goooboooogn
0 396 O 1980 0 104-130

104

INFORMATION SPACE MODEL -
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Graduate School of Information Engineering
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The importance of the semantic theories of databases has come to be
recognized in various problems of databases. This paper proposes

an infosemantic framework based on the relational model that has

been an infological framework of database theories. In a relational
database, semantic relationships are partly embedded in attribute
names and partly embodied by intrarelational semantics. However,
most of them are hidden in interrelational relationships that are

not explicitly specified by a relational schema. There are two

kinds of interrelational structures, analytic ones and synthetic
ones. Among them, the synthetic structures play especially important
roles in semantic problems. However, there are no proper theoretical
basis to deal with these structures. The information space model

(R, M) gives an infosemantic framework of this problem, where
synthetic structures are formalized as morphisms between relations.
The paper gives detail formalization of this model and examples of
its applications. :

1. INTRODUCTION

Recent studies on databases indicates the necessity of a new theory about
formal semantics of databases. Although the lack of formal semantics of
databases has come to be noticed through the studies on relational databases,
it is not only a problem of this special model but also a more general
problem involving all kinds of data models. This problem unfortunately
attracted very little attention before because of its difficulties.

Various approaches are possible to cope with this problem, however, we will
choose the relational model as the basis of our approach to a new semantic
model since the relational model has contributed a lot for these ten years
to the development of database theories and we should not neglect this fact.

‘In a relational database, semantics of information is partly embedded in the
names of attributes and partly in the intrarelational relatioships. However,
most part of the semantics is hidden in the interrelational relationships
that are not explicitly defined as a part of schema description. It may
sound reasonable that someone says the interrelational semantics is described
by relation names. However, this is the most common misunderstanding of
relational semantics. While we can infer the semantic relationship between
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two relat:.ons from their names, it is absolutely impossible for the computer
gystem that manages these relations to do the same inference.

To cope with the interrelational semantics of relational databases, we
‘propose the information space model (®, M), where R is a set of first
pormal form relations of an object data.base. and M_ is a set of elementary
morphisms among elements in A. An interrelational relationship is described
by a morphism between relations that is either elementary or derived from
elementary ones by composition. Since the number of elementary morphisms

is proved to be always finite, there always exists a finite description

(. M ) for any database.

The: elementarxness of a morphism is clearly deflned., For each morphism O in
M., we define a label ¢ (0). A set L(Y ) denotes {Z(G)]GEM }. A semantic
attribute is a concatenation of am attribute and a list of Yabels, i.e.,
al(o.)l(0,) ... 1(0 ). Let w(o) denote the semantics of O that may be
informally J.nterpreged as an English noun representing the relationship
denoted by 0. Then the semantic attribute Al(0.)1(0.) ... l(o ) may be
informally interpreted as an English noun phraseg A prepl w(o.) prep w(o )
.ss pPTrEep w(o ), where prep, is one of the following prepositions; zof'
*in®, ‘'at’, 'on', and ‘'by’' etc.

For an information space schema (R, M ), a set M_generates a set of semantic
attributes {Apl p is a finite sequence of elemengs in L(M), i.e., DEL*(M )},
This set is denoted by Q*, where R denotes a set of all tge attributes
appean.ng in some relation in R. For each 0 in M , we can define a morphism
“0 between semantic attributes such that

: Ap — al(0)p for A€ and peL*(Mo).

A set of morphisms {“c]oeM } is denoted by "M_. While (R, M) is a finite
category, the category (R*, M) is infinite. It should be noticed here that
an infinitely large space (R*, "Mo) can be defined by a finite description
(R, M ).

0

In the following sections, after informal introduction of information space
model, its formal semantics is formalized. Recursive morphisms and their
relationships to schema design are detailed. And finally, denotational
semantics of query language vocabulary is explained. o

2. INTERRELATIONAL SEMANTIC STRUCTURE

2.1. Analytic Structures and Synthetic Structures
A :

Interrelational semantic structures of a relational database are classified
into two categories, i.e., analytic structures and synthetic structures.

Fig.l (a) shows an example relation in the first normal form. This can be
decomposed into two relations shown in (b) because of the existence of a
functional dependency /department/—/floor/. This decomposition process
defines an interrelational semantic structure between Rl and R2 that reflects
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R employee départment floor

J. Smith A 2
. K. Jones A 2
| F. Brown B 3
(a) an original relation
Rl | employee department department  floor
J. Smith A A 2
K. Jones. A B
F. Brown B . .
{b) two relations obtained by the decomposition of (a).

Fig. 1.

An example of an analytic interrelational

relationship.




the dependency structure they had in (a) before the decomposition.  This kind

of interrelational relationships is determined by the analysis of the intra-

_ relational dependency structures of the original relation, and hence it is .
called an analytic structure. The original relation is a so called universal
relation of Rl and R2. - i T :

However, we can not always assume the existence of a universal relation.
Fig.2 (a) shows the instances of two relations for which there exists no
universal rélation. They are projections of a relation with a lot of null
values (Fig.2 (b)). Fig.3 (a) shows an instance of a relation for which we
can define a relation with infinitely many attributes (Fig.3 (b)). In these
two examples, interrelational relationships are defined by something other
than analytic dependency structures. Since their semantics is defined by
the way of synthesizing an integrated view of information from original
relations, we call such a structure a synthetic structure. Especially, the
relationship in Fig.3 (a) is called a recursive synthetic structure.
Recursive synthetic structures form a very interesting and important class of
synthetic structures.

