goooboooogn
0 3960 19800 131-169

Interactive Debugging
for

Functional Recursive Programming

by
Morio Nagata
Dept. of Administration Engineering
Faculty of Engineering, Keio University

3-14-1 Hiyoshi, Yokohama 223, JAPAN

ABSTRACT

This paper presents a method for constructing reliable recursive programs
written in a functional style and an interactive support system based on
that method. This approach accepts the specifications of data types and
their properties. Whenever a fragment of a recursive program is given, its
properties of logical relations and data types are investigated. Using
automatic theorem proving techniques, this method indicates conditions
which are necessary for the intended program. The method is also concerned

with the termination of functional recursive programs.

131

Page 2

132

1. INTRODUCTION

From theoretical and practical points of view, the functional
programming style and recursive programming techniques are useful concepts
in computer science. McCarthy's Lisp [McC62], Landin's Iswim [LAN66] and
Backus's FP system [BAC78] are examples of functional programming
languages; above all, Lisp is widely implemented throughout the world. In
recent years, in order to overcome the difficulties of program writing,
there have been many arguments on programming methodology, and as a result
of them, the functional style of programming has come to be recognized as
one of the most promising methodologies. This paper gives the first step
of our theoretical and practical studies on debugging functional recursive
programs. .

We do not aim to present a new programming languages. Our approach,
called KANSUU (Keio AdvaNced approach for SUpporting fUnctional
programming), presents notations representing programs in functional
styles. If a programmer writes his programs in the notations as specified
in KANSUU, logical errors in the programs can be detected automatically.
The termination of certain types of programs can also be confirmed
automatically. KANSUU éssumes that a program comnsists of functions which

have been already defined, control structures of recursion, McCarthy's

conditional expression (or if-then-else construct) and functional

composition.

In functional programming, to write programs is defining functions by
using the above components. KANSUU is not bound to a particular
programming language. in KANSUU, a particular programming language can be
specified by data types and primitive functions which have been built in

the language. The programmer can write reliable programs in the Lisp

Page 3

language or other functional languages by wusing this approach. An
jnteractive support system based on KANSUU, called KSR (Keio Supporf system
for functional Recursive programming), has been implemented in the Lisp
language on minicomputers PDP 11/21 and PDP 11/34 which are installed in
our department [NAG80b].
The main features of KANSUU are listed below;
(1) Using automatic theorem proving techniques, KANSUU detects not
only Athe exsitence of errors but also provides information for the
correction of inconsistent programs.
(2) It is not necessary that the user understand the . specific
terminologies and techniques of mathematical logics on which KANSUU is
founded.
(3) KRANSUU does not require that any assertion added to programs.
(4) KRANSUU can be applied to both top-down and bottom-up programming.
(5) Aﬁ automatic mechanism confirming the termination of functional
recursive pgograms is embedded in KANSUU.
(6) KANSUU is useful for the implementation of an interactive

®

programming system.

2. DETECTION OF LOGICAL ERRORS

we show an automatic method for detecting logical errors. The

correctness of this method is verified by propositional calculus [NAG80a].

2.1 Syntax of Our Approach

We shall explain some notations for illustrative éxamples of KANSUU,

133

Page 4

134

and give the syntax of an F-program and other notations in KANSUU.

~

2.1.1 The Notations for Illustrative Examples

When writing programs in a functional style, we wuse two basic
components, primitive functions and data types, of the programming
language. In KANSUU, we have to declare those components before entering
the program.

Showing list processing programs as examples, we introduce the basic
notions of 1list structures at first. The notions correspond to those of
the Lisp language in a straightforward way. However they are wuseful for
the presentation of some ideas behind our work without reference to a’

" particular programming language.

There are two basic kinds of data, atoms and 1lists. An gﬁgg, is a
string of alpha-numeric characters which should be taken as a whole and
should not be split into individual characters. A number is an atom, and
as a first step, we consider only integers as numbers. Excepting integer,
the first character of the atom must be alphabetic chracters. A, ATOM and
1980 are examples of atoms.

The fundamental structure of a list is a b-list which is defined as

follows (cf. [ALL78]):

1. An atom or € is a b-list.
2. If by and by are b-lists, then (blzbz) is a b-list.

3. The only b-lists are those givem by 1 and 2. N

Here € , the null list, may be written as (), and regarded as a special

atom. A proper b-list is a b-list of the form

Page 5

(blzbz),

where b1 and b2 are b-lists. bl and b2 in the definition of the proper

b-list (bl:bz) are called the first element and the second element of the

proper b-list respectively.

The other representation of a list, a k-list, is defined as:

1. € is a k-list of length 0.
2. If x is a k-list and y is a b-list, then (y:x) is a k-list of
length |x|+l, where |x| is the length of x.

3. The only k-lists are those given by 1 and 2.

(xlz(x2:(...:(xn:())...))) will often be abbreviated as

(xl,xz,...,xn). We sometimes use a list as a b-list.

Now, in general there are data types and primitive functions which
have already been provided in each functional programming language. We
shall describe such primitive functions which are assumed in later
discussions.

There are three primitive functions which process lists as follows.

1) hd(x) selects the first element of a b-list x.
2) t1(x) selects the second element of a b-list x.
3) cons(x,y) constructs a b-list whose first element is x and second

is y. The value is (x:y)

The following Boolean valued functions are added to primitive

functions.

