goooboooogn
0 3960 19800 170-189

170

DURAL: an extended Prolog language

Shigeki Goto
Musashino Electrical Communication Laboratory
Nippon Telegraph'and Telephone Public Corporation
3-9-11, Midori-cho, Musashino-shi
Tokyo 180 JAPAN

ABSTRACT

Prolog is a programming language based on the predicate
calculus. Each Prolog statement takes the form of a special
logical formula, called a Horn clause; which can be
interpreted operationally as a procedure declaration.
This paper proposes a new programming language DURAL - as an
extension of the Prolog language. DURAL takes advantage of
the relative Horn clause to speed up execution of programs.
The main features of DURAL are the following:
1) The relative Horn clause represents the clause containing
executable predicates.
2) Program synthesis capability can be easily implemented by
means of the relative Horn clause.

3) Modal symbols are introduced to classify the clauses.

KEY WORDS & PHRASES

DURAL, extensional database, intensional database,
modal logic, predicate calculus, program synthesis,
programming language, Prolog, ‘gquery language,

relative Horn clause, resolution principle.

Page 2

TABLE of CONTENTS 171

l. Prolog --- Horn clause

2. DURAL --- Relative Horn clause

2.1 ?ast version clause

2.2 Executable predicate

2.3 Synthesis capability

3. DURAL --- Modal symbol

3.1 Clause discrimination

3.2 Alternative approach to executable predicates

1. Prolog —--- Horn clause

Prolog was first proposed by JKowalski[l], and
implemented at Université d“Aix-Marseille (Battani &
Meloni[Z]). This section introduces the original Prolog
language and shows the flexibility of Prolog by several
examples. Example 1 is a simple program written in Prolog.
This simple example is chosen for convenience of
explanation. In fact, many working programs have been
written in Prolog. They include natural 1language
understanding systems, formula manipulation and symbolic

integration systems, and a STRIP-like problem solver.

EXAMPLE 1. Addition in Prolog
1 +(ADD 0 *Y *Y)
2 +(ADD (S *X) *Y (S *Z)) —(ADD *X *Yy *2)

3 -(ADD 2 3 *z)

172

Page 3

Before inspecting example 1, note that Prolog”’s syntax is
given in modified BNF notation. In this paper, the Prolog
interpreter is written in Lisp and the Lisp "atom" is used
as the primitive constituent of Prolog syntax.

In definition 1, a pair of square brackets (,)] enclose the
optional items. An eliipsis "..." indicates a 1list
consisting of the preceding item, e.g., <A>... means <A)> |

(AM<A> | <a><a><{A)> and so on. A vertical bér """ means

u "
’

or and separates alternative items.

‘DEF. 1 Syntax of Prolog

{program) ::= (statementd)...

{(statement) ::= <{Horn clause>

{Horn claﬁse)::=[(positive iiteral)][(negative literal>...)
{(positive literal> $:= +<{atomic formqla)

{negative literal) ::= -({atomic formula>

(atomic formula) ::= ({predicate) {term)...)

{predicate) ::= (Lisp atom)

{term> ::= (Lisp atom> | {variable> | (<{functiond>{term)...)

{variable) ::= *{Lisp atom)

i

{function? ::= (Lisp atom)
{Lisp atom> is the literal atom in the programming language

Lisp, and is not defined here.

According to the definition above, a Horn clause has at most
one positive literal and a finite number, possibly zero, of
negative literals. Table 1 divides Horn clauses (Prolog

statements) into four cases. 1In each case, the Horn clause

Page 4

173

can be interpreted operationally as a procedure declaration.

Table 1. Horn clause
I\neg | | |
I\ ! 0 | not 0 |
Ipos | | I
| N\ | !
0	0	-Bl-B2...-Bn
I	!	
] 1	+2	+A-Bl-B2...-Bm]
	I	

Procedural interpretation:

I STOP statement
i.é. procedure without a name or body
O stands for ah empty clause.
+A—Bl—B2...éRocEDURE declaration
+A: procedure name and variableblist
¥B1—B2...:kprocedure body which callé Bi; B2, ...
~-B1-B2... EXECUTE Bl, B2, ... (procedure without a name)
called a goal statement in Prolog
+A PROCEDURE without a body
This type of statement is not meaningless, since

the variable list may contain various terms.