While there may exist more than cne synthetic relationships between two
relations, the analytic relationship between them is always unique if any.
While analytic structures concern the decomposition of a first normal form
universal relation, synthetic structures concern the overall semantic
structures of a set of constituent first normal form relations. This paper
deals with the synthetic structures. Our approach to analytic structures
is detailed in [TANA77] and [TANA79]. o o

2.2. Necessity of Denotational Interrelational Semantics

We show examples of three kinds of problems concerning the necéésity of
denotational description of interrelational semantics.

The first problem concerns the isomorphic relationship between a query language
and a natural language. In Fig.4 (a), we show four example queries to a
database in Fig.3 (a) written in both English and a SEQUEL like language
[CHAM76]. While the representations of these queries in English are
isomorphic, their representations in a SEQUEL like language have different
forms. If we view this database as an infinite relation in Fig.3 (b) with
an extended set of attributes then the representations of these queries in
this query language become isomorphic as in Fig.4 (b). In these example
queries, there appears two extended attributes, i.e., /name of the parent/
and /birth date of the parent/. They have the phrase "of the parent" in
cormon.' In English, these two appearances of "of the parent" have the same
meaning. Obviously, the phrase "of the parent” is a kind of synthetic
structures in this database. What is the formal semantics of "of the
parent" in this database?

The second problem concerns the formal description of a subspace that is
semantically meaningful in a real world of information. In the database in
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novel

author

The adventure of Tom Sawyer
Crime and Punishment

For Whom the Bell Tolls

Gone with the Wind

Mark Twain
Feodor Dostoyevsky
Ernest Hemingway

Margaret Mitchell

character novel
Porfiry Crime and Punishment
Ishmael Moby-Dick

Robert Jordan
Philip Carey

For Whom the Bell Tolls
Of Human Bondage

Fbt Whom the Bell Tolls

Pilar
(a) two relations with a synthetic interrelational
relationship between them
character novel ‘author
The adventure of Tom Sawyer Mark Twain
Porfiry Crime and Punishment Feodor Dostoyevsky

Robert Jordan

Pilar

Ishmael

Philip Carey

For Whom the Bell Tolls
For Whom the Bell Tolls
Gone with the Wind
Moby-Dick

Of Human Bondage

Ernest Hemingway
Ernest Hemingway

Magaret Mitchell

(b)

an integrated view of two relations in (a)

Fig. 2. A synthetic interrelational relationship and

an integrated view.




name parent bitgh date sex
J. Smith A. Smith Dec. 11 1940 male‘
R. King S. Brown Mar. 20 1920 | male

. Smith B. Wilson Dec. 11 1940 | male
P. Scott L. Scotﬁ' May 9 1970 female
Y. Tanaka K. Tanaka Feb. 17 1950 | male
A. Smith T. Smith Nov. 15 1915 | male
B. Wilson K. Wilson Jun. 8 1918 | female
H. King R. King Jul. 1 1950 | male

{a) a relation with a recursive relationship.

name_of_ parent birth_date of parent sex of_ parent

-
-

name birth dete sex'name_§f_phild birth date_of child

-
-
-

-

=

-

-
-
S
-
=

-

-
-

(b) a view of (a) with infinitely many attributes.

Fig. 3.

A recursive relationship and a view with infinitely

many attributes.

109



110

(1) Find the name and the sex of a person'whose.birth date is Feb. 17
1950. -

select name, sex
where birth date = 'Feb. 17 1950'.

(2) Find the name of the parent and the sex of a parson whose birth date
is Feb. 17 1950.

select = parent, sex
where birth date = 'Feb. 17 1950°'.

(3) Find the name and sex of a person whose parent's birth date is
Feb. 17 1950.

select name, sex

where parent in

select name

where birth date = 'Feb. 17 1950°'.

‘or
select el.name, el.sex
where el.parent = e2.name

and e2.birth date = 'Feb. 17 1950°'.

(4) Find the name of the parent and the sex of a parson whose parent's
birth date is Feb. 17 1950.

select e2.name, el.sex
where el.parent = e2. name
and e2.birth date = ‘Feb. 17 1950'.

(a) four queries written in English and a SEQUEL like language.

(1) select name, sex :
where birth date = 'Feb. 17 1950'.

(2) select name of parent, sex
where birth date = 'Feb. 17 1950°'.

(3) select name, sex :
where birth date of parent = 'Feb. 17 1950°'.

(4) select name of parent, sex
where birth date of parent = °‘Feb. 17 1950°'.

{(b) queries based on the view in Fig.3 (b).

.

Fig. 4. Various queries of a database in Fig.3 (a) and those
based on the view of this database shown in Fig.3 (b).