4) If x is an atom, then atom(x) is true, else the value is false.

135

Page 6
5) x and y are atoms. If x equals y then eq(x,y) is true, else the

value is false.

When x is a proper b-list, coms(hd(x),tl(x)) is x. In addition to

1)-5), Boolean valued functions V(or), A(and), not) are used.

At first wé must declare data types provided by the language. For

example, it is assumed that
Boolean, integer, string

are declared. We assume that Boolean values, integers and character
strings are atoms. By the difinition of a b-list, an atom is an element of
the set of b-list and the atom may be an element constructing the b—listf
This hierarchical relationship between atom and list is represented as
'atom<list' in KANSUU.

Primitive functions on the data should be listed next. We may add
qonditions which we assume to hold when evaluating fhe function. For
example, we must assume that hd and tl operate only on lists that are not
atoms. The value is regarded as undefined when hd is operated on an atom.
In this case, “Jatom is one of the conditions which should bold for the
arguments of hd. We call such a condition a guard grédicate of the

function (cf. Dijkstra's guarded command [DIJ76]).

2.1.2 Syntax of F-program and Specification-

In this section, all symbols, i.e. constants, variables, function and
predicate symbols are specified by a particular programming language and

the user's program.

Page 7

We shall list the syntax of the conditional in BNF.

Lterm> ::= <variable>|<constant> [<function symbol>(<arg1ist>)1
<logical term> ‘
<arg> ::= <term> |<proposition>
<arglist> ::= <argd>|<arglist>,<arg>
<logical term> ::= <logical variable>|<Boolean constant>!
<predicate symbol>(<arglist>)
<expression> ::i= <term>!<the conditional>
<prime proposition> ::= <logical term>| (<proposition>)
<factor proposition> ::= <prime proposition>|7<prime proposition>
<term proposition> ::= <factor proposition>|
<term proposition>/\{factor proposition>
<proposition> ::= <term proposition>l
<proposition>V<term proposition>
<fragment> ::= <kexpression> -> <expression>>
<fragment sequence> ::= <fragment>;<fragment>\
<fragment sequence>;<fragment>

<the conditional> ::= [<fragment sequence>]]

The left-hand side of '->' of a fragment is called the condition part,
the right-hand side 1is called the expression part of the fragment. The
condition part is usually a proposition. A fragment sometimes has its
value. If the expression part is a proposition too, the fragment

<C->E ? is called a propositional fragment and the value is TICVE.
[\;

The value of the conditional in a valuation is the value of the

expression part of a fragment whose - condition part 1is true. If an

expression, i.e. the conditional or term, is given, the level of the

137

: Page 8
expression on this expression is defined as 0. That is, the level of given
expression on the expression itself is 0. If the conditional of level n on

an expression has the form

I<C, => E; >;...;< ¢, —>E, >1,

1 1

then each expression of Cl""’Cm’Ei""’Em is of level n+l.
When the conditional is given and there exists an expression whose
level 1is more than 1, we say that it has a nesting structure. McCarthy's

conditional expression,

[Cl -> E -> Ek] s

l;...;Ck
is equivalent to the conditional,

[<cy ->E >

- < jClACZ -> E, >;

2

.
.

<TCNTICA. . NIC_AC, => E > D
Now we shall list the syntax of an F-program.

<guard term> ::= <predicate symbol>(<arg list>)
<guard primary> ::= <guard term>|(<guard predicate>)
<guard factor> ::= <guard primary> TKguard primary>
<guard term predicate> ::= <guard factor>|
<guard term predicate><guard factor>
<guard predicates ::= <guard term predicate>| :
<guard predicate’V<guard term predicate>

<guard predicate list> ::= <guard predicate>|

<guard predicate list>,<guard predicate>

Page 9
138
<spec arg> ::= <variable>.<data type>
<spec arg list> ::= <spec arg>| <spec arg list>,<spec arg>
<specification part> ::= <function symbol>(<spec arg list>) =>
<data type>;]
<function symbol>(<spec arg list>) =>
<data type>;<guard predicate list>
<specification> ::= {<specification part>}

<F-program> ::= {<specification part> <= <the conditional>}

The F-program representing a function, and its definition is
represented in the conditional. The specification specifies the domain and
range of the function. Examples of the specifications of our discussion

are as follows:

Data types: { ((Boolean,integer,string) = atom) < list }

Primitive functions: {hd(x.list) => list; "atom(x)},

{t1(x.list) => list; "latom(x)},

{cons(x.list,y.list) => list }

{ atom(x.list) => Boolean},

{eq(x.atom,y.atom) => Boolean }

An example of the F~program is as follows:

{equal(x.list,y.list) => Boolean;

<= [<atom(x)Natom(y) -> eq(x,y)>;
<atom(x)\latom(y) -> false>;
<qatom(x)A\atom(y) -> false>; (2.1)
<Jatom(x)ATJatom(y)

-> equal(hd(x),hd(y))Aequal(tl(x),t1(y))> D}

Page 10

140

We introduce the rule for the use of symbols in later sections.

Boolean constant is true or false,. Data types are represented by strings

beginning with d. Constants are represented by alpha-numeric strings
beginning with a, b or c. Variables are strings beginning with x, y or z,
and logical variables are represented by strings beginning with s, t or u.
Function symbols are strings beginning with f, g or h, and predicate

symbols are strings beginning with p, q or r.

