goooboooogn
0 396 O 1980 0 199-235

199

Intensional Logic as a basis of Algorithmic Logic

Hajime Sawamura

International Institute for Advanced
Study of Social Information Science

(IIAS-SIS), Fujitsu ILtd.
Abstract

Intensional logic, which R. Montague developed in order
to‘aécomodate a wide vériety of intensional locutions in
natural language in a formal system, seems to‘be'promiSing
as an underlying logic for a logic of programs as Well, since
it can proVide enough expreSSivé power to describe modal
éonéepts of prdgrams and expressions with types.

In this article, we discuss problems of intensionality
arising in programming languages and demonstrate that the
intensional logic is able to give a useful logical basis for
the deductive semantics of programming language and program
verification by formalizing intensional Dijkstra logic (IDL),
intensional Hoare logic (IHL) and intensional Manna and Pnueli

logic (IMPL) within the general framework of intensional logic.

200

1. Introduction

There has been a considerable increase in the applications
of modal logics recently, particularly to computational
linguistics (1-3), program verification (4-11) and artificial
intelligence (12-14).

This paper concerns an application of the intensional
logic, a kind of higher-order modal logic, which R. Montague
(15-16) developed in order to incorporate intensional locutions
in natural language which has not had corresponding expressions
in predicate calculus and modal logics, to algorithmic logic
(or logic of programs). By algorithmic logic (or logic of
programs) is understood a kind of logic in which a program in
a specified language is treated as a mathematical object and
the operation of language constructs and the properties of
programs are axiomatically stipulated. So far, logics of
programs have been presented with respective profitable
features. In particular, Burstall (4), Schwarz (5), Ashcroft
(6), Pratt (7), Kroger (8), Manna and Waldinger (9), Pnueli
(10) and Manna and Pnueli (11) have observed close correspon-
dences of syntactic and semantic concepts contained in modal
logics and tense logic with those of programs, and demonstrated
usefulness of these logics in the formalization of a logic of
programs.

On the other hand, it was indicated by Janssen and Boas

(17-18) that the problems of intensionality analogous to the

201

case of natural language could also be recognized in program-
ming language as a language with relation to the descriptions
of the‘semantics of assignment statements including variables
with various types. As Russell's paradox in set theory waéf
resolved in the theory of types, the problems of intensionality
in the semantics of assignment statements was solved by
distinguishing the 'intension' and 'extension' of an expression
in intensional logic incorporated with a theory of types.

Taking into consideration with these results and the fact
that Montague's intensional logic includes the concepts of
modality and tense, we understand that it might be effective
as an underlying logic of a logic of programs for both fypes of
sequential and parallel programs, and furthermore it may be
sﬁggested that Mongague's logic can provide a semantical
system as a common base for both programming and natural lan=~
guages.

In this paper, we discuss problems of intensionality
arising in programming languages and demonstrate that the
intensional logic is able to give a useful logical basis for
the deductive semantics of programming language and program
verification by formalizing intensional Dijkstra logic (IDL),
intensional Hoare logic (IHL) and intensional Manna and
Pnueli logic (IMPL) within the general framework of intensional
logic, following the principle of Janssen and Boas's intensional

semantics of assignment statements.

202

2. The Intensionality in Languages

The reference problems of linguistic expressions have
been a controversial subject in the logical analysis of lan-

guages for a long time. For example, consider the following

inference
The temperature is ninety (1)
The temperature rises (2)
ninety rises (3)

Although this form of inference is permitted as valid in
ordinary classical logics with equality, it is obvious that

we can not admit this as a permissible inference in our real

world. The problem similar to this arises in the semantics

of programming language. The meaning of assignment statement
x := t, where x is a simple variable and t is some arithmetic
expression, is defined to be

(t/x]P {x 1= t}P (Hoare (19)),

P{x :=t} Je([z/5]P A x= [2/X]t) (Floyd (20)).
as assignment axioms where P is a first order'predicéte and
[?/ij‘denotes the expressions obtained from P by replacing
all free occurrences of x in P by 2. However, this rule of
meaning yields undesirable results if applied to situations
where x is not simple. For example, consider the following
program

P:=x ;x :t=x+1 (4)

203

where X is a simple variable and p a pointer variable. If we
take p = X as a postcondition, by applying the composition
rule of Hoare we obtain

X=X+ 1
which is a contradiction. As a next example, consider the
following Hoare's assignment axioms which include array |
variébles

1= a(j){a(i) := 1} a(i) = a(y) (5)
The preéondition 1 = a(j) is not restrictive enough to the
precondition about array elements (it shouldbe i = jvis=
a(j)).

As seen from these exampleé of natural language and
programmihg language, the invalid inference, the contradiction
and the less restrictivé condition included in them are
resulted from the simpie replacements of subexpressions which
constitute the sentence in natural lénguage and the predicate
in programming léhguage by another expressions. In other
words, the sentence (1) asserts only identity of denotations
(called extension) of 'The temperature' and 'ninety', but the
sentence (2) which include the same subexpression as (1) does
not asserts something about the denotation of it, but pertains
to the other denotation (called intension). From assertion
about intension, nothing really follows as far as eitensions
are concerned. Thus the conclusion (3) is illegitimate. The
same thing can be applied to (4) and (5). In (4), the post-

condition p = x asserts that the denotation of a pointer

204

variable p is x itself, but an assignment x := x + 1 has the
effect that makes the denotation of a variable x equal to the
denotation of x plus 1. Therefore, it is not permitted that
the latter x (extension) is substituted for the former x
(intension). In (5), the sort of denotation of an array
variable becomes a problem rather than the discrimination of
extension and intension of an array variable. However, we
consider it as a kind of reference problem in this paper.
Thus, when we give an account of the meaning of a
linguistic expression, it is not enough to relate it to an
object or set of objects, we must also provide a sense or
concept or intension for the expression. This has been done
in the direction of natural language fragment through
intensional logic by Montague, and will be done in the
direction of programming language through intensional logic

with additional constructs.