-7 -
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Fig.3 (a), the information about the antecedents of J. Smith forms a .
semantically meaningful subspace. It is very reasonable in some possible
applications to restrict the access right of each user within information

about his own antecedents. How can we formally specify this kind of subspaces?
Relational model can not answer this question since every subspace describable
by this model is a subpart of some single relation or a union of such subparts
(Fig.5) . .

The third problem concerns the formal semantics of natural language vocabulary.
If we can formally define the semantics of the phrase "of the parent" in Fig.3
(a), then we can also define the semantics of "of the father"”, "of the brother”,
"of the sister”, etc. However, no single phrase of the latters defines the
former. In this database, "of the parent"” is an elementary synthetic
relationship, while the others are derivable from this. It may be expected
that we will be able to define formal semantics of various vocabularies from
the semantics of elementary synthetic interrelational relationships.

All these problems above concern synthetic structures among relations rather
than analytic structures. They prove the importance of the formalization of
synthetic interrelational relationships. :

3.MORPHISM BETWEEN RELATIONS

3.1. Formal Interpretation of a Synthetic Interrelational Relationship.

Fig.6 shows an example of synthetic interrelational relationships. Suppose
that Rl is a relation about the managemental information of an institute and
R2 is a relation about bibliographic information for reference use in this
institute. The relation R2 includes not only papers written by staffs in
this institute but also those by authors outside of this institute. These
two relations are related synthetically but not analytically. Integration
of these two relations enables us to search papers written by a project in
a focuis. These are papers written by such authors who are staffs of this
project. Such papers are "papers of the project”. This adjective phrase
"of the project” can be considered as a morphism, i.e., a relational
morphism, that relates two relations Rl and R2, i.e., O0:R2—*Rl. This
morphism induces a mapping that maps information about documents to
information about documents of the project. The latter might be considered
as a part of the information of the project.

As is shown in Fig.7, a morphism 0:R2—*Rl relates two tuples p in Rl and

d in R2 in such a way that /staff/-value of p is equal to /author/-value

of d, It conceptually extend a tuple p to p' that is aconcatenation of

P and the image of d mapped by G. BAn extended tuple p' represents
information of the project in a focus. For an attribute A in Rl, A-component
- of p' represents information about A of the project, while, for an attribute
B ih R2, B-component of p' represents information about B of a document of
the project. Since obviously p' represents information of the project, we.
omit the last phrase "of the project"” from the names of each component of p'.
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Rii'al B c|D|RIEIF|G|H

777¥777
17747778777

k7

R3] T | J}] K

(a) a subspace of an {b) subparts of relations.
information space.

Fig. 5. Difference between a subspacé of an informatidn space
- and a union of subrelations.
Rl{/project/, /budget/, /staff/)
R2 (/author/, /title/, /jourhal/)

Fig. 6. An example database with a synthetic interrelational
relationship.

Fig. 7. Pictorial interpretation of an interrelational morphism.

-9 -
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Therefore, A and B-components of p' above can be denoted by 'A' and 'B of
document' respectively. A set of such extended tuples as p' forms an
information space represented by a cloud in Fig.7. Between each attribute

B of R2 and its counterpart 'B of document' in this cloud, we.can define

a morphism “g such that "0: B+ B of document. This morphism is called

a labeling morphism since it labels B with "of document". Labeling morphisms
should be one-to-one. We can define the morphism G in the above example in
such a way as

morphism ©0: R2—R1
where *0(/author/)=/staff/.

For each morphism 0, we can define its reverse 0 . For . above, 0 is equal
to the following definition; -

morphism o‘:: R1—" R2

where g (/staff/)=/author/.
3.2. Formal Theory of Morphisms and Semantic Attributes
In the sequel, we use the following notations;

(1) Pred(Xx), Predi(x) : a predicate about attributes in an attribute

set X, . .
(2) IXIR . projection of a relation R to an attribute set X
(3) IPred(x)IR

restriction of a relation R with respect to the
condition Pred(X)=true, )

Cartesian product of two relations,
intersection and union of two relations R and S
with a same attribute set, )

natural join of R and S with respect to the
common attributes,

(7) <xX> : a relation over an attribute set X,

{8) Q(R? : the set of all the attributes of a relation R,
(9) |s| : the number of elements in a set S.

Let R denote all the first normal form relations of a database and M a set -
of morphisms in R. It is assumed that, for each morphism O in M,_a_special
morphism ¢ called a reverse of 0 is also included in M, where (0 ) =0. We
assume that each relation in R has different attributes disjoint from those
of the other relations in R. This condition is always satisfied after proper
renaming of attributes. The world W is a Cartesian product of all the
relations in R, i.e., ’

(4) RS
(5) NRrRS, VRS

(6) DRSS

W= HReR R. . (3.1)
We denote this by <Q>°, where .
=V
Q RER QUR). (3.2)

Let 1(0) denote a label corresponding to a morphism ¢ such that the labeling

- 10 -



114

morphism ¢ mapps any attribute A in  to AL(0). We define semantic
attributes as follows;

(1) attributes in Q are semantic attributes, _

(2) if A is a semantic attribute and 0 is in M, then Al(0) is a semantic
attribute,

(3) only those obtained by finite applications of the above two rules
are semantic attributes.