2.2 Algorithms for Detecting Logical Errors

In our discussion, the following properties of fragments in the

conditional should be verified.

(1) Each condition part is not identical to true or false.

(2) Disjunction of all condition parts is always true.

(Exhaustiveness)

(3) Conjunction of condition parts of distinct fragments are always

false. (Exclusiveness)

Algorithms for detecting logical errors of F-programs, which are based

on these properties, will be described

2.2.1 Automatic Theorem Proving and Trivial Fragment

We shall use a formal system which is a subset of Gentzen's LK
[GEN34]. The formal system is useful for describing above properties and
verifying our algorithms. In this paper, we use the notations of the
formal system which are described by Kleeme [KLE52].

In KANSUU, a sequent is used as an internal representation for

detectiing logical errors. The sequent is the same

that is, a sequent is a formal expression of the form

A ,...,AQ —)Bl,...,B

1 m

where 1,m>0 and Al""’Aﬁ’BJ""’Bm are propositions.
is the antecedent, and Bl""’Bm the succedent of the

the sequent
Al’...,A’q’ -> Bl,...,B

m

has the same interpretation as

AlA...AAz implies BJV&..VBm.

Page

11

as Gentzen's sequent,

The part Al""’AZ

sequent. When 1,m>1,

The interpretation extends to the cases where 1=0 or m=0 by interpreting

Aiﬁu..AAQ for 1=0 (the 'empty conjunction') as true

and B \/...VB_ for m=0
1 m

(the 'empty disjunction') as false. Note that the sequent is utilized only

when KANSUU detects logical errors and confirms

the termination

of

F-programs, and '-»' of the sequent is different from '->' of the fragment.

Logical axioms of KANSUU are:

and

I"l,false,T' > A,

where A is any proposition, and Greek capitals represent zero or more

propositions.

Rulés of inference of KANSUU, which are included in LK,

are

as

141

Page 12
142

follows:

Rules of Inference:

Let P andyQ be arbitrary propositions, and Greek capitals be zero or

more propositions, then logical rules of inference are the following.

(1eft-A) Ty:2,0,T5 > 8
rl,PAQ,FZ > A

I - Al,PAQ,AZ
(left-V) Ty®yT, > A T,,0,T, > 4

Tl,PVQ,I'2 > A

(right-V) I > 4,P,0.4,
I~ 5,,5V0,h,

(left-T) ry,fy = 2,8

P, T » Al,Az
r » Al,jP,A2

(right-1)

A sequent is provable if it is an axiom or the result of applying a
rule of inference to sequents which are already known to be provable. From

the computer science point of view, a provable sequent means a statement

Page 13
which is capable of being proved by an automatic theorem prover which works
in accordance with the formal system.

If a sequent to be proved is given, the above procedure is applied in

KANSUU. When a complete proof tree can be constructed, the sequent is a

provable seduent. Every node of the tree 1is a sequent. A node is
transformed into 1its son or sons by applying one of rules of inference
which is relevant. Every terminal node of the complete proof tree
satisfies the 1logical axiom. When the sequent is not a provable sequent,
an incomplete proof tree 1is constructed. In this tree, there exist
terminal nodes which are not provable sequents and have no logical

connectives. We call these nodes non-provable terminal nodes of the tree.
Concerning property (1), we define a trivial fragment as follows.

Definition 2.1: Trivial Fragment
When a condition part of a fragment has a value which is either always true

or always false, the fragment is called a trivial fragment.

The following algorithm tests whether a fragment, < C ->E >, is a

trivial fragment.

Algorithm 2.1:

Try to prove two sequents

C -» and - C,

1 1

where 'C »> and + C' are equivalent to 'C » false' and 'true » C'

respectively. If one of them is a provable sequent, then return "It is a

trivial fragment.", else return "It is not a trivial fragment!".

Page 14

144

Example 2.1:

A fragment
< atom(x)\jatom(x) -> false >

is a trivial fragment.

2.2.2 Exhaustiveness and Exclusiveness

Property (2) and (3) will be shown by the notions of propositional
calculus in this section. We shall describe algorithms for detecting

logical errors by using these properties.

Definition 2.2: Exhaustiveness
The condition parts of the conditional E<Cl__> E1>;...;<Cn-—> En?ﬂ (n>2)

are exhaustive, iff

C eos i .
(]ycﬁv VCIl is always true

Definition 2.3: Exclusiveness
The condition parts of the conditional are exclusive, iff

for every i#j,
Ci/\Cj are always false,
If the conditional
(< cl-i E;>5..03¢C_->E_ >1

is given, the following algorithm tests whether the condition parts are

exclusive.

Page 15

145

Algorithm 2.2:

Try to prove sequents
C:_L(\Cj >

for every i#j,1<i,j<n. If all sequents are provable, then return

"exclusive!", else return "Ci and Cj are not exclusive!".

On the other hand, the following algorithm tests whether the condition

parts are exhaustive.

Algorithm 2.3:

Try to prove a sequent
~ CVC V.. .Vcn.

If it is a provable sequent, return 'exhaustive!", ~else apply Algorithm

2.2.

If the condition parts are found exclusive but mnot exhaustive, the

following algorithm suggests a proposition which may be lacking.

Algorithm 2.4:

If a sequent

A LA ,...,A 5 A

1’72 K k+1""’An

is the terminal node of the incomplete proof tree of
> Cl\/CZ\/. . .VCn,

and does not satisfy the 1logical axiom, then propose the following

proposition as the missing condition part.

