SPARC report [TSICT78].

In this framework, there are external, conceptual and
internal schema which describe the objects in the realms of
interest according to the three levels. It is understood that
the physical data independence will be achievéd by specifying
a mapping between the conceptual schema and the internal schema,
while the logical data independence will be achieved by specify-
ing a mapping between the external schema and the conceptual
schema. However it is said that most of the present commercial
or institutional DBMS's hardly provide any external scheme views
and therefore they provide almost no logical datz independence
(rs1c77, KIMT9).

Usually the external schema consists of the virtual data
which are defined in terms of the data in the conceptual schema.
It is understood that one of the most seriocus reasons why the
present DBMS's hardly provide any external schema views is that
there are meny difficulties in defining & mapring between the
external schema and the conceptual schema.

In the relational datz model, the conceptusal schema
consists of a set of relations, called base relations, and the
external schema consists of relations, called (user's) views,
which are derived from the base relations or other views by

applying a sequence of the relational algebra operations and

68

5

the computing functions such as AVERAGE. Therefore the update
to a view is only effected if the update to a view is transla-
table to the updates to the base relations which define the
view and results the intended update result without causing
any side-effect. There are at least two main issues in this
problem.. That is, the first one is to make it clear when and
only when the update is translatable. The second one is to
make it clear how the translation is done. Of course those
two problems are closely connected.

In this paper, we try to make the second problem clear
and give a solution to the first problem through the investi-
gation to the second one. In the previous work (MASU79], we
have investigated the first problem particuraly from the seman-
tic point of view and showed that the meaning of a view should
essentially be taken into account. Of course this paper stands
on this point of view. However the main interest of this paper
is to show how the second problem will be made clear from the
algorithmic point of view. The new concept, LUP(Epcal view
Update grocessbr)~is introduced as a vehicle of implementing
a view support subsystem, by which we can describe the mapping
between the external schema'and the conceptﬁal schema. The LUP
traverses the view defining tree from the lower level to the
higher level and translates the update against the view step
by stepe..

The following of this paper consists of as Ffollows:

In section 2, how views are defined is reviewed and the view

63

defining tree is introduced. In section 3, the traditional
view update problems are shortly re-examined and see the point
why the meaning of a view should be taken into account to dis-
cuss those problems. 1In section 4, the IUP is introduced and
an architecture of implementing the view support subsystem is
described using the LUP concept with the view defining tree.

A few theoretical foupdations are given, LUP functions are
described in detail, and the update execution under the LUP
concept is described. In section 5, two examples of update

translation are demonstlated. Section 6 concludes this paper.

70

2. Views
2.1 Definition

In the relational data model, relationships émong at-—
tributes 6f én entity set and the associations between entity
sets are represented as relations. As defined in [CODD?O],
a relation R(A1, A2, ..., An) on n attribute domains dom(A1),.
dom(A2)), ..., dom(An) (where dom(Ai) represents the domain of
the attribute Ai,) is a finite subset of the direct product
dom(A1) x dom(A2) x ... x dom(An). (We call this direct product
the domain of R and denote it by dom(R).)

A relation which is physically realized on a certain
storage device such as a disk is called a base relation.
A set of base relations with integrity constraints consists of
the conceptual schema of a‘relétional database system. A view
is a relation derived from the base relations (or other views)
by applying a sequence of relational algebra operations and
computing functions such as AVARAGE. (However, in this paper,
we exclude views derived by computing functions to make our
discussion simpler.) A view is a virtual relation and a set
of views consists of an external schema of a relational data-
base system.
2.2 View Defining Tree

In order to introduce the view defining tree, let us
here review more precisely how views are defined: Originally
the following eight operations are introduced as elements of

the relational algebra, i.e. four traditional set operations

&

(the expanded direct product, union, intersection, difference)
and other four lg;s-traditional operations on relations (pro-
jection, join, diwision, restriction)(CODD72]. However as it
is known those eight operations are not mutually independent.
Among them we deduce five operation, i.e. the expanded direct

product @), union(U), difference(-), projection(R(4)) and re-

striction(R{A6B)), as a minimal set of operations. The reason

of this selection is that the expénded direct product opera-
tion is essential to expand a relation, the projection and the
restriction operationsare essential to restrict a relation in

the virtical and the horizontal direction respectively. It is

71

clear that in this framework the @§-join of relation R on domain

A with relation S on domain B. is defined by R(A9 B)S = (R @ S)
[A@ B) and the division of R on A by S onB is defined by
R(A+B)S = R(A}-((R(E)® S(B))-R)(4) £oDD72) .

Now, the view defining tree is defined according to the
defining expression of the view. For example, let us suppose
that there are two base relations ED(EMP, DEPT) and DM(DEPT,
MGR). In our framework, the natural join of ED on DEPT with
DM on DEPT is defined by ED>DM = ((ED ® om) [DEPT! = DEPTZJ)i
[EMPNDEPTQ\MGR), where the superscripted number 1 and 2 are

2 belongs

used to distinguish that DEPT1 belongs to ED and DEPT
to DM..
The view defining tree of this view is shown in Fig.1l.