We denote the set of finite sequences of labels by L*{Y¥) and the set of
semantic attributes by 2%, i.e.,

Q* = {Ap] AeQ and peL*(N)}. (3.3)
By ¥p, we denote a set {Ap|AcX} for any XcQ* and pe L*(¥).

A morphism g between relation R and S is defined by a statement:

morphism ©: R-—S
where Pred("c(X), Y), (3.4)

where X<Q(R), Y<Q(S), and "“0(X)=XI{0). It is denoted by ORS that R and S
are related by a morphism g: R—*S. Relations R and S are called a domain

relation and a codomain relation of o.

* *
The formal semantics of ¢ is defined by its natural extension 8: 2‘2 ——>2‘2

as .
ORS = 8Q(RIQ(S) . (3.5)

Let a(p) denote a unary operator that renames every semantic attribute A in
the immediately following term to Ap. The natural extension 8 of g is
defined by a A-expression:

8 = Axy. <(xI(a))Vy>. (3.6)

The relation <x> over an arbitrary subset x of Q* is recursively defined as
follows;

W YxcQ, o= (=Ix1<0),

(2) ¥Yx,yc* s.t. y N(Q*L(0) ) =d,
<(x1{o))V y> (3.7)
=[(x2(0)) VyllPred(x1(g), Y)](a(l(a))<xVx><yVy>),

(3) VxcQ*, <x1(0)>=a(l(0))<x>.

iLet g and T be two morphisms in M defined as

morphism O : Rl—Sl
where Predl(“d x), ¥

( XICQ(RI), Y < Q(s1) )

Y

1
and

- 11 -
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morphism 1 : R2—8S2
where Pred,(“g(X,), ¥,)

( xzcn(RZ), Yzcg(SZ) ).
The composite morphism tg is defined as
(10) (R1) (S2) = (TQ)Q(RLIQ(S2),

where 1(to) is defined to be 7(1) I{g). Independently from the above
definition, we define the composition of the natural extensions 8 and ¢ as

2°8 = Axy. [(x1(1) LO)) V ylo<a ( L{o) ) (x02) (BQy) . (3.8)
Then the following theorem holds. '

Theorem 3.1
For any o, T in M, it holds that

10 = 2-8. _ (3.9)

proof
Since it holds that

XY = <xUTNV D
and
8y = <(QUo))Vy>,
the following equalities hold;
a7 (o)) (2xQ) (69y)
=p4< (x2 (1) 2(0)) V (21 (0))><(QL (902 V y>
=<(x2(1)2(0)) VQL()IVy>.
Hence, the theorem is proved as follows;
(2-8)xy
=[(x71(t)1(0)) Vyltda(l (o)) (TxQ) (3Qy)
=[(x2(T)L(0))V yl<(xZ(T)LZ(0)) V (QU () Vy>
=<xL(D 1)) Vy>
=<(x7(1o))V y>
~
=TOXY .
. “ Q' _Q*
Now we extend the definition of a labeling morphism "¢ as "o : 2 —2" .
Fram the fact that 1(10}=l(1)l1(0), it should be defined as
“o(xp) = x1(0)p for any subset x of Q* and any p in L*(¥). (3.10)

Qr

The identity morphism I in 2" is defined as

T = Axy. <xVy>. : (3.11)

- 12 -



116

For a morphism g defined by (3.4), we define its reverse o as follows;

morphism g : 55— R_ .
where Pred(X, "o (Y)). (3.12)
A R
It should be noticed that g ‘@=1 does not always hold. 1In fact, it holds
if and only if
(1) Yxe<x, 3ye <y Pred(x, y)=true
and

2) ¥x, x'e<o, Vye<n
( Pred(x, y) A Pred(x', y) )2 ( x=x").

Let (1 / 1,01 /Z ces Z /Z ) be a unary operator that renames every
semantxc a%trlgute Apl i tgie umnedlately following term to Ppl
g and T be same as before. The conjunction Aot of 0 and t is defxnea as

Aot =Ast
= Axy. [(xZ(AgT))Vy] ,
N (1 (AaT) /1 (0)) Bxy) (L (AoT) /L (1)) (Rxy), (3.13)
while the disjunction Vot .is defined as
Vot =vat
= Axy. [(xl (Vo)) Vyl v
V (2 (Vot) /2 (0)) (Bxy) (L (Vo1) /L (1)) (xy) . (3.14)
Here we also extend the definition of a restriction operator [Pred{(X)] as
[Pred(X)] = Ax. [x][Pred(X)1l<xVx. {3.15)
Example 3.1

For a database with a single relation
R(/name/, /parent/, /birth date/, /sex/),

we can define the following morphisms, where w(o) denotes the English word
such that "of w(g)" corresponds to L(g).

(1) w(ogl) = 'parent', ‘ wlgl™) = ‘chila!

morphism ¢l : R—R
where “ol(/name/)=/parent/.