Page 16

146

All\. . .AAkAmk +1/\’IA A - ./\‘mn,

k+2

where Ai is a logical term.

Example 2.2:

Consider the following condition parts of three fragments.

C : atom(x)\atom(y)
C, : atom(x)A\Jatom(y)

Cy: Jatom(x)A\Jatom(y)

In this case,
c \Vc\Vce
> 6 veye,
is not a provable sequent, and the sequent
atom(y) » atom(x),
is not provable in the proof. We can find that a fragment whose condition
is
TNatom(x)\atom(y)

should be added.

2.3 Verification of Algorithms

In this section, we shall verify the algorithms which have been shown
in 2.2. The ’notions, i.e. t:ivial fragments, exclusiveness and
exhaustiyeness have been defined by wusing true dr false, while the
algorithms, have been presented by using 'provable sequents'. Thus it is

necessary to verify that the algorithms based on automatic theorem proving

Page 17
techniques assure property (1), (2) and (3). Especially, algorithm 2.4 is
not so trivial that it is reasonable to demand to verify that the proposed

proposition is an adequate one.

2.3.1 Verification of Algorithms for Detecting Errors

Algorithms 2.1, 2.2 and 2.3 will be verified. These algorithms seem
to be trivial, but it seems justified to show explicitly that each notion
of the fragment or the conditional can be assured by each algorithm which
is executed on a computer.

In order to verify them, we use 'validity' of logics. The notion is

defined as follows. If a sequent

is given, and

truth value of T < truth value of ,

always holds, then the sequent 1is called a valid sequent, where
false<false, false<true and true<true.

It is well known that Gentzen's LK is complete, i.e.

every valid sequent is provable.

Since our formal system is a subset of LK, its completeness can be easily

shown in the same way as the proof of the completeness of LK,

Now, it is known that LK is plausible, i.e.,

147

Page 18

148

every provable sequent is valid.

Our formal system is plausible.-
By the completeness, plausibility and the definition of the trivial

fragment, the following theorem can be easily shown.

Theorem 2.1:

C is a condition part of a trivial fragment, iff

is provable.

The meaning of the theorem is described as follows. If a given
fragment 1is a trivial fragment, then KANSUU always detects that it is a
trivial fragment. Conversely, if KANSUU detects that a fragment is a

trivial fragment, then it is certainly a trivial fragment.

s

By the completeness, plausibility and the definition of exclusiveness,

we can easily obtain the following theorem which assures Algorithm 2.2.

Theorem 2.2:

Let (1<c1 => B >5..03<C => E>T (n>2) be the conditional. If the

condition parts of the conditional are exclusive, then for every i#j,
C.\C, -~
1A 3
are provable sequents, where 1<i, j<n; and vice versa.

This theorem assures that Algorithm 2.2 can detect fragments whose

condition parts are not exclusive.

Page 19
143

By the definition of exhaustiveness, we can obtain the following

theorem.

Theorem 2.3:
Let [[<Cl -> El>;...;<qn -> E,>] (n>2) be the conditional. If those

condition parts are exhaustive, then
+ C,\VC V..XNC
iV QJ v n
is a provable sequent, and vice versa.

Theorem 2.2 and Theorem 2.3 show that we have an automatic method to
decide whether the condition parts of the conditional are exhaustive and

exclusive.

2.3.2 Verification of Algorithm 2.4

Algorithm 2.4 has shown that an automatic method can provide necessary
information to make the conditional exhaustive when those condition parts
are exclusive but not exhaustive. The algorithm will be verified by the

following theorem.

Theorem 2.4:

Let [[<Cl -> El>;...;<C => E > (n>2) be the conditional, and each C,;
n n

be the conjunction whose elements are logical terms and negations of

logical terms. If those condition parts are exclusive but not

exhaustive, and, in the proof of
cVCcV..\VC
-> lV 2V V 1'1’

there exists a terminal node

150

Page 20
ALA,..., A >~ A v A
177277 1’

which is not a provable sequent(i.e. a non-provable terminal node),

then, by adding a fragment whose condition part is

C :AMNNA...AA KA A.LAA
n+1 1 2 k k+1 n

the condition parts can be made exhaustive and exclusive.

This theorem can be extended as follows.

Corollary:

Let [[<C1 -> El>;...;<C -> E >]) (n>2) be the conditional and condition
n n

parts of all fragments of the conditional be exclusive. If, in the

proof of
L
> CVCV...Nc , i
1 2 n

A ceesA A yeeesA
11’ ’1k1+ 1k +1 1n
A ,...A 5> A ,...,A2
21 2k, 2 k,+l n
A ,...,A LA seeesA
m 1l m k mk +1 mn

m m .

are non-provable terminal nodes of the incomplete proof tree, then, by

adding fragments whose condition parts are

C :A AN\ 1A .o AA
wrt 120 M 1k1+1/\ 1n

C A AopA 1A Ao \1A
o2 21" /\Zkz/\ A,

A AoAs T ATA /\.../\'lAmn

ntm m 1 m k m k +1
™ m

2 k2+l

(X X

c

respectively, where 'C.AC. - '
i]

n<i, j<n+m, the condition parts can be made exhaustive and exclusive.

are provable for every i#j,

Page 21
151

In this corollary, if there exist fragments such that

C AC >
i j

are not provable for i#j, where n<i, j<n+m, then we can make the exhaustive

condition parts of the conditional by selecting a set X such that

are provable for any C;€X and CjEX, where i#j, n<i, j<n+m.