Notice that the notion of tree was found in [OSMA79]°

72

3. View Update Problems

In this section we shortly review the traditional view
update problems and see why the meaning of a view (ér a rela-
tion) should be introduced to treate those problems. We do it
by taking a simple but typical examplé:

Let the extensions of the base relation ED, DM and the
natural join view EDM be as shown in Fig.2. (Those are denoted
fy ed, dm and edm respectively.):

(a); Suppose one wants to delete a fuple (e1, a1, m1) from
the view edm. Then three alternatives are considerable for
this update translation: (1) delete the pair (el1, d1) from e&ﬁ
(2): delete the pair (41, m1) from dm, (3) delete (el, d1) and
(d1, m1)! from ed and dm respectively. But no alternative is
adoptable without causing the side-effect.

(B): Suppose one wants to insert a tuple (e5, d3, m4) to edm.
To effect this update, one might translate it into two insert
statements, each of which inserts the pairl(eS, d3)' to ed and
the pair (d3, m4) to dm respectively. But this translation
causes the additive side-effect.

(¢c)i Suppose one wants to delete a tuple (e3, d2, m3) from
edm. In this case, any one of the following three alterratives
is adoptable: (1) delete the pair (e3, d2) from ed, (2) delete
th;:pair (a2, m3) from dm, (3) delete (e3, d42) and (42, m3)
from ed and dm respectively. But one can not decide uniquely
which alternative should be chosen. This is one of the unigue-

ness problems,

10

Many investigations have been done to those problems fDATE71,
coDD74, CHAMT75, STONT75, FERN76, PAOL77, DAYA7S, BANC79, OSMA79,
MASU79]). Among them, a semantic aspect of those problems was
investigated in [PAOL77 , BAMC79 and MASU79].. Particularly,
in (MASU797 the "meaning" of a relation was introduced and it
. played an essential role to characterize the translatable up-
dates. (For example, the meaning of the base relation ED is
a semantic nature of it by which we can see that "the employee
el works in the department 41" as long as the pair (el1, 41)
belongs to ED. This is formally denoted by MED@Y* The main
results there were shown taking EDM as an examples

(a) Let MED and MDM be the formal descriptions of the mean-
ing of the base relations ED and DM respectively. Then the
meaning of the natural join EDM is defined bty

(B1) (Vt €dom@) x dom{M)) (Mpp, (t) = My (t (EMP DEPT])' A

My, (t(DEPT MGRIJ)).

Now suppose one wants to delete a tuple (el, d1, m1) from edm.

Then the next statement holds:

(E25? “MEDMQe1, d1, m1) is false if and only if either MED(e1,
d1) is false or MDM(d1, m1) is false or both."

If the intention of deleting the tuple (el, d1, m1) from edm

were comming from the fact that the pair (el1, d41) had lost the

meaning (i.e. MED(e1, d1)' is false), then the correct delete

statement to be issued against edm should be a delete state-

ment, which is capable of deleting all tuples having el and
d1 as the EMP value and the DEPT value respectively. The

74
11

similar arguments hold for other two cases. Therefore the
tiple delete requirement of deleting a tuple (el, a1, m1) from
edm was nonsense. As a result, this enables us to characterize
the set of all translatable delete statements againsf EDM.

(b) So far és we are concern with the meaning of a view,
the uniqueness problem stated previously does not arise.

(¢) However, there exists yet another aspect of the view
update problem. (This means that the previous additive side-

structural

effect comes fromIYEEYﬁEEﬁigjof the natural join operation.)
We note here that the meaning of a relatibn approach is still

essential in the following investigations.

75

12
4. View Support Subsystem
4.1 LUP

LUP(Epcal view Update grOCessor) is a vehicle of imple-
menting a view support suhsjstem of a relational DBMS.
Generally, as observed in the previous section, the view update
problems are complicated and therefore it seems very difficult
to present a simple view update translation mechanism.

However, it seems that one can possibly implement a view support
subsystem if we first observe what happens when an update
against a view is translated, and then identify some principles
which rule the translation.

In our approach, a view is defined &s a relation derived
from the base relations hy applying a sequence of five relational
algebra operations and the derivation is shown as a tree which
root represents the view, which leaves represent the base rela-
tions and which intermediate nodes represent certain intermediate
relations. (We call the root is in the lowest level and there-
fore others are in higher level.)' Therefore we can follow
faithfully how the update against the view will be translatable
to the updates to leaves by identifying when the translation-
is possible and how the translation is done, where we can find
the concept of a processor which handles the translation.

That is, the LUP is a processor which is allocated to a node,
it governs the update translation at this node and can move
on the tree. In our architecture, obviously an update is first

iissued against the root where a LUP stays initially. The general

76

13

form oga%gput to a LUP is a quadruple, the precise definition
of which is given in section 4.3.1. The IUP output is the
tygnslated update statement(s) against its one level higher
node(s) if the translation is possible and if not the announce-
ment of the impossibility of translation. The LUP (if neces-
sary the LUP is duplicated.) comes up to the higher node(s)
when the translation was succeeded. The same action will be
taken until all LUP's in the tree have.reached to certain
leaves. The precise description of the LUP actions is given
in section 4.3.2 and 4.3.3. Next, if all LUP's in leaves suc-
ceed in executing updates, then they come down to the root
Where the expected update result will be obtained. This update
execution is described in section 4.4 in detail. It should be
noted here that the formal description of the meaning of a view
is essentially taken into aeccount in characterizinmg the ILUP
funetion.
As a summary, the ILUP concept with the view defining

tree is walid particuraly from the following points of view:

(a): The LUP concept with the view defining tree enables us
to handle the view update translation just by looking at rela-
tions of one level higher and lower. This means that at most
_.a finite number of actions of LUP's are definable (because
only five relational operations are used to define the view
defining tree and only two types of updates (deletion, inser-
tion) are considered), while those actions are capable enough

10 handle the translation.