~{2) w(g2) = 'father'

morphism ¢2 : R—R
where ("02(/name/)=/parent/) N ("02(/sex/)="male’).

(3) w(o3) = 'mother’

- 13 ~
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morpaism 03 3 R—R
where ("o3 (/name/)=/paren§/) A ("3 (/sex/)="'female’}.

The morphisms 02 and g3 can be defined by o1, i.e.,
82 = [/sex/l (0l)="male']31,
83 = [/sex/l(0l)="female']31.

On the other hand, it holds that
81 =Vva233.

With gl and ol , we can define various English words as composition of these
morphisms. .

(4) w(oc4) = 'son’'
84 = [/sex/l (o1l )='male'}31 .
(5) w(g5) = 'daughter’
85 = [/sex/L(0l7)='female']31 .
(6) w(o6) = 'brother*
86 = I/sex/l(017)1(ol)="male'] (81 781).

If a boy is not considered as a brother of himself, then 06 is
expressed as follows, where Aiff(R)(S) denotes set difference
of two relations with a same attribute set.

86 = Axy.diff [/sex/L(ol7)1(0l)='male'] (81 8l)xy Ixy
(7) w(c7) = 'grandfather’
87 = [/sex/l(cl)l(0l)="male'}8181.

These examples give answers to the third questions in section 2.2.

Example 3.2

Suppose we have the following two relations:
Rl(/project/, /staff/, /budget/)
R2(/title/, /author/, /journal/)

We can define the following morphism:
w (o) = ‘document’, w(o') = 'project’

morphism ¢ : R2—R1
where g (/author/)=/staff/.

In this database, the composite morphism 00 or 0 o is nonsense. However,
we do not prohibit the use of these composite morphisms since it is not
harmful to formally define these. For example, 88{/title/}{/project/} is
defined as follows from the definition of morphisms and their interpretation.

- 14 -
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88{/title/}{ /project/}
= /title/l (0)Ll (0), /project/>
=[/staff/1=/author/1}</staff/l, /project/>< /authb;:/ 1, /££t£ﬂ '(o )>
= [/staff/1==/author/]_.] ([/staff/1l, /project/IR1)
([/staff/2=/author/2)< /author/1, /staff/2></author/2, /title/>)
=[/staff/1=/author/1] ([/staff/l, /project/IRl)
([/staff/2=/author/2] ([/author/1l, /staff/2]R1R2)
({7author/2, /title/IR2)).

Since a cartesian product R1R2 appears at the end of the second line of the
last transformation and no interrelational restriction is specified between
Rl and R2, the /title/ and the /project/ in 88{/title/}{ /project/} do not
have any significant relationship between themselves.

The composition 10 is meaningless iff the codomain relation of 0 is equal to
the domain relation of T.

Example 3.3

In the following database, there are subordinate relationships between
attributes, i.e., drivers and secretaries are also employees.

Rl (/employee/, /salary/, /address/)
R2(/driver/, /license no./)

.

R3(/secretary/, /typing speed/)
/employee/

/driver/ /secretary/
These subordinate relationships are also represented by morphisms below.

ol morphism 0l : R2—Rl
where ~0l(/driver/)=/employee/.

02 morphism 02 :.R3— Rl
where 02 (/secretary/)=/employee/.

We will return to these subordinate relationships afterwards in section 7.
4. INFORMATION SPACE MODEL

4.1. Elementary Morphism _
We say a morphism O is elementary if it is defined in the following form;

morphism G : R—*S
where “6(n)=B, (4.1)

- 15 -
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where A and B are elements of Q(R) and Q(S) respectively. In most of the
applications, the most general form of morphism definitions may be as
- follows; )

morphism O : ‘R—+§
= = A A
where ( U(Xl) Yl) Predl(AO (Xz)) Predz(Yz). (4.2)
( X, €Q(R), Y, CQ(S), |x1|=lwll ).
For such morphisms, the following theorem holds.

Theorem 4.1
Any morphism with the form
morphism ¢ : R—*S L
Kk .
A, Com=B)A prea) (o ) A pred, (¥) (4.3)
(AiEQ(R), nien(s), XcQ(R), Y<(s) )

can be defined using elementar& morphisms.

proof
Let 6. denote an elementary morphism defined as

where

i

morphism Gi : R—=*S

where Ui(Ai)=Bi. ) (4.4)
Then it holds that ) )

8 = Ipred, ('t (x))11Pred, (1)1%, : (4.5)
where : ' .

k
t=A_, 8- (4.6)

This theorem indicates that only a set of elementary morphisms is sufficient
to describe synthetic interrelational relationships in an object database.

A set of elementary morphisms from which any morphism in M can be derived

is denoted by Mo. '

For a given set R of relations, a set M of morphisms is said to be sufficient
if any synthetic interrelational relationships in R can be represented by
elements of this set. A pair (R, M) is called an information space schema

if M is sufficient with respect to R. 1In most of the applications, a schema
(R, M) has an equivalent schema (R, M), where M is a set of elementary
morphisms. The schema (R, M) is called a normal form schema of (R, M). It
should be noticed that the number of elementary morphisms is always finite.
Therefore, we can always define information space schema with finite
description.