Example 2.3:

Let
Cl: atom(x)\atom(y) and C2: atom(x)AJatom(y)
be condition parts of a given fragment. In this case, in the proof of
> CIVCZ’
the following sequents are non-provable terminal nodes.

5 atom(x)
atom(y) > atom(x)

+ atom(y),atom(x)

Therefore we have two ways of making the condition parts exclusive and
exhaustive. First, Cl’ C2, and “Jatom(x) are exclusive and exhaustive;
second, C;, C,, Tatom(x)Aatom(y) and Jatom(x)ATatom(y) are exclusive and

exhaustive. .

If an F-program satisfies all of property (1), (2) and (3), it is

called a consistent F-program.

Page 22

152

3. TEST OF THE TERMINATION OF F-PROGRAMS

We shall show the way to confirm the termination of certain types of
F-programs. The general problems of the termination and efficiency of
recursive programs would be too difficult to be implemented on a computer,
if possible at all. Therefore our method is restricted to consistent

F-programs of the particular forms.

3.1 Termination of Constructed Programs

This section will specify the types of recursive programs whose
termination can be confirmed in KANSUU. The basic idea of the algorithm
confirming the termination of programs will also be described. Algorithms
for verifying the termination ;n KANSUU enable us to implement the
interactive system confirming the termination of some restricted types of
recursive programs.

Let us assume that an F-program

{ fib(x.non-negative integer) => non-negative integer;
<= <x=0 -> 1>; (3.1)

<Xx=0) -> £ib(x-1)+£ib(x~2)> 1 }

is given by a programmer. This is a consistent F-program. However we can
find that the execution of the program can not terminate for x>1. In order
to detect such errors, we give a semi-automatic approach confirming the
termination of consistent F-programs.

Our program is regarded as the definition of a function, and, roughly
speaking, it terminates if the function is total on a set, which is given

by the data types of variabies of the F-program. 1In order to introduce our

Page 23

153

method, let us consider one of the simplest cases as an example. A

recursive F-program h with the variable x is defined by:

{h(x.type) => type' ;
<= [<p(x) -> e(x)>; (3.2)

<Tpx) => a(h(b(x)))> 1}

where e, a and b are primitive, specified or defined functions. This

program can be interpreted as

{ hn+l(x.type) => type' ;
<= [<p(x) => e(x)>;

<plx) -> a(h™(b(x)))> 1},

where ho is a totally undefined function. Now,

Dom(hk)

represents the set such that hk is defined, i.e.,

Dom(h?)

is ¢, and in this example,

Dom(hl)

is the set {x|p(x)}.

Further define

as the set given by the data type of the variable.

The programmer expects that the program terminates if any element of

Page 24

154

the set D is given as a datum, so we call D an expected set. For example,
the expected set of fib is the set of non-negative integers. When a
program with two or more variables is given, D is the Cartesian product of
expected sets which are given by data types.

Then, we conclude that, if
D=Dom(h*) = Dom(h1)UDom(n2)U. . .UDom(h™U...

holds, then the F-program terminates. By the definition of Dom, Dom(h¥)
increases (or does not decrese) throughout the computation, and k may be
regarded as the index of the proceés of the computation.

N N
3.2 Bottom Predicate and Control Variables

In order to show the termination of a given F-program, we have to
consider the structure of the expected set D. We define that (D,<) as
well-founded set which consists of a set of elements of D and where
ordering £ is defined on the elements. KANSUU uses the structure of D and
does not need the termination function. For proving the termination of the
F-program, we directly use the well-founded set (D,<) and the text of the
program.

By the definition of the well-founded set, there exist minimum

elements in the set. If, in (3.2), p is true on every minimum element of

(D,<) and false on all other elements, then termination of h is obvious.

The predicate p is called a bottom predicate. This is determined by the

operation and the relation over the domain.

Definition 3.2: Bottom Predicate

Let <D,<> be a well-founded set. A predicate p on D is the bottom

Page 25
155

predicate of an operation g iff

For any element d of D excepting all minimum elements, g(d)

immediately precedes d, and P is true for all minimum elements and it

is false on all other elements of D.

Example 3.1:

If d consists of all non-negetive integers, "<" is 'less than', then 2x.x=0

is the bottom predicate of Ax.x-1 (Fig. 3.1).

..
o o0

-1 -1 -1 -1 ~1~ -

v & \/ \V/ \;f l/ \‘3
0 1 2 3 4 5
Fig. 3.1 A bottom predicate Ax.x=0

Example 3.2:

If 1 is a set of all lists, then atom is the bottom predicate of hd.
Fig. 3.2 demonstrates that hd(b) immediately preceeds b for any proper

b-list b, here each o, represents an atom (cf. [SUM77]).

156 ' _ Page 26

((al:al):al) ((al:dz):al) ((a,:

Fig. 3.2 Structure of list

Example 3.3:

If 1 is a set of all k-lists, then null is the bottom predicate of ¢tl

(Fig. 3.3), where null(x) is true if x is €, and false otherwise.

Here

represents an arbitrary atom.

L
[»
.

LI 2 > s

.
4 .

(a:((a\zmzc))) ;

.

((e: (0)=0)) :

0

Fig. 3.3 Null and tl for k-lists

Page 27

Since an F-program may have two or more variables, we introduce the

following notions of control variables.