17

14

(p) LUP's process the view update translation step by step,
which in turn meéans that the ILUP concept with the view defining
tree can handle the translation in a unified manner.

(¢) The behavior of LUP's on the view defining tree just
corresponds to a way of implementing the view update trans-
lation mechanism..

4.2 Theoretical Foundations

Before describing the function of LUP's in the following
sections, we state a few theoretical foundations which are
necessary to describe the function.

4.,2.1 Indueed Structural Integrity Constraint

Let us suppose that the expanded direct product of
relation R(A1, A2, ..., An) and S(B1, B2, ..., Bp) is defined.
Then the following integrity'constraint should hold for R &) S:
(E3) (Vt, t'e dom(R) x dom(S)){(t, t'eR @ S) > ((t(a1a2"...”

an) (B B2, . Bp))ER @ S))

Obviously this is induced from the syntactic nature among tuples
of the éxpanded direct product view. Therefore we call this
" the induced structural integrity constraint of the view.

Now, let us Suppose that a tuple delete statement D is
issued against the view. By res(D, R®) S), we denote the
expected result relation. By diff(D, R ® S), we denote the
set of all tuples of the view which should be deleted by D,
i.e. diff(D, R® S) =R@®S - res(D, R@S). To effect this
tuple deletion, D should be translated into two tuple delete

statements Dp and Dg (one of those may be empty) against R and

78

15

S respectively. (Here we &o not want to say anything about
how the translation will be done.) However, the point is that
if D were effected, then the update result, res(ﬁ, R @® S),
should again satisfy the induced structural integrity con-
straint. That is, the following should hold:
(E4) (V+t, t'c dom(B) x dom(5))((%, t'eres(D, R ®S)) D
| ((s(arT"a2™ . an) e (BB . . TBp) e res(D, R @ S)).
Now, the following is almost obwvious:
Theorem
A delete statement D ag&inst R@S is translatablé to the
delete statement(s) against R and/or S (without causing any
side-effect) if and only if (E4)) holds.
We should note here that there is an exact correspondence
between this theorem and the result of the characterization
of the translatable delete statement D against R@ S done from
the semantic point of view [MASU79]. Because this investiga-
tion is valid in the following sections, a short summary is
given belows
First, the meaning of R(® S is formally defined by
(E5) (VY t€edom(R) x dom(S)\)(,MR@)s.(‘t)'EMR(‘t[M,AAZA.../\An])?/\
My (t(B17 B2 .. "Bp)))
Secohd, the tuple delete statement D is issued against R ® S,
because every tuple of diff(D, R ® S) has lost the meaning of
R®S. |
Then the following is ohtained by (E5) and the particu-

larization rule of the quantification theory:

16

(E6); "MR ® s(difféﬁR‘TYj@iés.)false. if and only if either (;MR(diff
(0, R@®S) (a1742"7...7An]) is false or Mg(diff(D, B @ S)
(8"B2"... Bp)) is false or hoth.™

Therefore the valid delete statement D against R @S should

intend to delete either (a) any tuple of R @ S which projeetion

on AT 42"... 4n belongs to diff(D, R ® S) (AT 42"... an), or

79

(b)) any tuple of R & S which projection on B1 B2 .. JBp belongs 7

to diff(D, R@S)(MAMA...ABp], or (¢) both. It is now clear
that a delete statement D against R ® S satisfies the induced
structural integrity constraint if and only if D is either one
of the ahove three statements. Notice that if a delete state-
ment satisfies this constraint, then no side-effect occurs.
The same argument holds for insert statements.
4.,2.2 Update Modification Rule
Let V. be a view which is associated with a certain
intermediate node of a view defining tree. Moreover, let us

V is a direct product view and)
suppose that! the one level lower relation of V is defined as

a restriction V(A §B)of it for certain A, B and § .

Now, suppose.a delete statement against V is D. _
Then one can modify D to D* such that (a) diff(p', V)24iff(D,
W) and (b): diff(D', V)N V(AOB]) = aiff(D, V). This is called
a tuple delete statement modification rule. This modification
is possible because V. is an intermediate (therefore virtual)
relation. However, in order not to cause any side-effect,
the modification should be minimal (see section 4.3.2.1),

An example of applying this rule is seen in example 5.1.

80
17

For a tuple insert statement I, one can modify I whencver

V is a direct product view. The rule is called the insert statement
(The modification should also be minimal by -the same reason.}

modification rule.Y A simple example of this case is given in

Fig.3, where the tuple insert statement I of inserting the
pair (3,3) to R ® S is modified to the statement of inserting

a set of pairs {(1,3); (2,3) (3.3)}, by which modificatior

the insertion requirement of inserting a pair (3;3) t0 the wiew
R{A=B]S is effected.