205

3. Underlying Intensional Logic (IL)

In this chapter, we describe the tenseless version of
Montague's intensional logic with additional constructs

along the line of Gallin (21).

3.1 Syntax

In a general form, we introduce the intensional language
with types so that intensionality of expressions in a
programming language can be treated, although some parts of
it are not used for our purpoée. ; ‘

Txges. Let e(entity), t(truthvalue), s(state or poééible
world or point of reference) be three distinct objepts. The
set of‘types of 1IL is the smallest set of Type satisfying:

(1) &, t ¢ Type,
(2) o p € Type imply (t,8) € Type,
(3) € Type implies (s,) € Type.
We frequently wrﬁ;e o for (ol,,e) and s« for (s,x).

Primitive symbols. Primitive symbols consist of the

following:

(1) wvariables: for each type «, a denumerable list of

Xo(l, }{d ? X“B, LR AN]

(2) non-logical constants: for each type K, a denumerable
list of cdl, cdz’ °d3’ - , ’
(3) special symbols: =, , “9 Yo (,)9[9]9{9} ’ /s—7.

We omit superscripts or subscripts as far as confusions

206

do not arise. By CONO((VARD() is understood the set of constants

U i)
« € Type o € Type
Terms. The set Tmo(of terms of IL of type « is induc-

(variables) of type « and CON = CONy, VAR = VAR,
tively defined as follows:

(1) CON,C Tmy,

(2) VAR, C Tmy,

(3) A€ Tmyg, B € Tmy imply A(B) € Tng,

(4) A e Tmg, X € VARy imply ax(a) € Tmo(/s,

(5) A, B€ Tmy, imply A= B € Tm,,

(6) A € Tmy implies "A € Tmso(’
(7) A€ Tm, implies YA € Tm,
(8) A, BE€ Tmy, p € Tmg imply (p—=> A, B) € Tmy,
(9) A€ Tm, x€ CONS/G, B € Tmg imply {B/vx} A € Tm, .

We introduce the sentential connectives, quantifiers and

modal opérators in IT. by definition:

T

Qxyxy = Xx.x,),

Ox x, =xx 1),

7=1xt(F = xt),

A=xx oy, My (£, x = ¥) =Xy, (£T)),
D=2x 2y (x Ay = x),

V=dxay (x Dy),

¥xyh = Ouxgh = ax,T),

Jx A = ¥ A,

Lag= ("Ag= °T),

MAg= TIL71Ag.

These definitions follow Henkin (22) and write A A B

F

207

instead of A(A)(B), similarly for the other binary connectives.

3,2 Semantics
The terms of IL are interpreted in an intensional modéi.

Frame, Let D and S be non-empty sets. By a frame based

on D and S we understand the indexed family (D“)o(eType of sets,
where ' ’

(1) 1, = D,

(2) D‘t ={Or 1}9

(3) Dy =Dy ={f]f: 5=,

(4) Dyg = DI3D°‘ ={f]f: Du—)Dﬁ}.

. Model. A model of IL based on D and S is a system M =

(D>) e mype
(1)) 4 emype

(2) m(meaning function) is a mapping which assigns to each

, wWhere

is a frame based on D and S,

constant cy a function from S into Dy; in symbols,

m(cy) € Dy

Assignment. An assignment a over M is a mapping on the

set of variables of IL such that a (xd) € Dd for every
variables xy of typeX. Let a be an assignmeht, X a variable
of type « and d € D. a(x/d) is an assignment a' whose value
a'(y) for a variable y is equal to d if y is x and a(y)
otherwise.

Execution state. We have introduced the state abstractly

as above. Here, in order to define meanings of programs in

IL, we identify a state with an execution state which consists

208

of the values of all program variables (which are translated
into constants in IL, see chapter 4) at a certain stage in

the execution, that is, an(execution) state is a member of

T Pe X Tl Dee X TTDse

cCe€ CONSG CcE€ CONS(GE) CcE€ CONS(SG)

if a program operates over a domain D, Two states are equal
iff all constants have equal values.

VM

Value function. The value
s,a

(Ay) in M of a term A,
with respect to the state s and the assignment a is given
recursively as follows (we suppress the superscript 'M'):
(1) V(e = mlexd(s), c € CON,
(2) gV (xg)
(3) V(b (B)) = (T, (hy0) (T, (B)),
(4) SYaCkxd(%ﬁ))
-d € Dd is equal to

]

a(xy), xy € VAR ,

the function f on D°<whose value at
sYa'(%ﬁ)’ where a' = a(xy/d),
(5) gV,(a=B)=1if sValhed = sVa(Bo), and O otherwise,
(6) SVa("AQ‘) = the function f on S whose value at t € S is
b4
equal to tYa(A“)’
(1) T (hg) = GV (A)(s),
(8) Val(py=> Ays B = V(8 if (V. (p,) = 1, and
SYa(BO() otherwise,
(9) Vo ({Ba/"egy}

which denotes the state in which all constants except

Ay) = tYa(Ao(), where t =<<c<—éYa(%e)>S:

¢ have the same value as in the state s and the value
of ¥Yc equals the value of the expression Bp in the state

S.
- 10 -

209

Formula, Satisfied, True, Valid. A formula is a term of

type t; A formula A‘is satisfied in M by a stéte s and an
assignment a, symbolically, M, s, a.% A iff SYE(A) =1l. A
formula A is true in M, symbolically, M [A iff for every s
and a, M, s, a F A. A formula A is valid, symbolically, ‘F A
iff for every M, M F A.