Definition 3.2: Control Variables

Let £ be an F-program with n (n>2) variables xl, x2, .ess X . The control
‘ n

variables of f are those variables which appear in the condition parts of

fragments of f.

In order to demonstrate the ?ole of this notion, we show the following
example. Both of these programs, frevl and frev2, reverse k-lists. The
program frev2 has two variables x and y, and the control variable is only
x. The termination of these programs will be confirmed by the same way

(see Algorithm 3.1).

Example 3.4:

Consider the following two programs, frevl and frev2, both reversing

k-lists.

{frevl(x.k=1list) => k-list;
<= [<null(x) => €>;

<7null(x) -> append(frevl(tl(x)),cons(hd(x),e)))>]}
where append appends two lists.

{frev2(x.k-list,y.k-list) => k-list;

<= [<null(x) -> y>;

<null(x) => frev2(tl(x),append(y,cons(hd(x),€))))>]}

where frev2(x,e) returns the reverse of x.

157

Page 28

158

3.3 Test of the Termination

We shall describe the algor%thm testing the termination of F-programs.
When writing recursive programs, we consider the relation of the program
and its expected sets. The execution of a recursive program depends on the
structure of expected set given by data types of its variables, therefore
the termination of the progaram should be confirmed on the basis of
properties of data types. In the following descriptions, algorithm 3.1
will assure the termination of F—proérams with one control variable, while
Algorithm 3.2 will assure the termination of F-programs with two or more
control variables.

Let an exclusive and exhaustive F-program f with a control variable x
be given. Let g(x) be the parameter of the recursive call of f, and
ql(x),...,q (x) be condition parts of non-recursive fragments of f£. We

n

assume that the expected set D and the bottom predicate p on D of the

function g are also given.

Algorithm 3.1:

Prove a sequent
p(x) > q (x)V...Vq (x).
1 n

If it is a provable sequent, then the termination is confirmed, else is not

confirmed.

The termination of two F-programs, frevl and frev2, can be be
confirmed by this algorithm.
An F-program may include composition of functions as the parameter of

the recursive call, and in such a case, the bottom predicate of the

Page 29

153

composition can be obtained as follows. Let p ,...,p be bottom predicates
1 n

of gl,...,g respectively and let the argument of the recursive call be
n

g (g (...(gl(x))...)),

n n-

then the bottom predicate of the composition function is

p xWVp (g XIW...Vp (g (...(g (x))...)).
1 2 1 n n-1 1

Thus, suppose an F-program (3.1) is given, we find that
(x=0)V((x-1)=0) - (x=0)

is not a provable sequent. The system will detect that a non-recursive

fragment whose condition part is (x-1)=0 is missing.

Therefore the programmer is let to the following corrected F-program

by a conversation with the system.

{fib(x.integer) => integer;](x<0)
<=f < x=0 -> 0 >;
< Ux=0)A(x=1) -> 1 >;
< Wx=0)ANx=1) -> £fib(x-1)+fib(x-2) >} }

When the termination of an F-program f with k (k>2) control variables
is to be confirmed in KANSUU, the following Algorithm 3.2 is applied. Let
Di be an expected set of a control variable x , and p on D be the bottom

. 1 1 1

predicate of g; (1<i<k), where g (x;) are the parameters corresponding to

x{ in the recursive calls of f respectively.

Page 30
160

Algorithm 3.2:

Prove a Sequent
\/. . .v X q X L) qvq X

where q (x),...,q (g_) are the condition parts of non-recursive fragments
1 1 n n

!

of £f. If it is a provable sequent, then the termination is confirmed, else

not confirmed.

Example 3.5:

Let us consider the F-program of equal(x,y) given by (2.1). The control
variables of this program are x and y. The bottom predicate of hd on list
is atom, and the bottom prediéate of tl is atom too. Thus we have to prove

a sequent

atom(x)V atom(y) 5 (atom(x)Aatom(y))V

(atom(x)AJatom(y) W(atom(x)Aatom(y)).

This is easily proved, therefore we can confirm the termination of (2.1).

3.4 Verification of Algorithms for the Termination

We shall define the termination of F-programs in a formal manner, and

verify Algorithms 3.1 and 3.2.

Definition 3.3: Termination of F-programs

1f
D=Dom(£")

holds for an exclusive and exhaustive F-program f with the expected set D

Page 31

161

given by the data types of the variables, then we say that f terminates for

D.
Algorithm 3.1 is verified by the following lemma.

Lemma 3.1:

Let f be an exclusive and exhaustive F-progrm with a control variable,
say x, D be its expected set, g(x) be the parameter which replaces x
in the recursive call of £ and p on D be a bottom predicate of g. It
is assumed that ql(x), cees qn(x) are condition parts of non-recursive

fragments. If the sequent
p(x) » ql(x)qu(x)V...an(x)
is provable, then f terminates for D.

In order to confirm the termination of F-programs with two or more

control variables, Lemma 3.1 is easily generalized as follows.

Theorem 3.1:

Let f be an exclusive and exhaustive F-program with control variables

X VX Di be an expected set of X gi(x_) be the argument of the
i

17°77%%

recursive calls which replaces x, and p, on D, be a bottom predicate
i i i

of g. (1<i<k). Let q (x),...,q4 (x) be condition parts of
b 171 n n

non-recursive fragments, where x

represents the arguments of q . If
J

pl(xl)v...Vpk(xk) - ql(gl)V-.A/qn(zh)

is a provable sequent, then f terminates for D, where D=D X...XD .