In example 1, three types of statemen£ appear. A normal
program has exactly one goal statemeht. The gcaIYStatement
changes its shape during the program execution, and finally
takes the form of a STOP statement when the program

terminates.

174

Page 5

EXAMPLE 1. (listed again)
1 +(ADD 0 *Y *Y)
2 +(ADD (S *X) *Y (S *2Z)) —(ADD *X *Yy *Z)

3 —-(ADD 2 3 *2Z)

ADD is a predicate and (ADD a b c) means atb=c; S is the
successor function, namely (S x)=x+1l. The program execution

is performed by Algorithm 1 below.

ALGORITHM 1. (Prolog)

L means “"line". The execution starts at line 1.

Next Line

: L : Action or Test :Succeedl Fail :
: 1 =— Find a goal statement "G" : 2 : abort :
: 2 : G is O (STGP) o : stop : 3 :
: 3 : G:=(ResoiveﬁG againstﬂénother c}ause}} 2 : 4 :
) 5 ' | | ~abore |
| | | | |

G:={The previous G}, backtracking

The abortion in line 1 means there is no goal statement.
The abortion in 1line 4 means G cannot be resolved against
any clause in the program.

The backtracking is done by the stack mechanism.

The resolution in line 3 represents the input resolution.
The adoption of the input resolution is supported by the

following proposition.

PROP. 1 If S is an unsatisfiable Horn set, then there

is an input refutation of S.

The following example shows the execution of the

Page 6

175

above-mentioned program.

EXAMPLE 2. Execution of example 1
A number is automatically converted into the form (5 (S

...0)), e.g. 2 => (5 (5 0)).

‘Ll: " G:= —~(ADD (S (S 0)) (S (S (5 0))) *z)
L2: G is not (.

L3: G:= —(ADD (S 0) (S (5 (5 0))) *2)

L2: G is not O.- |

L3: G:= —-(ADD 0 (S (S.(S8 0))) *zZ)
L2: G is not O.
L3: G:= (O

L2: G is Q. normal termination

Although the execution is terminated normélly, the answer 5
(¥2+3) is lost, since there 1is no output statement. To
implement the output statement, a built-iﬁ pfédicate “OUT"
is introduced. It is assumed that the following statements
(clauses) are built into the Prolog system. '

+(0UT *X1)
+(OUT *X1 *X2)

+(OUT *X1 *X2 ... *Xn)

If a goél statement contains a negative literal
-{OUT T1 T2...Tm), where Ti is any term, the resolution is
always successful due to the built-in clause
©+(0UT *X1 *X2...*Xm). The special OUT resolution has the
side effect that T1, T2, ..., Tm are printed on the

terminal. Example 3 illustrates the OUT predicate.

176 Page 7

XAMPLE 3. Subtraction using a built-in predicate OUT
1 +(ADD 0 *Y *Y)
2 +{(ADD (S *X) *Y (S *2)) —-(ADD *X *Y *Z)
3 —(ADD *X 3 5) —-(OUT *X) === goal

A number is converted, e.g. 3 => (S (S (5 0))).

A comma "," indicates line continuation.

Ll: G:= —-(ADD *X (S (S (S 05)) (S (S (S (s (S 0)))))) ,
-(0UT *X)

L2: G is not (3.

L3: G:= =(ADD *X (S (S (S 0))) (s (S (s (5 0})))) ,
-(OUT (S *X))

L2: G is not 0.

L3: G:= —(ADD *X (S (S (S 0))) (S (5 (S 0)))) ,
-(0UT (S (S *X)))

L2: G is not (O.

L3: G:= -(OUT (S (S 0)))

L2: G is not O.

L3: G:= (O side effect: (S (S 0)) is printed.

L2: G is O. normal termination

The output (S (S 0)) is also converted to 2.

Above example demonstrates that subtraction can be performed
through the same clauses 1 and 2 as for addition in example
1. In fact, many different goal statements can be executed

using clauses 1 and 2 (see below).