It is readily verified that the connectives, quantifiers
and modal operators defined above have their usual meanings
in any model M, that is, for example, M, s, a F (A) v (B)
just in case either M, s, a F;A or M, s, a F B, M, s, 2 F ¥x, A
just in case M, s, a(x/d) F A for every d ¢ Dy, and M, s, a
F LA iff M, t, a F A for every t € S, that is, the nécessity

operator L is an S5 operator of modal logic. -

Free, Bound. An occurrence of a variable xpin a term
A, is bound if it occurs within a partj\EBBx, otherwise free,
3.3 Deductive theory

Axioms,

Ao 8D A gy (®) = ¥, (g,q (%)),

Aye xy =y, D (x) = £,.(7),

As. ¥xu(fQ3(Xd) = gqe(xd)) = (f%ﬁ = 8%3),

4,.)\xot(Ap(Xo())(Bol) = As(By), where Ag(By) comes from
Aﬁ(xd) by replacing all free occurrences of X by the
term B,, satisfying the conditions:

(1) no free occurrence of X, in %G(Xd) lies with;n a
‘ part xy(C) where y is free in B, and

(2) no free occurrence of x in %ﬁ(xd) lies within

- 11 -

210

(2'

ASQ
A6.

A7-l.

A -2.

A7-3 .
A7-4c
A7-.50

A7_7 .

A7-8.

A7-9o

Rule of Inference.

the scope of *, L, M, {Er/vcsﬁ, or else
) sYa(Bd) = tYa(B“) for any state s, t € S(in other
words, B is modally closed (see Gallin (21)).

L(VEg, =v8g,) = (fg,= 85,0

YAk = Ay
{Ed/vcsd}qﬁ’ = cg' for any constant cg', including
the case that c¢' is the same constant symbol as ¢ and
A= (s,%),
{Ba/vegy} ey = Bus {Ed/vcisu}vCSr = Clgyp

for any constant c'_,. that is not the same constant

sr i
symbol as c, and (5,7) # (8,00,

{Eu/veg,} % = %35

{ B/ o] Bpr (Be) = {Bu/veg, } Aar VAL %)
{Ed/vcsd})xp (AT) s)usﬁ ({Eo‘/vcso(\!AY)’ provided
that xﬁ does not occur in Eo((otherwise we take an
alphabetical variant ofjpﬁo(Ar),

{E“/vcsu} (4g Bﬁ) = (EO‘/VCSM}A/G = {Eol/vcso(}
%@), _

{EO(/VCSO(} ‘Aﬂ “Alﬁ,
{_Ed/vcso(} { E! /Vcso(}A,B
{EO(/ VCSD(}(Pt"—) ij ’ %3)
{Eo(/vcsol}Bﬁ)'

R ALV T VALY ik
({Ex/Vegy Py { Eo//vcso(,jl}?

infer the formula B't, where B't

1
From A¢ A&ﬂ and the formula Bt to

comes from Bt by replacing

one occurrence of A by the term A' .-

Proof, Provavle, Theorem.

A proof of IL is a sequence

- 12 -

of formulas each of which is either an axiom or else is
obtainable from earlier formula by the inference rule, A
formula At is provable in IL, or a theorem of IL, and we
yrite | A, if it is the last line of a proof.

Theorem 1. (Soundness theorem) F A implies F A.

The proof is omitted.

I1.includes the ordinary laws of sentential and predicate
logic, together with the S5 modal laws, We list some of them,
1° F A, where A comes from 4 tautology by uniform |

substitution of formulas of 1L for free variables,
T,. | ¥x A(x) DA(By), where A(x) and By satisfy the
conditions of Axiom Ags
T;. | A DB implies I A D¥x,B, where x is any variable
not free in A (Generalization),

Tye F A DB and f A imply F B (Modus ponens),

T5. | LA DA,

Te. b L(A DB) D (La D1B),

e L MA DIMA (S5 axiom),

Tge FmL¥xx.A = ¥x,IA (Barcan formula),

Tg. F A implies | LA (Necessitation).

- 13 -

211

212

3.4 Expressiveness of IL

The intensional language described in this chapter have
two constructs augmented to Montague's intensional logic. The
term (Pt—+ Ags B“) is used to represent the denotation of
array variable as a function. This term has the form of
McCarthy's conditional expression (25). The operator
{Ed/vcsu}, which is called state switcher by Janssen and Boas
and have almost the same properties as the ordinary substitution
operator, is used to represent the semantics of assignment
statement as an effect of it to a state. The properties of
state switcher are introduced as axioms A7-1f\/A7—9 in the
same way as other logical operators. “(called cap or up
operator) and Y (called cup or down operator) are used to
represent the intension, extension of expressions respectively,
for example, the extension of a simple variable in a program-
ming language is the value of it in a particular state.of
possible execution states and its intension is a function which
for any possible state yields the corresponding value. The
extension of an assertion for proving properties of programs
is the truthvalue of it in a particular state of possible
execution states and its intension is a function which for any
possible state yields the correspond;ng truthvalue, that is,
a Boolean function on the set of possible states., Predicates
and quantifiers in IL are used %o represeht properties of a
single state and modalities, L, M to represent properties of

the execution leading from one state to another.