4.2. World and View Point )
For each p in L* (Mo) , the set Qp forms a world of information labeled with p.

- 16 -
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We denote this world by Wp. Let fo be defined as
f = Ax. Bx. : : , (4.7)

The morphism f is interpreted as a view point shifter that moves the view
point from the world Wl{o)p to W. The world W is especially called a base
world.

Example 4.1
I= (R' Mo)
R = {r1, R2}

Rl(/project/,/budget/, /manager/,/employee/, /salary/, /department/ v
/location/, /subproject/)

R2(/report no./,/title/,/author/, /journal/, /key word/ )

¥ = {01, 01~, 02, 027, 03, G637} .

ol w(ol) = ‘project’, w(ol) = *document’
morphism 01 : R1— R2
where *0l(/employee/)=/author/

02 w(o2) = 'manager’, w(GZ-) = 'subordinate’

morphism 02 : R1—Rl
where 32 (/employee/)=/manager/

03 w(o3) = 'subproject"; w(cf) = ‘superproject"
morphism ¢3 : R1— Rl
where “g3(/project/)=/subproject/

The diagramatic representation of this schema is shown in Fig.8. In Fig.9,
we show the pictorial representation of the relationships among worlds. An
eye in Fig.9 indicates the view point,

4.3. Formal Description of an Information Subspace

By semantic subspace, we mean a relation over a subset X of semantic attributes
that satisfies the condition Pred(Y), where Y is also a subset of semantic
attributes. Let this subspace be named W. Then ¥ is defined as

W= [x][Pred(¥}]<xVy>. (4.8)
We formally describe W as

S-subspace W
X

over
where Pred(Y). ) (4.9)
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Fig. 8. Diagramatic representation of
the schema in example 4.1.

fo3~ fa3
f 2" for
- Rl:manager:superproject R2:document:superproject
£ g2 Rl:superproject g f o1
,f - Vxew Point
R

‘ RL: manager

- £
y agl

Rl:subproject f

o1

£ 03f £ o3

It is assumed that Rl is in a focus. )
Meanigless composition of morphisms is neglected.

Fig. 9. Pictorial representation of the relatloshlps among
worlds.
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Let ¥, and &, be a semantic subspace. Then the intersection of these
relations is equal to a relation ¥ defined as -

AR AT A ,
= N [X,1(Pred, (¥,)1<x V¥ >) ([X,] [Pred,(¥,) L<x2U ¥,)
= 1xlf\ x21 [Predl (Yl) A Predz(Yz) ]<x1U YlU X, yz>.

Therefore W is also a semantic subspace described as

S-space 14
over . xlf\ x2

' A . 4.
where Predl(Yl) Pred2 (Yz) (4.10)

However, the union of two semantic subspaces can not be described as (4.9).
Hence, W]_U Wz is not a semantic subspace unless one of the followings holds;

(1) W2 W,
) VZD er
(3) X1= xzt

(4) Pred:L (Yl) = Pted2 (Yz) .

We define an information subspace as follows;
(1) a semantic subspace is an information subspé.ce,
(2) if Wl and Wz are information subspaces then WlV W2 is an information
subspace.
(3) if Wy and W, are information subspaces then Wlf\ Wz is an information
subspace.
(4) only those obtained by finite applications of the above rules are

information subspaces.

This definition of an information subspace is a very natural formal definition
of a meaningful subspace of information mentioned in section 2,2. The above
observation indicates that any information subspace can be defined as a union
of finite number of semantic subspaces in such a way as follows;

I-subspace W
where W gUisI Wi' . (4.11)

for every i€1I,
S-subspace Wi'

over X 5
where Pred:L (Yi) . (4.12)
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For example, in a database in example 3,1, the information about the
antecedents of J. Smith and that about the descendants of R. King forms the
information subspace W.described below;

I-subspace W

where W=V,
S-subspace ”l
over - /name/(L(0,))*, /birth date/(l(g,))*,
. /sex/(L(a )
where /name/ = 'J. Smith',
S-subspace W2 » |
over /name/(1(s,"1)*, /birth date/(L(s,"))*,
’ /sex/ (1 (o, M*
where - /name/ = 'R. King’',

where AL* denotes a set of all the semantic attributes Ap such that p is a
list of finitely iterated .

This facility to define information subspaces enhances the capability of the
database management system in access control by query modifications proposed
in [ASTR76] [CHAM76]. This problem as well as other applications of this
facility will be reported elsewhere.

5. RECURSIVE MORPHISM AND DIRECT SUM DECOMPOSITION

In this section, we further investigate semantic structures induced by
recursive morphisms. We restrict our discussion to such a case with only
one first normal form relation. Since this section deals only with the
decomposition of a relation with a recursive morphism and a recursive
morphism is defined within a single relation, the following result is also
applicable to the cases with more than one relations.

Let R be an object first normal form relation. A recursive attribute is
defined if there exists two attributes A and B in the attribute set Q(R),
such that .