4,2.3 Augmentation Pule

This rule is used to modify an insert statement against

a projection view. Suppose an insert statement I is issued
against the projection view R[AJ, As will be shown in section
4.3.3.4, in principle, I is not translatable to the insert
statement against R because of the semantic ambiguity.
Howevér, when it is possible to determine u[K](where uedon(R))
from res(I, R(A)) for any t in 4iff(I, R(A)) such that t = u[4),
then we can translate I to an insert statement againét R which
realizes the insertion in R[A].

For example, the statement of inserting a tuple (e5, 43,
m4) is translatable to the insertion against E[D:D]M because:
the DEPT1 value is always determined by the DEPT2 value.

(That is, those two values are always equal.)
4.3) LUP Functions
In this section we describe how ILUP's behave..

4.3.1 Preliminaries

We associate a distinguiished non negative integer with

81

18

each node of a view defining tree (in a certain order).
(. An example is shown in Fig.1, where O is associated with the
root and so on.) Generally, node n has one ancestor (i.e.
the node of one level lower) except the root, and at most two
descendant nodes (i.e. the nodes of one level higher). By
ane(n), we denote the ancestor of node n, and by des(n), we
denote the deécendant of node n. (If there are two descendants,
then by desL(n)fand desR(n), we denote the upper left and the
upper right node of node n.) By rel(n), we denote the relation
defined at node n of the view defining tree. By reldef(n), we
denote the defining expression of rel(n) in terms of its descend-
ant relation(s). By U(n), we denote the update statement
against rel(n), which is initially given by the user to the
root and may be given by LUP's to the higher node(s).

General form of an input to a ILUP is a quadluple (rel
(anc(n)), rel(n), reldef(n), U(n)). For example, suppose a
LUP stays at the root of the view EDM defining tree (Fig.1)
and a delete statement D is issued against the vigw. Then the
input to the IUP is (¢, edm, EDM=(E(D=D)M)(EMP DEPT® MGR],
D)), where#:denotes an empty relation, i.e. the relevant node
is the root,

The output of the LUP at nede n is the transilated update
statement(s) against its one level higher node(s) if the trans-
lation is possible and if not the announcement of the impossi-

bility of translation..

82

19

4.3.2 Deletions

Suppose a LUP stays at node n and U(n) is a delete
statement D. The following states how the LUP functions in
this case.
4.3.2.1 The Expanded Direct Product

Suppose rel(n)= rel(desL(,n)')) @rel(de.sa(,n)ff)f?. Now, two
types of inputs to IUP are considerable corresponding to (i)
anc((n)):fp(i.e. n is the root) and (ii) anc(n)¢¢P(i.e. n is an
intermediate node).
| (i) case of anc(n)jx:cp

In this case, the input to the IUP is a quadruple 0# ’
rel(n)), rel(desL(‘n)W)Tr@ rel(desR('n)))), D).

Action D-1-1

"Check whether (E4) holds. If so, then output the translated

update statements D and Dp . %o desL(gn)',z and desR(n)') respec=

Lout
tively~ (One of the outputs may be empty.) Dyout @né Dp oo
are: determined as stated in section 3. In this case the LUP
moves to desL((n) (x.:desR(n_)))‘s whenever DLout (-fDRout)ﬁ is not emptvy.'
(. If both are non empty then the LUP is duplicated and those
mowe to desL(\'n)‘l and desB(n))., Otherwise the LUP announces that
the translation is impossible.™
.. (1)) Case of and(n)%}

The ilput to the LUP is a quadruple (rel(anc(n)), rel(n),
rel(desL(n))) rel(desR(,n);)‘f, D)o
Action D-1-2

"Check whether (E4) holds. If so, then do the same as stated

83

20
in Action D-1-~1., Otherwise, begin to apply the update modi-
fication rule (in section 4.2.2) to D so that the LUP may
possibly find out D' which is a minimal modification of D.

(Here the term "minimal" means that there does not exist any
other modification D" of D such that res(D", rel(n)) satisfies
(E4) and aiff(D', rel(n))224iff(D", rel(n)) Rdiff(D, rel(n)).)
Thiis condition is searched exhaustively. If such D' is found,
then do the same as stated in Action D-1-1. Otherwise the LUP
announces the impossibility of translation.®
4.3.2.2 Union
Suppose rel (n)= rel(desL(n))Ljrel(desRQn))s
The formal description of the meaning of rel(n) is defined by
(ET) (VY t& dom(rel(desy(n))) x dom('rel(desR(‘n))))(Mrel‘(n)\,(t)_’:
Mrel(desL(n)ﬁ(t)Lerel(desn(n)Tﬁty»’
Then the foilowing holds:

(E8): "For any tuple t, M
M

rel(n)(t) is false if end only if both

rei(desLQnYO(t) and Mrel(desR(n»Qty are false."

This means that to effect D against rel(n), all tuples of

diff(D, rel(n)) should be deleted both from rel(desL(n)) and

rel(desR(n)). Let bLout and DRout be the tuple delete state~

ments against the left and the right descendant relation which

deletes diff(D, rel(n)). Those two tuple delete statements

are a}ways definable. |

Action D-2
"Output D

and D to desL(n» and desR(n) respectively.

Lout Rout
The LUP is duplicated and those move to corresponding descend-

84

21

ant nodes.™

4.3.2.3 Difference
Suppose rel(n)= rel(desLQn»)- rel(desR(n))u

The meaning of rel(n) is formally defined by

(E9) (V'te-dom(rel(desL(n))) x dom(rel(desR(nX))O(Mrel(n»(tﬁf.
Mrel(desL(n)W)W(t)A'\'Mrel(desR(n))(t)})‘

Then,

(E10) "For any tuple t, Mrel(n)ﬂt)‘is false if and only if
Mrel(desL(nﬁﬁ(t» is false or mrel(desﬁ(n»»(t» is true or both."