- 14 -

213

4. Intensional Dijkstra Logic (IDL)

The intensional logic in chapter 2 has a sufficient
expressive power for expressing the various kinds of typed
variables appearing in a programming 1anguage and their
meanings. In this chapter, we consider a smallest deterministic
programming language of which intensionality comes into question
and its semantics in terms of Dijkstra's notion (23) of predi-
cate transformers, a formalism for spébifying the semantics of
a program construct by the transformation that the construct
defines. And the predicate transformers are well described
in the intensional logic. The following descriptions are
- given informally to such an extent that ambiguitiés do not
arise. |
4,1 A simple programming language (SPL)

Symbols :

(1) constanfs: numerical constants, true, false, etc.,

(2) variables : simple variables X, Y, ecceees
array variables 8y Dy eeveeey
pointer variables D, G, eeeecess

(3) logical symbols : —, A, V,

(4) arithmetical and relational symbols : +, -, X, %,

2, <=, =,
(5) program symbols : ;, :=, if, then, else, fi, while,
do, od, go to, null,
(6) 1label symbols,

- 15 -

214

(7) auxiliary symbols (,), L, J.

Arithmetic expressions E and Boolean expressions F :

These are not further prescribed here, but it is assumed that
Boolean expressions are always truth-valued and arithmetic
expressions have no side effects.

Programs Prog :

(1) null statement : null € Prog,

(2) assignment statement : if e, f € E, x is a simple
variable, a is a array variable and p, g are a
pointer variables, then
(2.1) x := f € Prog,

(2.2) a(e) := f € Prog,

(2.3) p := x € Prog,
(2.4) p:= a(e) € Prog,
(2.5) p:= q € Prog,

(3) composition : if S,, S

1
(4) conditional : if S, S;, S, € Prog and p € F, then
if p then S1 else 82 fi, if p then S fi € Prog,
(5) iteration : if S € Prog and p € F, then while p
do S od € Prog.
4,2 Semantics
The semantics of SPL based on the IL is given in such a
way that R. Montague (15-16) gave the semanticsiof a fragment
of natural language based on intensional logic. That is, each

expression exp in a program written in SPL is translated into

the term exp' in IL by applications of translation rules to

- 16 -

2 ¢ Prog, then Sl; 82 € Prog,

215

the syntactic structures in SPL. The exp' is called a transla-
tion of exp and ' 1is called a translation function. Of cource,

a meaning of exp' is determined by the model of IL. Thus,

the overall framework is as follows,
expressions terms in IL
translation
in SPL
interpre-~
tation

semantic domains

4,3 Translation Rules

Translation of symbols in SPL :

Logical symbols, arithmetic and relational symbols,
auxiliary symbols and equality syﬁbols in SPL translate into
the corresponding symbols in IL. Numerical constants, simple-
variables, array variables and pointer variables translate into
the non-logical constants with types e, (s,e), (s, (e, €)), (s, (s
e)) respectively. As the translated symbols, we use the same
symbols as those in&SPL as far as confusions do not arise.

Translation of arithmetic and Boolean expressions in SPL :

The translations of an arithmetic expression and a Boolean
expression are obtained from their subexpressions. Simple
variables x and array elements a(e) oécurring in the righthand
sides of the assignment statements (2.1) and (2.2) and in
Boolean expressions, and a pointer variable q in the righthand
side of (2.5) translate into vx, vYa(e'), vq respectively, a
simple variable x and an array element a(e) occurring in the

| righthand sides of the assignment statements (2.3) and (2.4)

- 17 -

216

translate into x, a(e') respectively, where e' denotes the
translated symbol or expression which is obtained through the
same way of translation as those occurring in the righthand
sides of the assignment statements (2.1) and (2.2).

Translation of programs

We call a term of type (s,t) a state predicate, and use it
as a specification for proving that a program is correct. The
reason that the type of the specification of a program is (s,t),
not simply t as in usual logics of programs lies in the time
or state dependency of truthhood of a proposition (a specifi-
cation) according to the execution states of a program.
Therefore, in the intensional framework of programs we employ
a state predicate for the specification of a program to
explicitly express that fact.

In intensional Dijkstra logic (IDL), the semantics of
programs is dealt with by translating them into predicate
transformers (PT's) (in Dijkstra's notation wp), which are
terms in IL of type ((s,t), (s,t)) and have the form)\P(A),

‘where P € VAR , and A is a term of type (s,t) constructed

t
from each program construct. That is, let Q be an arbitrary
state predicate expressing an postcondition. XP(4A) (Q) is the
state predicate expressing the weakest precondi%ion such that
the program construct terminates and produces a final state
satisfying YQ. As well as Montague'é method, the translation

rules in the following are in one to one correspondence with

the syntactic rules in the definition of Prog. Therefore,

- 18 -

217

the translation of a compound expressions is determined by the
translation of its subexpressions.

(1) null statement : For 'null', its semantics is defined
to be

XP(P)

(2) assignment : TFor the case of 'x := f' where x denotes
a simple variable or pointer variable, its semantics is
defined to be

XPA{£'/¥x}VE),
for the case of 'a(e) := f°',
X2 ({xn(n=e’ — £, “a(n))/va}*P)
~ (and in case of an array'with‘higher,dimension, this
predicate transformer is used repeatedly).