(1) the domains of these two attributes Dom(aA) and Dom(B) intersect with
each other,

(2) we can assume for any x€ Dom(A) x is also a member of Dom(B) without
any contradiction and vice versa,
(3) either of the following two MVDs holds;

éﬁnl [ 92 B,
B+—Q | 2, A,
where {A}, (B}, Ql, 92 are partition of Q(R).
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A pair of these attributes A and B is called a recursive attribute pair.
Suppose that A and B is a recursive attribute pair satisfying A++Q, | Q, B,
where {2}, {B}, 2., Q. fora a partition of Q(R). Then B is called a reciirsive
attribute, and A a superordinate attribute. We introduce a new attribute B
correspondlng to the antonym of B. The superordinate attribute of B is
denoted by B™.

For example, /name/ and /parent/ form a recursive attribute pair in example
3.1. Since it holds that .

/namq/++/birthidate//sex/ [ /parent/
but that
/parent/ -+ /name//birth date//sex/,

/parent/ is a recurslve attribute. We can introduce /child/ as an antonym
of /parent/. X

Suppose that there exists no such subset Q' of Q that satisfies an MYD
¢+—+Q* in Q,

where ¢ denotes an empty set. If there exists one, then we can apply the
following result to Q' and Q(R)-Q' independently because R is a Cartesian
product of these in such a case.

Suppose that there exists h recursive attribﬁtes Bi (1<i<h) ., Let Q° denote
° = v a s
a° = QV(V, ..., {8,, 8,7 B .
We call the following condition an S-condition;
o l1sisn}> {8} in (8%, B, | 1cicn}.
Suppose that a set of h recursive attrzbutes {B I 1<1<h} in Q satisfies s-

condition. Let Q% denote Q°-(V .. {B 2}y, and Q*, ; be a mlnxmal subset Q°
s . 1%i%h
including B, such that

{8,°} =~2' in 2"
Let Q be deflned as »
9 =a" Vi (_1<1<h ),
% = (Vg )
Then Q° is represented as a direct sum of Qi ( 0%ish ).
Theorem 5.1
4 g ° =
Q Qo ® Ql ® ... ® szh. (5.1}
This means that IQ !OSiSh} is a partition of §1°, Fig.l1l0 shows an example
relation with 2 reCursive attributes and its direct sum decomposition.

We can define a recursive morphism 0i for each recursive attribute pair (Ai.Bi)
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attribute set :
Q‘= {/person/,/project/,/secticn[,/departmént/,/company/,/subsidiaty/,
/location/,/subptojéct/,/subproject-name/}

We assume that a project is called by different names under different
superproiacts.

recursive attributes :
Al'= /subsidiary/
A2 = /subproject/
h=2
antonym :
Ala = /parent company/
Aza = /superproject/

superordinate attributes :

o>
(]

1 /company/
5 /project/

»
]

Qe = Q\){/parent company/, /superproject/}
Q =Q

S-condition : L
{/company/, /project/} +> {/subsidiary/} | {/subproject/}
in {/company/,/project/,/subsidiary/,/subproject/}

direct sum decomposition :

Ql : {/company/} +*+ {/subsidiary/} in ot

Ql = {/subsidiary/, /parent company/}

0

{/project/} **{/subproject/,/subproject-name/} in Q+

92 = {/subproject/,/superproject/,/subproject-name/}

.Q :HQO = Q° - Ql - 92

{/person/,/project/,/section/,/department/,/company/,/location/}

Fig. 10. Direct sum decomposition of a relation with
two recursive attributes.
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as follows, where Bi is assumed to be a recursive attribute.

morphism Ui : R—R . ‘

where Ail (oi) = B,. (5.2)
It is recommended by various reports that the information about a recursive
pair (A,, Bi) should be separated from the rest of R. This is done by
decomposing <Q°> into {<2.>] 0O<igh}. If some Q. has a set of recursive
attribute pairs satisfying S-condition then Q. is further decomposed by the

direct sum decomposition method mentioned abox’ie. The original relation <>
is related to {<Qi>} by the following relation;

> = @A i<, B,%B 20>, (5.3)

6. DESIGN OF AN INFORMATION SPACE MODEL

Suppose that set R of first normal form relations are given, and that, for
any two different relations R and S in R, the attribute sets of these are
mutually disjoint. This condition is always satisfiable by proper renaming
of attributes. ’

The procedure for the design of an information space schema for R is

summarized below.

(1) V:HReRR ( the base world ). »

(2) For each R in R, find out a set of recursive attributes fBil 1<i<n}
satisfying S-condition and decompose R by the direct sum decomposition
method. For each componentof the decomposition of R, apply this step
recursively until all components-can not be further decomposed.

Define a set P of recursive morphisms each of which corresponds to
some recursive attribute found by this step,

(3) Find out other elementary morphisms in R, Let E denote a set of them.
Let MO be the union of P and E. A pair @, Mo) is the designed
information space schema.,

After the third step, we can apply our 4NFP D-tree schema theory [TANA79] to

decompose each first normal form relation in R into the fourth normal form

relations. D-tree schema theory gives us the clear description about

analytic interrelational relationships among the fourth normal form
relations obtained by the decomposition.
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7. QUERY LANGUAGE AND VOCABULARIES

Queries using semantic attributes can be described in the following form;

select X
where  Pred(Y),

where X and Y denotes subsets of Q*. The execution of this query corresponds
to the evaluation of

[X] [Pred(¥) }<xV¥> .
The relation <XV¥> can be evaluated following the definition in section 3.2.