EXAIPLE 4. A variety of goal statements

-(ADD 2 3 *Z) —-(OUT *2) addition: *zZ=5

Page 8

177

-(ADD 2 *Y 5) —(OUT *Y) subtraction: *Y=3
—-(ADD *X 3 5) —-(OUT *X) subtraction: *X=2
-(ADD 2 3 5) normal termination
-(ADD 2 3 o) abnormal termination
—-(ADD 2 *Y *Z) -(OUT *Y *Z) XYy=%Y, *Z=(5 (S *Y))
—(ADD *X 3 *Z) —-(OUT *X *2) *x=0, *Z=3

-(ADD *X *Y 5) —(OUT *X *Y) *X=0, *7=5

-(ADD *X *y *2)=(QUT *X *Y *Z) *ZX=0, *Y=*Yy, *Z=*Y

The goal statement —(ADD 2 3 6) causes an abnorinal
termination, since 2+3 is not 6. -(ADD 2 *Y *Z) and -(ADD
*X *Y *Z) have symbolic (not numérical) answers. It shouid
be noted that even if the goal statemenﬁ has more than one
answer, only the one thét is found first is printed. It 'is
because of the character of the resolution principle, and
will be discussed further in section 3.

As a final examplé in this section, example 5 shows é
shuffled program that is a mixture of the addifibn program
and the classical sylldgism "Sdcrates is mortal". The
program works well and the answer is *W=Socrates. Itbcan
also behave as an addition program if the goal statement

takes the form of -(ADD 2 3 *Z).

EXAMPLE 5.
1 +(MAN Socrates)
2 +(ADD (S *X) *Y (S *Z)) —-{(ADD *X *Y *Z)

3 +(MORTAL *X) ~-(MAN *X)

178
. Page 9
4 +(ADD 0 *Y *Y)

5 —-(MORTAL *W) —~(OUT *W)

As was shown in examples 4 and 5, Prolog has a powerful
flexibility which makes it suitable for the artificial
intelligence applications. On the other hand, the execution
speed 1is rather slow because of the repeated search for
resolvable clauses. The next section treats techniques for

speeding up execution.
2. DURAL --- relative Horn clause
2.1 Fast version clause

Methods for improving the efficiency of Prolog programs
are divided into two categories.

i) External augméntation: Geo;geff[3] has proposed
supplying control information in the form of a regular
expression. In example 1, a reqular expression (2)*1
directs the addition to start at clause 2 and use it several
times, and finally to execute <clause 1 once. Similar
techniques are discussed elsewhere in the literature and are
omitted from this paper.

ii) Internal reinforcement: A fast version of the addition
program can be written as follows, where "PLUS" is a Lisp

function.

+(ADD *X *Y (PLUS *X *Y))

-(ADD 2 3 *Z) -(OUT *2) (=== goal

. Page 10

173

The goal statement is executed and terminated instantly. It
prints the answer *2=(PLUS 2 3). 1If the answer is evaluated
in Lisp, *2 is equal to 5. This paper shows that the fast
version technique is powerful enough to write useful
programs in Prolog.

It is worth noting here that the fast version clause is less
flexible than the ordinary one.: Example 6 below shows that
the fast clause +(ADD *X *Y (PLUS *X *Y)) cannot be used for
subtraction, since (PLUSK*X *Y) is é term and cannot be

unified with a constant "5".

EXAMPLE 6.
+(ADD *X *Y (PLUS *X *Y))

-(ADD 2 *Y 5) —=(0OUT *Y) (=== goal, abnormal termination

+(ADD *X *Y (PLUS *X *Y))

-(ADD *X 3 5) —(OUT *X) (=== goal, abnormal termination
2.2 Executable predicate

Lisp predicates, as well as Lisp functions, can be used
in the fast version programs. In example 7, it is possible
to replace clauses 3 and 4 with a predicate GE, if it is
declared that GE is executable and fhe corresponding Lisp

routines 3 and 3°° are prepared.

EXAMPLE 7.
1 +(RESULT *X 1) -(GE *X 10)
2 +(RESULT *X 0) —-(GE 10 *X)

3 +(GE (S *X) (S *Y)) =-(GE *X *Y) {=-- to be replaced

180 Page 11

4 +(GE *X 0) . {--- to be replaced
3° (DE GE (X Y) {--- Lisp routine
(OR (EQ X Y) (GREATERP X Y)))
377 (DE 5 (X) (ADD1l X)) {-=-- Lisp routine
If the declaration is issued, the negative literal -~(GE *X
*Y) does not search for the corresponding positive literal

any more, but evokes the evaluation in Lisp.