This means that to delete a tuple t from rel(n), one can delete

t+ from rel(desL(n)D or insert t to rel(desR(n))'or doing both

simultaneously. There is no mathematical reason to decide

which alternative should be chosen. However, notice that those

have different meanings. That is, the first one means that t

has lost the meaning of rel(desLﬁh))y while the second one means

that t becomes to satisfy the meaning of rel(desR(n))@

Therefore, essentially the LUP here can not choose arbitrarily

and should ask to the user which one should be chosen.

Action D=3

"Ask to the user which alternmative should be chosen. Accord-

ing to the answer, the LUP (if necessary it is duplicated)

moves to the descendant node(s)."

However, if we do not want to have a LUP-user conversation,

then we should give up to translate the delete statement:

Action D-3¢

"Announce that the translation is impossible.”

85

22

Notice again that the LUP should not be allowed to choose an
alternative arbitrarilybecause it may cause semantic incon-
Sistency.
4.3.2.4 Projection

Suppose rel(n)= rel(des(n)){A), where A is a list of
attributes.
The meaning of rel(n) is formally defined hy
(E11) (Ytedom(rel(n)))(Mrei(n))(*t N=(3u & dom(rel(des(n)))

u[A]= t A Mrel(des,(n))(ﬁ‘)))e
Then,
(E12) "“For any tuple t, Mrel(nﬁ(t)’is false if and only if for

every u of dom(rel(n)), if u(A)=t then Mrel(des(n)ﬁ
(u) is false."
This means that to delete a tuple t from rel(n), it is suffi-
ciently enough to delete all tuple u of rel(des(n))ésﬁch that
ufA)}= t. In this case D is always translatable to Doyt 2&2inst
rel(des(n)) straightforwardly so that it deletes all desired
tuples., The IUP takes the following action:
Action D-4
"Output Dout as the delete statement against rel(des(n))

and the LUP moves to des(n)."
4.3.2.5 Restriction

Suppose rel(n)= rel(des(n))(A0 B), providing A and B
are union-compatible,

The meaning of it is formally defined by

86

23

(E13) (Vtedom(rel(n))) My () (£)= (£(4] 6 £(B)) A
Mrel(des(n))(t))°

Then,

(E14): "For any tuple t, Mrel(;n)\;(“-t')} is false if and only if,
if t(A) 9 t(B]}, then Mpe1(des(n))(t) is false.

This indicates the transiation of D to the delete statement

D against rel(des(n)'ﬁ)%, which is directly obtained by using

out
the query modification method of [STON-'?SJ . The LUP action here
is stated as follows:
Action D-5
"Output D _ . as the delete statement against rel(des(n)) and
the LUP moves to des(n)."
4.3.3 Insertions
Sﬁppose a IUP stays at node n and U(n)' is an insert
statement I. The following states how the LUP functions in
this case..
4.3.3.1 The Expanded Direct Product
Suppose rel(n)= rel(desL(n))"-®rel(desﬂ(n)).
(i) Case of anc(n)'1=¢» ,
In this case, the input to the LUP is a quadruple (‘4> ’
rel(n), rel(desL(n)\) ® rel(desﬁ(n)*)’!, I). From the meaning
i__point of view, the following is observed.
(E15) "For any t, Mrel(n)&t))is true if and only if both

M "
rel(des (n) rel(desR(n)fﬁt[/gJ) are true.
This means that if we want to insert a tuple t to rel(n), then

M (% (X)) and ¥

we should insert t(X] and t[ﬂ]to rel(desL(n)) and rel(desR

24

(n)) respectively, where &4 and f denote the list of all at-
tributes of rel(desL(n)) and rel(desR(n)) respectively.

Action I-1-1

“"Check whether (E3) holds for res(I, rel(n)). If so, out-

and IRout

are the statements of inserting diff(I, rel(n))

put‘ILout to desL(n) and desR(n) respectively, where

I and 1

Lout Rout
(4) and aiff(I, rel(n))(P) to rel(des;(n)) and rel(desy(n))
respectively. The LUP is duplicated and each moves to desL(nT
and desR(n) respectively. If not, announce that the transla-
tion is impossible.”
(ii) Case of anc(n)¥ crb

In this case, the update modification rule is appli-

cable.

The action of IUP is as follows:

Action I-1-2

"Check whether (E3) holds for res(I, rel(n)). If so, do the
same as stated in Action I-1-1. Otherwise, begin to apply the
update modification rule (in section 4.2.2) to I 3nd find out
I' which is the minimal modification of I. (The term minimel
ie defined analogously as did in Actior D-1-2. 1In this case,

such I' is always found.) Then do the same as stated in Action

I-1-1."