(3) composition : For YSl; 82' with translations»PTl, PT2

respectively, its semantics is defined to be
2P A(PT (PT,(P))).

(4) conditional : For 'if p then S, else S, fi' with
translations p!, PTl, PT2 respectively, its semantics
is defined to be |

2P ((p' AP (P))V(Tp 'APT,(P)),
for 'if p then S fi' with translations p'! PT respec-
tively, its semantics is defined to be

XEP(p"NPT(P) V-p'A"P).

(5) iteration : TFor 'while p do S od' with translations p',
PT respectively,
let

- 19 -

218

P = X2 (“PAp'),
PrItLl <\ pA(p'AYPT(PTI(P))), then its semantics
is defined to be

XpA(3 3("BTI(P))).

4.4 Program verification
We have defined the formal semantics for program constructs

which is necéssary to prove that a program is correct. Under
these definitions, we introduce the concepts of termination,
consistency, correctness, a method for their verification which
are intensional versions of those introduced by R. Yeh (24), as
follows: Let PTq be a term constructed from a program S and

P, Q be state predicates.

Termination : A program S terminates with respect to P
irf |vP DYPT (*true),
Consistency (Partial correctness) : A program is consist-

ent with (P,Q) iff | YP D (YPIg(*true) D VPIs(Q)),

Correctness (total correctness) : A program is correct

with respect to (2,Q) iff | YP DVPI4(Q).

- 20 -

218

4.5 ZExamples of intensional predicate transformers

(1) Let P =X 3 X :=Xx + 1 be a program and the corre-
sponding predicate transformers of the two assignment
statements be

PT, >P({x/vp} vP),

PTZ'

Consider as a state predicate after the execution “(¥Yp = x).
Then, lP(PT1(PT2(P)))./(“(”p = x))

XP({ x/vp }VP)¥"(¥p = x)

“({x/*p} ("p = x))

“(x = x).

XP({vx + 1/Vx} YP), respectively.

This is a correct solution to'thé problem of/pointer in chapter
2. |
(2) ZIet 'while x # 0 do x := x - 1 od' be a program and
“(¥x = 0) a state predicate. '
(x :=x - 1) =)P“({Vx -1/Vx}vP).
(x #0)' = ("x 4 0).
Hence, PI°(*(*x =0)) = “(*x =0 Avx = 0) = ~(*x

0).
P (*(vx = 0)) = “((*x £ 0) A *XP°({ vx - 1/*x} VP)
(“(vx = 0))) = “(¥x ¢'O4A ve= 1) = “(vx = 1).
pré(*(vx = 0)) = “(vx = 2).
Generally, PTj(“(Vx =0))="(vx = j).
Hence, we obtain “(J4j(¥x = j)) as a state predicate before
the execution. Since }- ““(*x>0) D" (Jil*x = j)), the
iteration program is correct with respect to the intensional

specification (“(vx >0), “(*x = 0)).

- 291 -

220

5. Intensional Hoare Logic (IHL)

In this chapter, we consider the intensional version of
Hoare logic (19) which defines language constructs in terms of
how programs containing them could can be proved correct,
instead of in terms of how they were to be executed. It
consists of a logical system of axiom schemata and inference
rules, The primitive formulas in this system are of the form
P{S}Q, where P and Q are state predicates like in Dijkstra
logic, and are interpreted as below.

Definition 1 : M, = {(s,%) | program A, Started in a

state s, terminates in a state t} .

Definition 2 : We extend the definition of intensional

language as follows, If P, Q € Tm,, and A is a program,

then P{ A}Q € Tm_,

Definition 3 : We extend the interpretation svﬁ for P{
’

A} Q as follows, M M
M T if sVa("P) =T and (s,t) € M, imply .V, (VQ) =

U, (P{alQ) = ’ ’
t4

F otherwise.

Definition 4 : A program A is (Partially) correct with

respect to a pair of an input state predicate P and an output
state predicate Q (or input-output specifications (P,Q))iff
F P{a}a.
5.1 Proof system

We use the symbols as follows,

P, Q, R stand for state predicates,

- 22 -

221

S, Sl’ 32 stand for programs,
P ' stands for a Boolean expression,
X stands for a simple variable or a pointer

variable,
a stands for an array variable,
e, T stand for arithmetic expressions,
stands for a translation function.
Axioms |
Assignment axioms :
“({£'/vx}'P) { X = f} P
~({)\n(n=e" — £ ,Va(n))/va}"P) {a(e)

1]

£}p
Theorems : P for all P such that l— o)
Inference rules
Consequence : P OYQ Q{s}r , p{s}q v@ D%

P{s}r P{S}R

Composition P{5y }Q Q{s,} R
P{S;; S} R
Null P DR
: P{Null} R
Conditional : A("P/\p').{sl}Q ‘(VPAﬂp')-{éQ}-Q o,

P{if p then §; else S, fi} Q

MPA){sta YPAp' DYQ
P{if p then S fi}Q

- 23 -

222

Iteration “(PMhpt){s}p
P{ while p do S od} “(*PAp")

5.2 Properties of IHL
Theorem 2 (Soundness thedrem). If k P{ A} Q, then F P{ A} Q.
Proof. First we define by cases the final state FS(A,s)
of a program A relative to a model as follows :
(1) 7Fs(NULL, s) = s
(2) 1If x := e is an any type of assignment statement, then
Fﬂxz=e,s)=<weéﬁ4€ﬁ%
(3) FS(Sl; Sy s) = FS(S,, FS(Sl, s))
(4) FS(if p then Sy else S, fi, s)
{ FS(Sy,8) if (V. (p') = T
- FS(S,,s) otherwise