__ EBrror (*X or *Yy ===) Return to Prolog
is not a number) ‘
Zvaluate '
(GE *X *Y) T ===) Eliminate the literal

in the goal statement,
and proceed in Prolog

— — — ——

NIL ===) Backtracking

The return to Prolog 1is carried out through the ERRSET
facility in Lisp. When the value of (GE *X *Y) is T, the
execution proceeds successfully. If the value is NIL, the
value - of —-(GE *X *Y) becomes T. This means the goal
‘statement cannot be proved by resolution, and it brings the
execution into a backtracking mode as in line 4 in algorithm

1.

Invfact, the built-in predicate in the previous section
played a similar role. It can be regarded as an executable
predicate and its corresponding Liép routine caﬁses the side
effect. ’

If the executable predicate is to be used freely, the Prolog
system must check whether the predicate is built-in or not.
The present system DURAL saves checking by modifying the

Prolog syntax. In the original Prolog syntax, a goal

. Page 12

181

statement contains only mnegative 1literals. In DURAL,
positive 1literal -may appear in a goal statement, and it is
treated as ‘an executable literal. The éyntax is extended to
include positive 1literals in the goal statement, which is

formally based on the relative Horn clause.

DEF 2. (Relative Horn clause) A set S of clauses
defines a set of Horn clauses relative to M, where M is a
setting, if and only if each clause of S has at most one

literal false in M.

A setting is in effect a consistent set of literals from the

Herbrand universe of S.

DEF 3. (Setting) Given a sét S of clauses, a setting M
for S is a (possibly empty) set of literals satisfying the
following conditions:

i) every literal of M is an S—instancé of a literal of S
or an S-instance of the complement of a literal of S;

ii) if L is in M, then every S-instance of L 1is in M:

iii) M does not contain a complementary pair of literals.

An S-instance of a literal L is a literal L(tl/xl,...J) where
(tl/x1,...] denotes a substitution and the terms tl,...
consist of the alphabet of S plus variable names. An
S—gene:alization of a literql L is an S;instance L° of some

literal of S such that L is an S~-instance of L.

DEF 4. (Homogeneous setting; partition)

i) A setting M is homogeneous if and only if whenever L is

182

in M then every S—-generalization of L is

in M.

Page 13

ii) A partition M is a setting M such that every S-instance

of a literal of S is in M or has its complement in M.

A partition is by nature a homogeneous setting.

The present

DURAL system wutilizes only a subset of the relative Horn

clause.

DEF 5. (Extended DURAL syntax)
<statement) ::= {positive llteral>[<11teral>

{goal statement>

cel)

{goal statement> ::= (O | <{(negative literal)(<{literal)...]

~

{literal) ::= (positive literal) | <negative literal)

ALGORITHM 2

L means "line". The execution starts at line 1.

Next Line

: ng Action or Test :S cceed| Fail
: l‘: Find a gogl statemen£ ngh g— 2 { abort
: 2 : G is C] (STOP) A : stoé : 3
: 3 =The 1eft—nost llteral in G is p051t1ve1 :‘4 ; 5
: 4 } EXECUTE the 1iteral in Tisp f‘i 2 : 5/6
} 5 : G:={Resolve G ‘against another clause]: 2 : -6
i 6 E G:={The previous G}, ‘backtracking E 2 i abort
in line‘4,'tﬁreé Céses may occur:

. Errot in Lisp ===> (5) Return to DURAL

Evaluate
the positive
literal +P

| :

| be T.
|
|

_ NIL ===) (2) Success

resolution mode

_ T ===) (6) The goal cannot be proved,
’ since the goal itself will

Page 14

183

The resolution in line 5 represents the input resolution.

PROP 2. (Loveland(4)) If S an unsatisfiable Horn set
relative to a homogeneous partition M for S, then there

exists an input refutation of S.

EXAMPLE 8. Executable predicate ANS

1 -(ADD 2 3 *Z) ~(OUT *2) built-in OUT
2 -(ADD 2 3 *Z) +(ANS *zZ) executable ANS
The predicate ANS performs the same job -as OUT. However,

clause 2 is not logically équivalent to clause 1. 1In fact,
clause 1 is transformed into the formula -((ADD 2 3 *Z) &
(OﬁT ‘fZ)J; lWhich .is thevnegation ofvfhe fofmuié [(Abb.Z 3
;Z) & (OUT:*Z)j té.bé prbved.v fﬁis type bf :ééal statéﬁ;nt
is used conventionally,“since ﬁhe reédlﬁtion; prinéipié
proves the formula by refutation. On the other hand, clause .
2 is equivalent to (ADD 2 3 *2) -)> {(ANS *2), which reads
"whenever *Z satisfies (ADD: 23 *Z), it is the answer." The
answering prediéate ~ANS 1is often applied to: guestion
answering systems (Chan & Lee (5)). 'DURAL incorporates the

answering predicate into the executable predicates.
2.3 Synthesis capability.