Page 32

162

4. AN IMPLEMENTATION OF THE SUPPORT SYSTEM

Keio Support system for functional Recursive programming (KSR) baged
on KANSUU will be presented. If knowledge on the user's intended program
has been given to KSR, the system proposes the information for making his
program consistent and terminative. Thus the userbéan write consistent and
terminative programs in cooperation with the KSR system. The detail of

this system and examples of the real convérsation records are shown in

[NAG80a,NAG80D] .

4.1 Purposes of the KSR System

KSR is not the language processor, and most of its users write
programs in a particular language. So the user of KSR gives specifications
and bottom predicates of primitive of the language at first. Next he gives
a fragment of the intended program, and the system inspects guard
predicates and examines whether the fragment is trivial or not. If some
conditions are wrong, they are indicated. KSR is provided with a simple
text editor capable of correcting a fragment.

Whenever a fragment is added, KSR examines guard predicates,
triviality and exclusiveness of the sequents. If an error occurs, the
system indicates it and accepts corrections.

When a whole F—program defining a function 1is given, the
exhaustiveness is checked. Having detected logical errors, KSR points out
how to correct them. After a consistent F-program is given, the system
examines its termination. KSR confirms the termination of the program only
when it can be assured. If the user needs to convert it into Lisp program,

the system translates it into an efficient Lisp program.

Page 33
163

The main purpose of our system is to help one to construct unerring
programs in their development process. Algorithms for problem solving are
thought out by programmers, not the computer, and KSR only assists them to
design software or to develop programs. Besides, the correctness of
programs which have been written can be verified by several automatic
verifiers [SUi75]. Especially, since KANSUU is related to our TKP [NAK79]},
TKP is a suitable tool for proving the correctness of programs written with

KSR.

4.2 Organization of KSR-1

Our system has been implemented on minicomputers PDP 11/21 (28K words,
16bits/word) and PDP 11/34 which are installed in Department of
Administration Engineering of Keio Upiversity; It has been written in the
Lisp language, and consists of two parts. The first part, called KSR-1, is
concerned in checking data types and logical errors, and the second, called
KSR-2, 1is related to the termination and conversion. There are two
monitors controlling all modules of our system, so that they enable us to
write programs interactively.

As the first and second parts are separate phases in KSR, there are
two monitors for them. We describe the first in this section, the second
in Sectign 4.3.

A man interactively uses KSR with a CRT or teletype terminal connected

to PDP 1l. An outline of the first part of KSR is shown in Fig. 4.1

164 Page 34

Translator < Monitor 1~ Editor |
R I - ¥
Function|. | Data Assumption Guard | lcondition
Checker | Type Acceptor Checker Checkex

i Checker
N/
Theorem
Prover

Fig. 4.1 An outline of KSR-1

‘‘Monitor analyzes the user's commands, and calls the requisite
routines. Our system provides twelve commands; i.e., BYE, PCH, EDIT, PFN,
SPEC, FUNC, DEF, INIT, ABORT, AINIT, FINIT and ASP. BYE causes a return to
the LISP interpreter. PCH punches some defined functions to the paper tape
(PDP 11721) or the disk device (PDP 11/34). EDIT accepts the corrections
of defined functions. SPEC specifies a function, that is, the function
name, daté types of arguments and the function, and guard predicates are
specified. DEF defines a function. ASP is provided for assumptions which
are used in Guard Checker and Data Type Checker. PFN specifies primitive
functions. INIT initializes the system by cancelling the user input.
FINIT and AINIT also initialize it by cancelling the user's F-programs and

assumptions respectively. ABORT aborts the user input which is just given.

4.3 Design of KSR-2

An outline of KSR-2, which checks the termination of F-programs and
converts them into Lisp programs, will be described. .On PDP 11/34, KSR-1

gives F-programs to its disk device, and KSR-2 accepts them from the device

Page 35

165

and accomplishes its task.

An outline of KSR-2 is shown in Fig. 4.2

\ 4 b
File Termination Pretty
: Converxtox
Managexr Checker Printer
A , A
Theoxem
Editor
Proverxr

Fig. 4.2 An outline of KSR-2

Monitor analyzes the user's commands and calls fﬁe.requisite routines.
KSR-2 provides five commands, i.e., BYE, FILE, TERM, CONV, INIT, QUIT énd
PRINT. BYE causes a return to the LISP interpreter. FILE calis File
Manager, which reads F-programs from the disk, writes Lisp programs to the
device, saves and unsaves a set of bottom predicates to the disk. TERM
causes Termination Checker which checks termination of the épecified
functiongg It accepts bottom predicates given by the user, and it provideé
Text- Editor fbr their correction. It also uses Theorem Prover as the same
"as KSR-1. When the user would like to translate the F-programs into Lisp
programs, he types CONV. PRINT prints F-programs and Lisp programs with
indentations. INIT initializes the KSR system. QUIT causes a return to
the command mode.

By the restriction of memory size of our computer, KSR-1 and KSR-2

Page 36

166

work in separate phases. File Manager treats only outputs and inputs of

N

KSR-2. Later part of this section describes on the other routines.

5. CONCLUSIONS

In order to conclude our study, we shall describe the limitations of
KSR and comparison with related work.

