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ABSTRACT

Synthesls of data structure manipulating programs 1s described.
The method proposed in this paper synthesizes plans, which
represent loglcal structures of programs, from user problem
specifications -~ input-output behavioral specifications s
structure description of data and the speciflcations on the way
how the computations are done. The plan synthesis process proceeds
deductively, following the structure definlitions of data and
guided by the specific control strategies dependent on functional
categorles of problems. In thls paper, first, we define elements
of program and data descriptions and show related programming
knowledge, and then, gilve the method of plan synthesis and

modification with some examples.
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1. Introduction

Data structure manipulation programs play the central role in
the system program and algorithm study in computer science ([;]).
So the synthesis of those programs manipulating abstract and
concrete data types, e.g., recursive data structures such as lists
and trees, arrays, character strings, hash tables, stacks and
compound data structures are very important and interesting themes
to be achieved.

Unfortunately, deductive program-synthesis method proposed so
far have been of only academic value, not only because their
representation of programs lack in flexibility and déscriptiveneSS
of 1mpor£an€'information concerned with programs, but also because
their 1nfefence mechanisms come from mathematical iogic with the
uniform treatment of all predicates and it is‘ also difficult ¢to
apply programming knowledge for their problem solving processes sé
that combinatorial explosion of candidate clauses arise.

Recently the 'design and writing of programs based on the
structure of data has been’proposed ([4]1). We apply this idea and
also make full use of programming knowledge to the plan-synthesié
of programs ([6],[7],[8]). Our problem-solving method in the plan
synthesis process 1s a kind of natural deduction ([3]), based on
the structure description of data and guidéd by the specific
control strategies dependent on the functional category of a
problem. The main features of this synthesis method are as
follows.

1) Plan representation of programs
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A plan ([10]) is an internal logical structure representation
of program (or a part of 1it) which consists of an enclosing
segment (which represent a problem or a subproblem) and its
subsegments and axioms (or lemmas). Here a segment represents a
unit of action or test with its input-output specification. A plan
include not only dataflow and control-flow relationship between
these segments but also 1logical dependencies between the
specifications of the segments and clauses of axloms.

2) Plan synthesis based on the structure description of data

Structure description of data can be effectively used to get
the the access path and alternate occurrence, so the logical
structure of plan 1s synthesized by making the case analysis of
condition test and dataflow . correspond with the structure
description of data. Plans for hierarchical data structures and
modified plans in the case of programs with side-effects are also
synthesized more easlly than 1in any other program-synthesis
methods.

3) Plan synthesis guided by functional category of problems

Quantitative relationship between 1input and output of a
problem 1s the most effective informafion which decides the
functional category of the problem. Main subsegments (or a
subproblem segment) which play important role in plans are

introduced by the knowledge about the problem category.

We consider those plans consisting only of sequence,

conditlional test and recursion in this paper.
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2. The Elements of Program Description and Programming Knowledge

g.; Data Types and Segments

The most basic elements of program descriﬁtions ([10]) are
the definitions of structured data types, their parts and the
relatlons between them,and the input-output specifications of the
behavior of program segments (see Table 1).

‘1) Data types, their structures and relations

Data types are defined as in Table 1. Their particular
objects are represented by concatenating the data type with an
identifier number. Recursive data structures are defined
recursively by Cartesian produét (CP) and disjoint union (DU)
functions ([2],[7],[8]). The argument order of CP and DU is
significant for plan synthesls and code construction. Relations
are deflined by ASSOCIATION. Associations and attributes are either
primitive or non-primitive. The meaning of non-primitive one 1is
defined by an axiom.

2) Segments and axioms

Segments are functional units - modﬁles or some part of it.
Their behaviors are represented by their specifications ~ input
objects, output objects, preconditions and postconditions. Test
segments have an output specification for each case. Primitive
segments have LISP metacodes, when target programming language is
LISP. Susproblem segments are allowed to represent subproblems to
be solved.‘Subproblem segments are introduced by'the followingAtwo
reasons.

(1) There exlst no adequate subsegments 1n the knowledge base.

y
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This occurs usually when the input data of the subprocblem segment
is set input. The specification of the subproblem segment 1s
synthesized during the problem solving process.

(2) Given a problem, system assigns a subproblem segment and 1its
input-output specification for each structure description. The
specification of subproblem segment 1s synthesized during the
problem solving process.

Axioms (or 1lemmas) are indispensable elements for the
synthesis (or verifications of plans). The form of an axiom
corresponds with that of the rule in (5] as follows.

{ consequent ) = { subgoals)> [ if < condition? ]
Condition part is matched with the postcondition of the

corresponding case in a test subsegment, or abbreviated.

2.2 Knowledge Structure

The following are the maln structures in our knowledge base.

1) Datatypes, and their related assoclations, attributes and
types. ISA (generalization-specialization) relationship between
datatypes.

2) ISA relationship between segments and axioms,

3) ISA relationship between associations, attributes and types.

) Index structure on all the tuple predicate information in the
system which point where the tuple instances exist in the pre-
and post- conditions of segment and axiom clauses. Information
about the tuple (e.g.; whether it 1s an association, an
attribute or .a type, and whether 1t is primitive or
non-primitive) is attached there.

5
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some knowledge structures are shown in Fig.l.