Applying the program synthesis technique, a fast

version program is constructed automaticélly.from ordinary
‘ ; ;

clauses. The theorem proving approach (Manna &

Waldinger(6)) to program Synthesis is effective, since each

DURAL statement takes the form of a 1logical foruula.

184. Page 15

Moreover, as DURAL statements can be considered in
intuitionistic logic, one can use the synthesis method based

on Gbdel’s interpretation (Goto(7) , Sato(8)).

EXAMPLE 9.
1 +(ADD 0 *Y *Y)
2 +(ADD (S *x) *Y (S *z)) —(ADD *X *Y *2)
From 1 and 2, the Lisp function ADD is synthesized.
3 (DE ADD (*X *Y)
(COMD ((ZEROP *X) *Y)

(T (S (ADD (SUBl *X) *¥)))))

Clauses 1 and 2 logically represent a mathematical induction
which corresponds to recursive program 3. A more

interesting example is shown below.

EXAMPLE 10.
1 +(REVERSE NIL NIL)
2 +(REVERSE (CONS *X *Y) (NCONC1 *Z *X)) -(REVERSE *Y *2)
3 (DE REVERSE (*Y)
(COND ((NULL *Y) NIL)

(T (NCONC1l (REVERSE (CDR *Y)) (CAR *Y)))))

Example 10 implies that a 1linear 1list can be treated

analogously to a natural number.

1 natural number | linear list

|

|

|

(NULL *X) |

|

(SUBl *X) |
: |

| 0 | NIL

| (ZEROP *X) |

| (S *Y) | (CONS *X *Y)
| | (CDR *X)

| |

. Page 156
185

In addition, the synthesis algorithm itself can be
represented in DURAL. In example 11, GETC and PUTC are
executable predicates. In the terminology of production
systems, the clause in example 1l is a meta-rule, where the

variable *P ranges over predicates.

EXAMPLE 11. Synthesis algorithm in DURAL
+(INDS *P) ,
| +(GETC (+(*P 0 *F *T0))) ,

+(GETC (+(*P (S *E) *F *T2)-(*P *E *F *T1))) ,

+(PUTC (+(*P *E *F (*P *E *F)))

(*P (*E *F)
(COND ((ZEROP *E) *T0)
(T subst((*P (SUBL *E) *F),*T1,*T2)))))

The goal statement —-(INDS ADD) produces the function ADD in

example 9.

3. DURAL --- modal symbol

3.1 Clause discrimination

There is no syntactical distinction betwaen ‘the fast
version and the ordinary one. Sometimes it is necessary to
distinguish them. For example, a goal statement —=(ADD 2 *Y
5) +(ANS *Y) cannot be executed under the fast version
clause +(ADD *X *Y (PLUS *X *Y)), but if the ordinary
clauses +(ADD 0 *Y *Y) and +(ADD (S *X) *Y (S *Z)) -(ADD *X
*Y *Z) coexist, the goal is achieved through the ordinary
clauses. DURAL (Prolog) has an automatic = backtrack

facility, so one cannot confirm whether execution is

186

Page 17

performed only in the fast version environment. To

distinguish the clauses,: the modal symbol is- introduced.

DEF 6. (modal symbol in DURAL)
<{negative literal) ::= -<{atomic formula) |

- S (atomic formula)

The symbol "S" is a'sign of strongly provability. I.e., a
literal - S (ADD 2 *Y 5) must be resolved agaiﬁst a fast
clause exclusively, whereas -(ADD 2 *Y 5) may be resolved
against any clause in the program. This settles the above

problemn.