4.3.3.2 Union
Suppose rel(n)= rel(desL(n))Ljrel(desR(n)).

In this case, the following holds from the meaning point of view:

87

88

25

(E16)' “"For any t, Mrel(n)(t)=is,true if and only if either
Mrel(desL(n))(t)lor mrel(desR(nQ)(t);or both are true.™

This means that to effect I against rel(n), diff(I, rel(n))
should be inserted in either rel(desL(n)O or rel(desR(n)) or
both. But notice that there is no mathematical reason which
alternative should be chosen. This is completely a semantic
issue as discussed already in the case of deletion against the
difference view. (See section 4.3.2.3.)
Action I-2

"Ask to the user which alternative should be chosen. Accord-
ing to the answer, the IUP (if necessary auplicated)’outputs
the translated insert statement(s) and moves to the relevant
descendant node(s)."
If we do not want to have such LUP-user conversétion, the
following is taken:

Action 1-2'

"Announce that the translation is impossible"
Notice here that the LUP should not be allowgd to choose an
alternative arbitrary because it may cause semantic incon-
sistency. |
4.3.3.3 Difference

Suppose rel(n)= rel(desL(n))— rel(desR(n)).
By (E9) we obtain the following:
(E17) "For any %, Mrel(n)(t) is true if and only if M

‘ rel(desL
(ant) is true and M;ei(desR(n))(t)‘is false,"

26

This means that to effect I against rel(n), diff(I, rel(n))
should be inserted in rel(desL(n)) and it should be deleted

from rel(desR(n)). The insert and the delete statement

against those two relations respectively are definable straight-

forwardly. (We denote those by Irout 208 Ipooe respectively.)
Action I-3 |

"Output ILout and IRout to desL(n) and desR(n) respectively.
The LUP is duplicated and each moves to the corresponding de-

scendant node,"

4.3.3.4 Projection

Suppose rel (n)= rel(des(n))(4A), where A is a list of

attributes. By (E11) we have the following:

(E18)) "For any t, M)(t) is ture if and only if there

rel(n

exists a tuple u of dom(rel(des(n))) such that u[A)=

- []

t and Mrel(des(n))(u) is true.
This means that to insert a tuple t in rel(n), the LUP should
find out a tuple u satisfying (E18). However, there may not
be possible to find out an unique u. The uniqueness is essen-
tial because different tuple represents different occurance of

the entities and the relationships among them. Therefore, in

principle, insert statements against the projection view

is not translatable except the statement to which the augmen-- -

tation rule is applicable. (See section 4.2.3.) In order to
check whether the augmentation rule is applicable, the LUP
should see the definition (i.e. intention) of rel(des(n)) in

this case. Now the action of the IUP is made clear.

89

80

27

Action I-4

"Check whether the augumentation rule is applicable. If so,
output the augmented insert statement Iout and moves to des(n).
Otherwise, announce that the translation is impossible."

The problem here deeply relates to the null value issue
in a relational data model (CODD75, ZANI??) which is another
aspect of the Yiew update problems (MASU79). But here we do
not discuss this problem further.
4.3.3.5 Restriction

Suppose rel(n)= rel(des(n))(AQ B), providing A and B
are union-compatible. By (E13), we obtain the following:
(E19) "For any t, Mrel(n)«t))is true if and only if t(4) §

t(B) and M)&t)mre true."

rel(des(n)
This indicates that we can translate I into the inserte state-
ment I ., which inserts diff(I, rel(n)) to rel(des(n)), accord-
ing to the query modification method of [STON?S).
Action I-5

"Output I_. . to rel(des(n)) and moves to des(n)."
4.4 Update Execution
4.4.1 Execution Control

In section 4.1 and 4.3, we have described how LUP's

- behave., After a certain period of time, if all update trans-
lations are succeeded, then all LUP's stay at certain leaves.
By the "LUP orbit", we mean a set of all paths, each of which

begins at the root and ends at a certain leaf where a LUP reach-

ed. Then the LUP orbit consists a subtree of the view defining

28

tree. (For example, as shown in Fig.4(a), the LUP orbit is the
straight line from node O to node 4, i.e. the set (o, 1),

(1, 2), (2, 4) , in Example 1 of section 5.1.) If the LUP
orbit is a straight line, then the update execution is straight-
forwardly done in such a way that first execute the update
statement against the leaf relation, and then compute the
extension of the view-except using the new value of the leaf
relation. However, if the LUP orbit is not a straight line

but a’proper subtree, then ILUP's which stay at the upper nodes
of a branching node'should communicate each other to synchro-
nize the execution of the update statement. For example, in
Example 2 Qf section 5, LUP's at node 3 and 4 should be syn-
chronized in the sense that the restriction operation EDDM

- DEPTZJis executable after both LUP's come down to node

(pEPT
2. In order to realize the synchronization, we associate a
"milestone" at each branching node of the LUP orbit. (In
Example 2, as shown in Fig.4(b), node 2 has a milestone.)
When a LUP first comes down to the node with a milestone, then
the LUP should wait the pair ILUP to come down the node. Except
synchronization, the execution is done in ordinary manner.
4.4.2 Additive Side-effect Control

The additive side-effect may occur when one wants to
insert a set of tuples to a certain view. In our framework,
it may happen if there exists a LUP which took Action I-1-2

with the insert statement modification rule. However, we can

observe that the rule is essentially necessary to effect a tuple

91

32

29

insertion to a certain view which is derived from an expanded
direct product viéw. The modified insert s£atement inserts
more tuples than those which are inserted by the original
statement. The problem here is to0 investigate how the addi-
tionally inserted tuples interact with the view which is
derived. from the expanded direct product view. (In Example 2
of section 5.2, the quadruple (é4, d3, 43, m4) should be dis-
tinguished among the additionally inserted tuples, which causes
the additive side-effect because it can pass the restriction

EDDM(DEPT |

= DEPT?).) As investigated in [MASU79], the additive
side-effect issue is rather a structural issue than a semantic
one in the sense that the additionally insertedltuple has cor-
rect meaning. Therefore, whether the use of the insert statew
ment modification rule causes any additive side-effect should
be checked exhaustively. That is, when a ILUP uses the insert
statement modification rule, the LUP associates a star mark(x)
to the node (of the ILUP orbit) to indicate the use of it.