(5) PFS(while p do S od, s)
{ FS(while p do S od, FS(S,s)) if Vo (p') =1
b

s otherwise
We will only show that the axioms are valid and that the

iteration rule preserves truth since the other parts of the
rules of inference are easy. We will fix any model M and first
consider any type of assignment axioms., Suppose that for any
state s; s F {e'/vx}vP, then for any a, sYa ({e'/'x}VP) =
tYa (YP), where t =<:x%——éYa (e')>s. From (s,t) € My .2 e
we obtain t F YP, thus, “({e'/Vx}VP)-{x = e }P is valid,

Next we will consider the iteration rule. For a state s

- 24 -

223

such that S/F p', the upper formula of iteration rule is
vacuously true and the lower formula of it is also true
since s F YP and s‘F p' imply s F vP/\"]p’. Therefore, for
any stafe s such that s F p', suppose fhat S'F“(VEAP'){lS} P.
Then,
s F YPAp' imply t | P for a terminating state t such that
(s,t) € Mg, (1) |
Suppose that the lower formula does not hold, Then, for some
initial state Sq and the final state s, such for n > O, (so,
Sn) € Mwhile p do S od?

so F Y2 (2) and

sn*é YPAp' (3).
By the termination of the iteration statement, there exists a
finite ensuing sequence of state-pairs whose first element
denotes an initial state of S and whose second element
denotes the corresponding final state of S, ‘

(so, sl), (Sl’ 32); ceeeey (Snél, sn) , such that

s; Fp foro<i=<n1 (4) and

Sn ¥ p' o (5). |
By repeated applications of (1) using (2) and (4), we obtain

s, F vp (6).

However, we have from (3) and (5), sn.k YP. This contradicts

to (6). Q.E.D.
IHL is a functional variant of pure Hoare logic, that is,

pure Hoare logic is obtained by eliminating the symbols *, v,

in the proof system of IHL. Thus,

- 25 -

1

224

Theorem 3,

Q in IHL.

If F P{A}Q in pure Hoare logic, then F P{a}

5.3 Proof Example

We show that the following program is

»

correct with respect

to (“true, "(vp =i AYi=0V vp=j Avj=4)), which reduces
to (“true, “(vwp =0V vwp = 4)).
Program : i := 0 ;
joi= 4
if random< 0.5 then p := i else p := J fi
Correctness proof proceeds as follows :

1. “true { i := 0} (i = 0) (axiom)

2. *(*i=0){j:=4} (*i=0 AN"j=4) (axiom)

3. Yvi = O0OAVYj =4 Avrandom = 0.5 D random = 0.5 A ¥j = 4
(theorem)

4, Yi=0A vj =4 A vYrandom < 0.5 D Yrandom< 0.5 A ¥i = O
(theorem)

5. “(*1=0 A“j=4 A vrandom = 0.5){null} ~(*random =0.5
A3 =4) (from 3)

6. “(¥Yi=0 AVvYj=4 A random < O.5)-{null} *(¥random < 0.5
A¥i = 0) (from 4)

7. *(Yi=z0 A =4 A ":c'a.ndomzo.S){p 1= j}' *(Yrandom <
OS5 AYP=1iAY1i=0 Vvrandom 2 0.5 A vp=j A Vj = 4)
(from 5)

8. “(Yi=0Avj=4 Avrandom< 0.5){p := i} *(¥random < 0.5
AP =i AVi=0Vv vrandom=0.5 A vp= jAv]j=4) (
from 6)

- 26 -

225

g, "true{i :i= 0 3 J :=4 ; if random < 0.5 then p = 1
else p := j} *“(¥random< 0.5 A Yp = i A Vi = O V Yrandom
=0.5 A p=3j AVi=z4) (from 7, 8)

10, Yrandom< 0.5 AYp=z1 AYi =0V vrandom = 0.5 A Yp = J

ANi=4 Dp=i AYi=0Vvp=j A i=4 (theorem)

j =4 if random < 0.5 then p := i else

e
we

1. “true{i = 0
OV ¥p=jAYj=4) (from9,

p =] fi}“(VpEi A Vi
10).

- 27 -

226

6. Intensional Manna and Pnueli Logic (IMPL)

In this chapter, we consider Manna and Pnueli's modal
logic (11) within the intensional logic, and give the proof
system for the verification of a program including array and
pointer variables in addition to simple variables, based on
their 'sometime system' which is an appropriate formalization
of the Intermittent-Assertion method (9). Also in this logic,
the concept of 'state' corresponds to an execution state of a
program, furthermore, the concept of 'accessibility relation'
corresponds to the relation of derivability between states
during execution.

State. In chapter 3, we defined the concept of state to
be an execution state. However, here, we employ a little
different definition. An (execution) state consists of the
pair of the label name attached to a program statement and
the values of all program variables at a certain stage in the
execution, that is, an (execution) state has the general
structure,

s = (1,7,
where 1 ¢ {lo, ll’
statement of a program in which 10, le denote the single

cees le} , a set of labels, labeling every

entry label, the single exit label respectively, and

€ TTDe TTDee TTDse .
q c(—CONSe ceCONs(ee) ceCONS(Se) if a

program operates over a domain D.