A further épplication of the modal symbol is explained

in the database field. The resemblance between relational
database models and Prolog—like languages is well known
(Fuchi(9), Futd, Darvas & Szeredi(l0]). As is often the
case, the extensional database (elementary facts) is allowed
to change over time, whereas the intensional ‘database
(general laws) tends to remain fixed. DURAL facilitates the
.distinction between the. time-varying part and the fixed
part. ‘The modal symbol "S" can be regarded as indicating
fixed clauses. .
Example 12 defines a path relation in a directed graph G.
Fl and F2 are assuited to be fixed. The time varying part (1
to 5) represents arcs in G. A goal @ statement contains an
executable predicate "QUERY" which is much 1like the
predicate ANS and has two side effects:

i) It prints the answer;

Page 18:

187

ii) It pretends that the evaluation fails, and evokes a
backtrack mechanism.

The usage of the backtrack mechanism for plural answers 1is

discussed elsewhere (e.g., (lO]). DURAL reélizeé the

mechanism through the relative Horn clause.

EXAMPLE 12.
S1 +(PATH *X *X) |
S2 +(PATH *X *Z) -(ARC *X *Y) —(PATH *Y *2)
1 +(ARC 1 2)
2 +(ARC 1 4)
3 +(ARC 2 3)
4 +(ARC 4 2)

5 +(ARC 4 3)

6 . =(PATH 4 *W) +(QUERY *W): - . {=== goal
7 - S (PATH 2 *W) +(QUERY *W) === goal

1 - > 2

| 7]

I /|

I /|

I / I

L/ I

I/ l

b/ |

v/ v

4 —————- > 3

Fig.l A directed graph G

The goal statement 6 will be answered by a set of nodes, (4,
2, 3}. Another yoal, 7, must be carried out in the fixed

part, and the answer is only {4} (using Fl).

188 Page 19
3.2 Alternative approach to executable predicates

In section 2.2, the executable predicate was introduced
in the form of a positive liﬁérai. It is possible to
represent the executability by p:efixing a modal symbol "EX"
to a literal.

-(ADD 2 3 *Z) -~ EX (ANS *Z)

Although there seems to be no essential difference between
the two methods, the underlying logic is quite different.

By the use of a modal symbol "EX", an interesting clause may
be written.

+(ANS *Z) - EX (ANS *Z)

Since tautologies are not admitted as clauses in the
resolution principle, any clause of the form +(P ...) —(P
«+.) must not éppear in DURAL (Prolog). +(ANS *z) - EX (ANS
*Z) 1is not a tautology and is admitted as a clause. Note
that if a tautology were admitted as a clause in DURAL

(Prolog), it might cause an infinite loop.

Concluding Remarks

(1) DURAL has been written in INTERLISP, and run on DEC
system 20. The size of the source program is about 660
lines when printed out neatly.

(2) Proposition 2 in section 2.2 can be strengthened by
imposing a restriction on the resolution. The input
resolution can be an ordered input resolution. The running

DURAL (1) takes advantage of the ordering.

Page 290

189

ACKNOWLEDGMENT
The author wishes to express his sincere thanks +to Dr.
K.Fuchi at Electrotechnical Laboratory for his guidance to

the Prolog language.

REFERENCES

(1) R.Kowalski, Predicate Logic as Programming Language,
IFIP-74, 569-574.

(2) G.Battani and H.Meloni, Interpréteur du langage de
programmation PROLOG, Rapport de D.E.A. d’informatique
appliquée, Groupe d’intelligence Artificielle Université
d’Aix-Marseille.

(35 M.P.Géorgeff, A Framework for Control in Production
‘Systems, IJCAI-79, pp.328-334.

(4] D.W.Loveland, ‘Automated Theorem Proving: A logical
Basis, Nofth—ﬁolland, 1978.

(5) C4L.Chaﬂg and R.C-T.Lee, SYmbolic Logic and Mechanical
Theoreﬁ Proving, Academic Press, 1973.

{(6) Z.Manna and_ R.J.Waldinger, Toward Automatic Program
Synthesis, Comm. ACM, vol.14, no.3, pp.151-165, 1971.

(7) S.Goto, Program Synthesis from Natural Déduction.Proofs,
IJCAI-79, pp.339-341.

(8) M.Sato, Towards a Mathematical Theory of Program
Synthesis, IJCAI-79, pp.757-762.

{(9) K.Fuchi, priﬁate communication, 1977.

(10) I.Futd, F.Darvas and P.Szeredi, The Application of
PROLOG to the Development of QA and DBM Systems, in LOGIC

and DATABASES, pp.347-376, Plenum Press, 1978.