In update exepution, LUP's should dheck whether the additive

side-effect occur or not if they come down below the star

marked node,

33

30
5e Examples

Let us now demonstrate how the update translations are
done under the IUP concept with the view defining tree.

5.1 Example 1 -Deletioﬁ—

Suppose the view EDM is defined as shown in Fig.1l and
the extensions are as given in Fig.2. Suppose a delet state-
ment DO is issued against edm:

(E20): Do: "Delete every tuple from edm having 41 and ml as

DEPT2 and MGR value respectively."

Initially, a LUP stays at node O and then translate Do to D1,

which is the delete statement against e(d= d)m, and moves %o

node 1 (Action D-4):

(B21) D,z "Delete every tuple from d(d= dJm having d1 and m1
as DEPT2 and MGR value respectively."

Next, the LUP at node 2 decides to translate D1 to D2, which

is the delete statement against eddm, and moves to node 3

(Action D-5):

(E22) D2: "Delete every tuple from eddm having 41 and ml1 as

DEPT? and MGR value respectively and having the same

DEPT ' and DEPT? value."
The LUP at node 3, first examine whether (E3) holds for res(Dz,
addm). However the LUP seesthat it does not hold in this case.
Then the LUP tries to apply the update modification rule (sec-
tion 4.2.2) to D,. In this case, the LUP succeeds in finding

out such a statement which is D3. (Notice that D3 is obtained

Just by loosing the Qualification part of D2 such that the

94
31

condition of "having the same DEPT1 and DEPT? value" is omitted)

V(Update modification rule):

(E23) D3: ”pelete every tuple from eddm having 41 and m1 as
DEPT2 and MGR value respectively."

Then the LUP examines D3 and translates it to the delete state-

ment D4 against dm and moves to node 4 (Action D-1-2):

(E24) D4: "Delete every tuple from dm having d1 and m1 as
DEPT2 and "MGR value respectively."

Now, the LUP recognized that it is in a leaf. Therefore it

beginsto execute D As stated in section 4.4, the ILUP comes

4
down to the root where it can show the desired result.
5.2 Example 2 -Insertion-

Suppose the view EDM is defined as shown in Pig.1 and
the extensions are as given in Fig.2. Suppose an insert
statement I0 is issued against edm(cf. section 3).

(E25) I,: "Insert a tuple (e5, a3, m4) to edm."

The IUP stayed initially at node 0 translates it to 11, which
is an insert statement against e[d: d)mo This is possible
because of the augumentation rule (section 4.2.3) and moves to
node 1 (Action I-4):

(E26) 1I,: "Insert a tuple (e5, d3, d3, m4) to e[d= a)m."
Then the LUP at node 1 translates 11 to 12, which is an insert
statement against eddm, and moves to node 2 (Action I-5):
(E27) I,: "Insert a tuple (e5, 43, 43, m4) to eddm."

Now the LUP first sees that (E3) does not hold for res(Iz,

eddm). Therefor the insertion modification rule is used so that

35

32
12 is translatec into two insert statements I3 against ed
and I4 against dm:
(E28) 13: "Insert a tuple (e5, d3) to ed."
(E29) 14: "Insert a tuple (a3, m4) to dm."
As stated in section 4.2, node 2 is associated with a star mark.
The ILUP is duplicated and each of which comes up to node 3
. and 4.
Now the IUP at node 3 and the LUP at node 4 begin to

execute 13 and I, respectively. Both LUP's come down and

4
synchronized at node 2. Then two ILUP's are marged into one,
and execute the restriction EDDM[DEPT1 = DEPTz]. The LUP comes
down to node 1 and because the upper node 2 is associated with
the star mark, the ILUP hegins to check whether there exists

an additionally inserted tuple which can pass the restriction.
If there does not, then proceed execution, otherwise announce
that the translation is impossible (The additive side-effect
occurs.). In this case, as stated in section 4.4.2, the addi-
tionally inserted quadruple (e4, 43, 43, m4) passed the re-

striction. Therefore the translation of our insertion is

impossible because of the additive side-~effect..

36

6.

33

Concludipg Remarks

The LUP which is a vehicle of implementing a view sup-

port subsystem is introduced and the architecture of imple-~

menting the subsystem is described in detail. Through the

investigation, the followings are observed with relation to

the update translatability problem.

(a)

(b)

(e)

In characterizing the actions taken by a iﬂP, the mean-~
ing of a view played an essentizal role. The ambiguity
of the update translations is also characterized under
it,

The translatability and the translation mechanism of
tuple delete statements are completely chgracterized
from the meaning point of view. While this is not frue
for those of tuple insert statements. That is, the
additive side~effect can not be controlled from this
point of wiew, because this comes from the structural
nature of the relational algebra. The null value issue
closely relates to this problem.