However, queries using semantic attributes are not sufficient to make them
easy to understand. :

Consider the database in Fig.2 (a). This has two relations below;
Rl{/novel 1/, /fauthor/)
R2(/character/, "/novel 2/}.

In this database, there are two morphisms g and ¢ defined as

morrhism ¢ : Rl1—R2
where ~0(/novel 1/) = /novel 2/.

In this case, it is very difficult to find out a proper adjective phrase for

1{g). To solve this problem, we define vocabularies used in queries of this
database with attribute names and morphisms. This is done as follows;

author ::= Jauthor/1{c),
novel ::= /novel 1/1(c),
character ::= /character/.

Queries are written with these vocabularies. They are translated into the
right hand sides of definitions by a query translator,

However, the definition of a word 'novel'! as aboye may lead to wrong
evaluation. Consider a query:

select novel, character.
This is evaluated as

<novel, character>

=¢/novel 1/1(g), /character/>

=[/novel 1/1(c), /character/][/novel 1/7 (c)=/novel 2/}
a(z(0))</novel 1/></novel 2/, /character/>

=[/novel 1/1 (o), /character/}1/novel 1/7(g)=/novel 2/]
a(z (o)) I/novel 1/1R1 R2,

This is not equal to the desired result R2. Same is true with respect to the
definition:

novel ::= /novel 2/.

- 24 -
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This problem occurs if two attributes A in R and B in S are related and either
of <A> or <B> is a subset of the other. This is solved by considering a new
relation RO that is a unary relation U<A><B>. Then the new information space
schema of this database becomes as follows;

R = {rO, R1, R2}

RO (/novel/) = Ul/novel 1/1R1l [/novel 2/1R2
Rl{/novel 1/, /author/)
R2(/character/, /novel 2/},
M, = {o1, a2}
morphism Ol : RL— RO

where “gi(/novel 1/) = /novel/
morphism 02 : R2—*RO '
where ~g2(/novel 2/) = /novel/,

The vocabularies are defined as

author ::= /authox/l (01),

novel ::= /novel/,

character ::= /character/L(02).
The query is evaluated as

<novel, character>

=</novel/, /character/l(02)

=[/novel/, /character/L(02)}[/novel 2/1 {g2)=/novel/]
a(l(02))</novel 2/, /character/>RO
=a(l(02))</novel 2/, /character/>

= (l(g2))R2. '

Example 7.1
Consider the database with subordinate relationships between attributes shown
in example 3.3. Since it holds that

</employee/> 3 </driver/>,
and .
</employee/> D</secretary/>,

we can define the vocabularies of this database as follows;
employee ::= /employee/,
salary ::= /salary/,
address ::= /address/,
driver ::= /driver/l(cl),

license no. ::= /licence no./l{ol),
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secretary ::;= /secretary/l (02),
‘typing speed ::= /typing speed/l (02).

Example 7.2

The final example is a case with recursive morphisms shown in example 3.1.
The vocabularies of this database are as follows;

name ::= /name/

parent ::= /parent/

birth date ::= /birth date/

sex ::= /sex/

father ::= /name/Z (02)

mother ::= /name/l(03)

child ::= /name/7 (0l )

son ::= /name/l(04)

daughter ::= /name/l(05)
grandparent ::= /parent/l (01)
grandfather ::= /name/l(02)1(01)
grandmother ::= /name/l(03)1(01)

descendant ::= /name/(Z(OI-))*'
antecedent ::= /name/(l(01))*

of parent ::= 1(01)
of father ::= 1(02)
of mother ::= 1(03)
of child ::= 1 (017)

As shown above, the vocabularies of a database consist of the noun
definition and adjective definition. The detail formalization of vocabularies
is reported elsewhere.

8. CONCLUDING REMARKS

While the relational model has been an infological framework of database
theories, the information space model in this paper has been proposed as an
infosemantic framework of database theories. Various semantic problems need
théoretical basis for semantics, especially interrelational semantics. ' The
- idea of this model is very simple, i.e., a pair of R and M_. The model is
sufficient to solve various semantic problems shown in secgion 2.2.

The information space model should not be confused with the studies of
functional programming in data bases [BUNE79] [SHIP79]. Their main concern
is the query program manipulating information. The information space model
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concerns the description of infosemantic structures of a schema as well as
the improvement of gquery languages. While our model can cope with query
programming problems as shown in section 7, recent studies on functional
query language can not cope with the general description of information
structures. Especially, they can not describe meaningful subspaces of
information.

The use of a dictionary that defines nouns and adjectives from attribute
names and morphisms may be a new approach to database semantics. This
approach is enabled by the finiteness of the definition of an information
space schema. We call this approach a denotational semantic approach to
database semantics.
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