- 28 -

227

Distinguished propositional constants. Suppose that we

have a set of special propositional constants, ath, atll, veoy
atle, each corresponding to one of the labels introduced above,
which in fact is a subset of constants with type t in IL, ah&
suppose that

sYa(atli) = T for such a state that s = (l,n) (iff m(etli)
(s) = T) iff 1, = 1.

With these conventions we can express meaningful prop-
erties of programs and their execution in 1L, for example,
invariance propertles having a form, A :DIB such as partlal
correctness, clean behavior, gloval 1nvar1ant mutual
exclusion, deadlock freedom, eventuallty propertles having a
form, A DMB such as total correctness, general eventuallty,
access1b111ty, responsiveness.)
6.1 Program and its translation

In IMPL, we consider the same programming language as
in IDL, IHL, but in a directed graph representation.

Assignment statement.

If e, f are arithmetic expressions, then (l) x «f, (2)
a(e) —f, (3) pe—x, (4) peale), (5) pe—-q are ass1gnmenty
statements. Assume that the program is represented as a
directed graph whose nodes are the program locatlons or labels,
and whose edges represent transitions between the labels. A
transition is an instruction of the general forms;
(1') c—> (x 1), |

(2') c¢— (a(e) «1),

- 29 -

228

(3') c— (p<x),

(4') c—=>(p<ale)),

(5') c—(p<a),
where ¢ is a condition (may be the trivial condition true)
under which the transition should be taken and executed. Ve
assume that all the conditions on transitions departing from
any node are mutually exclusive and exhaustive (see Manna (26)
for a precise definition of programs with simple variables).

Translation of symbols. Same as in IDL, IHL,

Translation of arithmetic and Boolean expressions. Same

as in IDL, IHL.,

Transliation of Programs. Programs translate into a set

of axioms reflecting the properties of the domain and the
structure of the program under consideration, which is used in
the proof system for proving properties of programs.
6.2 Proof system

Our proof system consists of three parts like in Manna and
Pnueli's proof system.

General part. This part is the underlying IL introduced

in chapter 3.

Proper part. This part specifies all the needed prop-

erties of the domain manipulated by programs as proper axioms
or axiom schema. An essential axiom for every domain should
be induction axiom. Thus the induction principle for natural

numbers is.

|- WA (A(0) A ¥x (A(x) DA(x+1)) D ¥xA(x))

- 30 -

229

Local part. The. general and proper parts represent the

general framework needed for our reasoning. In this part we
introduce the deductive semantics of programs in the form of .
axioms:-transiated into the formulas of IL. As a result, |
semantically the local axioms generated in such a way constrain
the set of states and indirectly represent the program iﬁ the
proof system by characterizing the possible transitions

between states under program control.

- Frame axiom, F‘ A D LA, where A is,any‘forméia which
does not contain those constants that are transiations of
program variables (in other words, A is modally closéd)(ihrjl
fact, this is a theorem in IL). | |

e

Location Axiom. ~P iJ5 atl; = T, V denotes exclusive OR.

- For any transition in a program represented as a directed

graph;-
c—1t
—_—
1i~ lj |
where 1i, lj denote labels, c denotes a Booleanvexpression,
and t is one of the assignment statements, we generate the
forward axiom schema (strongest postcondition (20)) F,
- depending on the types of assignment statements (i), 1< i <5
as follows: , A _
. TtAY v v

Fy, Fyy By, Fo]— atl; A e'A"Agy D M(atl; A Je({z/ x} A A

x = {z/vx]1")),
where x denotes the translated symbol of the lefthand side of

assignment, f denotes the righthand side of it and Ay denotes

an arbitrary state predicate.

- 3] -

230

F, : |—atli/\ c'A YA D M(atle Hz({z/"a} AL AN Ya s
{Z/"a} (Wn(n = e'> £', va(n))).

And similarly the backward axiom schema (weakest precondition

(19)) B; as follows :

By, Bs, By, By : t-atli/\ c' A {f'/v;c} YALD M(atlj/\

VAst)’ with the same conventions,

B, : }- atl; A c' /\{)\n(n =e'—>f"', "a(n))/"a}"AStD M

(atlj A VAL

We can easily see that these axiom schemata are functional

variant of local axioms by Manna and Pnueli, Thus, Manna and
Pnueli's modal logic of programs, 'Sometime system', has been
embeddéd within the intensional logic with these additional
axioms. Similarly, it would be possible to develop 'Nexttime
system' of Manna and Pnueli (11) within IL with next operator.

Derived rules. The following derived rules hold in IL.

D,. | A DB implies | LA DIB (Ll-generalization),
D,. f ADB, | BDOMC and | C DD imply f-A:MD (
Consequences),
5 F ADMB and | B DMC imply |- ADMC (Concatenation),
4+ F ADUB implies F 4 A cODNM(B A C), where C satisfies
the same condition as Frame axiom (Frame rule).
6.3 Example of local axiom
1. true — (a(i) «—1)7'1..
1 d
a state predicate “(Ya(vi) = vYa(Yj)) holds. Then we have as

Assume that after the assignment,

an instace of local backward axiom schema B2,

- 32 -

231

F atl; A true A {m(n vi—s1, "a(n))/"a} Va(va(¥i) =
va(vj)) DO M(atlj A Vo (va(¥i) = va(¥ji))), which reduces to
Fatl; A ("= v¥a(*3) = 1) DHu(atly A (va(*i) = va~
(v3))).

This is a correct solution in IMPL, to the array problem in

chapter 2.

- 33 -

232

7. Concluding Remarks

We have formalized intensional Dijkstra logic (IDL),
intensional Hoare logic (IHL) and intensional Manna and
Pnueli logic (IMPL) in order to demonstrate that Montague's
intensional logic is able to give a useful logical basis for
the deductive semantics of programming language and program
verification.