The LUP coﬁcept provides a very strong tool to dis-
tinguish such semantic and structural aspects of

the view update problems.

34

Acknowledgement

The author is thankful to Prof. S. Noguchi who gave him
an opportunity to work on this subject. This work is partly
supported by the Science Foundagtion Grant of the Ministry of

Education of Japan, Grant No. 468008.

37

98
3

Reference

[BANC79) Bancilhon, F., "Supporting View Updates in relational
data bése," Proc. IFIP TC-2 Working Conference - on Data Base
Architecture, 1979, pp. 198-219.

(CHAMT75] Chamberlin, D.D., J.N.Gray and I.L. Traiger, "Views,
aﬁthorization, and lockingin a relational database system,™
Proc. AFIPS NCC, 1975, pp. 425-430.

(copp70) Codd, E.F., "A relational model of data for large
shared data banks," CACM 13, 6, 1970, pp. 377-387.

ICQDD72] Codd, E.F., "Relational completeness of database
sublanguages,™ In Data Base Systems, Courant Computer Sci.
Symp. 6, R. Rustin, Ed., Prentice-~Hall,. Englewood Cliffs,,
1972, pp. 65-97. ‘ ,

(CODD74) Codd, E.F., "Recent investigations in a relational
database system,™ Information Processing 74, North-Holland
Pub.. Co., Amsterdam, 1974, pp. 1017-1021. ..

[copp75) Cedd, E.F., "Understanding Relations," IBM Res. Report,
July 10, 1975.

(DATET1) Date, C.Jd.and P.Hopewell, "File definition and legical
data independence," Proc. 1971 ACM SIGFIDET Workshop on Data
Description, Access and Control, pp. 117-138 (1971).

(DAYA78) Dayal, U. and P.A.Bernstein, "On the updatability of
relational views," Proc. Fourth VIDB: Conf., 1978, pp. 368-377.

(PERNT76) Fernandez, E.B. and R.C.Summers, "Integrity aspects
of a shared data base," Proc. AFIPS NCC, 1976, pp. 819-827.

[KIM79J Kim, W., "Relational database systems," Computing
Surveys.11, 3, pp. 185-211 (1979). ’

(MASUT9) Masunaga, ¥., "On a semantic aspect of view updates
in a relational database system," prepared (1979).

[OSMﬁ?Q] Osman, I.M., "Updating defined relations,™ Proc.
AFIPS NCC, 1979, pp. 733-740.

[PAQLW7] Paolini, P., and G.Pelagatti, "Formal definitiion of
mappings in a database," ACM SIGMOD, Proc. of the Intl. Conf.
on Management of Data, 1977, pp. 40-46.

99

36

(STONTS) Stonebraker, M., "Implementation of integrity con-
straints and views by query modification,"™ Proc. 1975 SIGMOD
Conf., ACM, N.Y., pp. 65=78.

(ISICT7) Tsichritzis, D.C. and F.H.Lochovsky, "Data Base Manage-
ment Systems (book)," Academic P., 1977.

erICTBJ Tsichritzis, D.C. and A.Klug (Ed.)@”'The ANSI/X3/SPARC
DBMS framework, report of the study group on database manage-
ment systems,"™ Inform. Systems.3, pp. 173-191 (1978).

@ANI77] Zaniolo, C., "Relational views in a data base system
support for queries, "IEEE COMPSAC 77, 1977, pp. 267-275.

100

3T

" ED(EMP, DEPT]') DM(DEPTZ, MGR)

3 4

EDDM(EMP, DEPTY, DEPTZ, MCR)

1

EDDM[DEPT =DEPT2] (= - restriction)

1 ¢ E[D=DIM(EMP, DEPTl, DEPTz, MGR)

E[D=D]M[EMP " DEPT> " MGR] (projection)

0 & EDM(EMP, DEPT?, MGR)

Fig. 1. The view defining tree of the view EDM.

ed: EMP
el
e2
e3
e4

eddm:‘

ED DM
pepT! DEPT?
a1 a1
a1 d1
a2 a2
a3
EDDM

EMP DEPT DEPT MGR

el a1 a1 ml

el a1 a1 m2

el ai a2 m3

e2 d1 a1 ml

e2 d1 d1 m2

e2 d1 d2 m3

e3 d2 d1 ml

e3 az d1 m2

e3 a2 a2 m3

eh a3 a1 ml

el 3 a1 m2

A d3 dz2 m3

e[d=d]m: This consists of five tuples of eddm marked *.

Fig. 2.

edm:

Extensions of ED, DM, EDDM, E[D=D]M and EDM.

. e2

EDM
EMP DE}"T2 MGR
el dl ml
el dl m2
dl ml
e2 dl m2
e3 d2 m3

38

101

w N e

* N R W |n

102

R®S
A B
1 1
1 2 R[A=B]S
2 1 A B
® 2 2 — R@®S[A=B] —0 1 1
3 1 2 2
3 2 _- * & (3,3
* & (3,3): 1 &7 Original insert
Update modification rule
(1, 3)
€3 E--—---- * & 4(2, 3)p: I'

Fig. 3.

3, 3)

Update modification rule.

39

statement

T 1

00

(a) Case of Example 1.

‘Fig. 4.

40

o0
(b) Case of Example 2.

The LUP orbits.

103