KANSUU has several limitations on the forms of programs. For example,
KANSUU does not accebt free variables, functional arguments and mutual
recursion. Moreover, an efficient and powerful method of semantic
description is to be desired. The method should satisfy the following
three conditions. First, it is to be powerful enough to describe semantics
of problems and the programming language. Second, a user is to be able to
easily describe them with the method. Finally, the method should be
subject .to effective procgssing on a computer. KSR is a pilot model
realizing KANSUU, and a programming system which provides interactive
facilities. In spite of using the LISP interpreter on a minicomputer, KSR
spends only an acceptable amount of time for every response to the user.
This system accepts both top-down ‘and bottom-up programming. In KSR,
semantics of a program 1is partly given as assumptionms. Since the
assumption sometimes includes pattern variables, our system has a pattern
matching facility.

Lucid [ASH76] is an excellent attempt to realize Dijkstra's discipline
[DIJ76], and the wuser of this system can verify the correctness of his
program during its development process. waever, the author believes that
it is more practical to deal with consistency and correctness separately.

If an inconsistent program is given, an automatic verifier fails to prove

Page 37

the correctness of the program. So that when the verifier fails to prove
the correctness, we cannot distinguish the two possibilities of
inconsistency and incorrectnesé. KSR can detect the inconsistency of
programs. There exist, on the other hand, many programs which are
consistent but incorrect, and KSR can detect no errors of such programs.
thus, the verifier should be used for the verification of programs which
have been checked by KSR.

Although most existing program verifiers attempts to verify only the
correctness of completed programs, some aspects of their techniques have
been utilized in our work. For example, the theorem proving techniques of
KSR are similar to the provers of the Stanford University verifier [SUZ75]
and of our TKP [NAK79]; and Lemma 3.1 has been proved in the similar way to
Burstall's structural induction [BUR69].

A verifier as a debugging tool based on Hoare's axiomatic basis and an
assertion' method has been proposed by Brand [BRA78], and it is useful for
proving the correctness of completed programs. However, the author
believes that our interactive approach is more practical in times of
developing programs.

So far as Lisp programming is concerned, the aim of Wertz's PHENARETE
system [WER79] is the same as our system. However KANSUU does not restrict
programming language, so that we can write specifications and programs in a

uniform way with KSR.

ACKNOWLEDGEMENTS

This paper is a revised version of "A Methodology for Recursive

Program Construction, Technical Report 7901, Dept. of Administration

167

Page 38
168

Engineering, Keio Univ., 1979". The author is indebted to Professors

Hidetoshi Takahashi, Toshio Nishimura, Shoji Ura and Masakazu Nakanishi for

’

this revision.

REFERENCES

fALL78] Allen, J.R.: Anatomy of LISP, McGraw-hill, N.Y., 1978

[ASH76] Ashcroft, E.A. and Wadge, W.W.: Lucid - a formal system for
writing and proving programs, SIAM J. Comput., Vol. 5, No. 3, 1976, pp.
336-354

[BAC78] Backus, J.: Can programmiﬁg be liberated from the von Neumann
style? A functional style and its algebra of programs, Commun. égﬂ,
Vol. 21, No. 8, 1978, pp. 613-641

[BRA78] Brand, D.: Path calculus in program verification, Jour. ACM,
Vol. 25, No. 4, 1978, pp. 630-651

[BUR69] Burstall, R.M.: Proving properties of programs by structural
induction, Computer J., Vol. 12, 1969, pp. 41-48

[D1J76] Dijkstra, E.W.: A Decipline of Programming, Prentice-Hall, N.J.,
1976

[GEN34] Gentzen, G.: Unterschungen wueber das logische Schliessen,

Mathematishe Zeitschrift, Vol. 39, 1934-35, pp. 176-210, 405-431

[HOA69] Hoare, A.C.: An axiomatic basis for computer programming,
Commun. ACM, Vol. 12, No. 10, 1969, pp. 576-580,583

[KLE52] Kleene, S.C.: Introduction to Metamathematics, North-Holland Pub.;
Amsterdam, 1952

[LAN66] Landin, P.J.: The next 700 programming languages, Commun. ACM,

Vol. 9, No. 3, 1966, pp. 157-164

Page 39

[McC62] McCarthy, J. et al.: LISP 1.5 Programmer's Manual, The

M.I.T. Press, Mass., 1962

[NAG80a] Nagata, M.: An Approach to Interactive Debugging for Functional

Recursive Programming, Technical Report 8003, Department of Administration

Engineering, Keio University, 1980

[NAG8Ob] Nagata, M., Akiyama, T., and Fujikake, Y.: An interactive
supporting system for functional recursive programming, Proc. IFIP
Congress 80, North-Holland, Ansterdam, 1980 (to be published)

[NAK79] Nakanishi, M., Nagata, M., and Ueda, K.: An automatic theorem
prover generating a proof in natural language, Proc. IJCAL, 1979, pp.
636-638

[SUM77] Summers,P.D.: A methodology for LISP program construction from
examples, Jour. ACM, Vol. 24, No. 1, 1977, pp. 161-175

[SUZZS] Suzuki, N.: Verifying programs by algebraic and logical reduction,

Proc. of Intern. Conf. on Reliable Software, 1975, pp. 473-481

[WER79] Wertz, H.: Automatic program debugging, Proc. of IJCAI, 1979, pp.

951-953

169