The main contributions of intensional logic to logics of
programs seem to be the provision of

1) modal concepts of programs which are concerned with
time or state dependency of ﬁropositions,
2) expressions in the type hierarchy.

Although we confined ourselves to IDL, IHL and IMPL in
this paper, the method for semantics based on a general and
uniform framework of IL is applicable to other logics of
programs (algorithmic logics) as well, as far as the semantics
of assignments is given by reducing a semantic problem (the
meaning of an assignment) to a syntactic solution (substitution
in logic).

Effective proof procedure for intensional logic is worth-
while to be considered. Here, we will indicate two feasible
ways for effective proof procedure for intensional logic. One
is to implement it as an equational calculus as described by
Robinson (27). The other is to implement it by representing

the intensional language syncategorematically and using the

- 34 -

233

proof procedure for higher-order modal logic based on tableau

method (28).

Acknowledgements.

I wish to thank Mr. T. Maeda and Dr. Y. Momouchi of
Hokkaido Univ, for various helpful discussions and useful
suggestions on the paper.

I would like to express my gratitude to Prof. T. Kitagawa,
the director of IIAS-SIS for his invaluable advice énd

encouragement, and my colleagues for stimulating discussions.

- 35 =

10.

11.

12.

13.

234

References

C. Schwind : A formalism for the description of question
answering systems, Lect. Notes in Comp. Sci. 63, Natural
language communication with computers, Springer, 1978.

J. R. Hobbs and S. J. Rosenschein : Making computational
sense of Montague's intensional logic, Artificial
Intelligence, Vol. 9, No. 3, 1977.

T. M. W, Janssen : Logical investigations on PTQ arising
from programming requirements, Mathematisch centrum,
ZW 117/78, Amsterdam, 1978.

R. M, Burstall : Program proving as hand simulation with
a little induction, IFIP 74, 1974.

J. Schwarz : Event based reasoning ~ A system for proving
correct termination of programs, in Automata, Languages
and Programming, edited by S. Michaelson and R. Milner,
Edinburgh Univ., Press, 1976.

E. A. Ashcroft and W. W, Wadge : Iucid - A formal system

- for writing and proving programs, SIAM J. on Computing,

Vol. 5, No. 3, 1976.

V. R. Pratt : Semantical considerations on Floyd-Hoare
logic, 17th IEEE Symp. on Found. of Comp. Sci., 1976.

F, Kroger : ILAR : A logic of algorithmic réasoning,
Acta Informatica, Vol. &, Fasc. 3, 1977.

7. Manna and R. Waldinger : Is 'Sometime' sometimes
better than 'Always'? : Intermittent assertions in
proving program correctness, CACM, Vol. 21, No. 2, 1978.

A. Pnueli : The temporal semantics of concurrent
programs, Lect. Notes in Comp. Sci. 70, Springer, 1979.

Z. Manné and A. Pnueli : The modal logic of programs,
Lect. Notes in Comp. Sci. 71, ALP, 1979.

C. B. Schwind : Representing actions by state logic,
Proc. of 3rd AISB/GI Conference, 197E&.

J. McCarthy and P, J. Hayes :- Some philosophical problems

from the standpoint of artificial intelligence, Machine
Intelligence 4, 1969.

- 36 -

14.

15.

16.

17.

18.

19.

20.

21,

22,
23.
24.
25.
26.
27.

28,

235

M. Sato : On McCarthy's modal axiomatization of Knowledge,
Proc. of the Ist IBM Symp. on MECS, The theory of programs
and its surroundings, IBM, Japan, 1976.

R. Montague : Universal grammar, in Formal philosophy- .
selected papars of R. Montague, edited by R. H. Tomason,
Yale Univ. Press, 1977.

R. Montague : The proper treatment of quantification in
ordinary English, ibid.

T, M. W, Janssen and P. van Emde Boas : On the proper
treatment of referencing, dereferencing and assignment,
Lect. Notes in Comp. Sci. 52, Springer, 1977.

T. M. W, Janssen and P. van Emde Boas : The expressive
power of intensional logic in the semantics of programming
languages, Lect. Notes in Comp. Sci. 53%, 1977.

C. A. R. Hoare : An axiomatic basis for computer
programming, CACM, Vol. 12, No, 10, 1969.

R. W. Floyd : Assigning meahings to programs, Proc., Amer,

Math., Soc. Symposia in Applied Mathematics, Vol. 19, 1967.

D, Gallin : Intensional and higher-order modal logic with
applications to Montague semantics, North-Holland mathe-
matics studies 19, 1975. '

L, Henkin : A theéry of propositional types, Fund. Math.,
52, 1963.

E. W. Dijkstra : A discipline of programming, Prentice-
Hall, 1976. ' : :

R. Yeh : Strong verification of programs, IEEE
Transactions on SE, Vol. SE-1, No. 3, 1975.

J. McCarthy : A basis for a mathematical theory of
computation, in P, Braffort and D. Hirschberg eds. ::
Computer programming and formal systems, 1970.

Z. Manna : Properties of programs and the first-order
predicate calculus, JACM, Vol, 16, No. 2, 1969. :

J. A. Robinson : A note on mechanizing higher: order .
logic, Machine Intelligence 5, 1970.

G. Wrightson : A proof procedure for higher-order modal
logic, 4th Workshop on Automated Deduction, 1979.

- 37 =