2.3 Program Plans

Plans are the 1logical structure representation of programs
which include not only dataflow and control-flow relationship
petween an enclosing segment and subsegments of a program, but
also logical dependencles between the specifications  of  the
segments and clauses of axloms.

The dataflow, control-flow and logical link in the plan are
directed except the self-loop around subproblem segments, as we
have no loop representation (except recursion) in the plan. This
is very convenient for plan synthésis and modification as will be
shown in 3.3, |

The merits of plan representatidn of programs are as follows.
1) Plans represent language-independent, essential = (without

connective tissues) internal structure of programs. |
2) A plan has a fwo-dimensional, net-like structure so - that
additioh and modification of information is easily»handled. '
3) It has dataflow as an explliclt constituents, so itkis additive
and can represent parallelism (partial ordéring). The input and
output objects of segments and the arguments of clauses in
axioms might have input ( or output ) data part-id as  thelr
binding values. So dataflow can represent where each part of
the structure of data 1s processed in a plan. Plan modification
uses this information effectively. Dataflow representation is

enough for value ¢transfer in the function type programs, but
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free-variable assignments require subsegments representing the
actions. Objects which are outputs by virtue of the fact that,
they have been subjected to a side-effect continue to use theip
original values.

4) Segments have thelr behavioral specifications with them so that
their effects on other segments around are easily found by
following loglcal links and control-flow. The postconditions of
an enclosing segment are goals to be satisfied ([51,[6]1,[81),
and the antecedent part of axioms and the preconditions of
subsegments are considered to be subgoals. Postconditions of‘
subsegments, preconditions of enclosing segment and the
consequent clauses of axloms Sustify these goals and subgoals.
Logical operators '&' and 'or' are reallized by the sequential
and branched control path of justifying segments, respectively.

5) Plan representation matches with programmer's intuition and is
of good correspondence with sentential expressions in natural

languages.

2.4 Knowledge about Problems

1) Problem categories ([7],[81])
Problems can be categorized by their functions.
¥ Enumeration of a data structure such as a list or a tree is the
most fundamental operation (enumeration 1is sometimes called
traverse).
¥ Search 1s the basis of insertion and deletion operation in the

structure changing programs.



243

# Many problems belong to set manipulation problems ([1]). Among
them are the set union problems (e.g. insert, merge, append and
so on) and set preserving problems (l-input=-l-output and the
members of output set are equal to those of input set,ﬁg.g.
sort,reverse, and so on). In these problems, when represented by
functlon-~type programs, construction operations are used. When
represented by programs with slde-effects, set preserving
problems use such techniques as swappling of arréy elements
(e.8., bubble-sort, exchange-sort), and pointer-rotattion
technique (e.g. 1list-reverse, Schorr-Waite graph marking
algorithm);

2) Computation strategies ([7],[8])

Usualiy we have plural representation programs for one
problem. So we must decide which computatlion strategy to choose..
¥ If both a function-type program and a program with side-effects

are possible, select'either.

¥ Structure description of data implies a decomposition strategy
(e.g. tall-recursion), so select one description.

#Ir a problem has two set input, select elther
one-input-decomposition or simultaneous decomposition of boéh

inputs.

Knowledge about problems are embedded 1in the rules of

production systems in our system.
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3. Problem-Solving Method

3.1 Problem Specifications

The following specifications are given by the user.
1) Input-output specifications of a problem to be solved.
They are the same format with the segment definitions in 2.1.
2) Definition of input ( and output ) data structure

3) Selection of computation strategles.

3.2 Qutline of the Overall Problem-Solving Process

In most cases, a problem has some problems. We suppose in
this paper that subproblems are 1introduced by the two reasons
explained in 2.1.

(1) When a subproblem segment is introduced during the synthesis
process

Its input-output specification is determined durig problem solving
process of its immediate upper-level plan. The subproblem must be
solved next. When the solving process of the subproblem
fall-ended, system control backtracks to its parent problem. So a
main problem is not said to have been solved until all its
subproblem have been solved successfully, if 1t has them at all.
(2) When the data structure is hierarchical

System analyzes the structure description of data and assigns a
subproblem for each description by designing (hypothesizing) the
input-output specifications of each subproblem. Then our system’

tries to solve each problem. If at least one problem fail-ended,



245

redesign must be done.

The basic cycle of the problem-solving process in one problem
can be informally described by the following steps.

(1) Push the exlt-entrance pair (or case-exit-entrance palrs )
into task-stack.

(2) If task-stack 1s empty, exit with success.

(3) Pop the task-stack and solve the taken-out palr. If succeeded,
go to 2. If case analysls occur, push those pairs between
axioms and a test segment Into the task-stack, then go to 3.
If inconsistency is found, drive the failure back-up

mechanism, which is implicitly included in the system ([6]).

3.3 Detalls of Solving one Problem

3.3.1 The Instantiation of Structure Description of Data for the

Problem
From the structure definition of data in the problem
specification, an instantiated structure description and its each

part name 1s generated.

3.3.2 Introduction of Main Subsegments from Various Knowledge

Sources
Plan synthesis can be seen as an assembling operafion of
various subsegments introduced from various knowledge sources.
% As for recursive data structures, test and selector subsegments
are 1introduced from alternatlion and decomposition expression,
respectively.

¥ Principal subsegment which plays the central role in the plan 1is

10
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introduced from the postcondition of the enclosing segment.
¥ Some supplementary subsegments are introduced by the particulapr
knowledge about data type (e.g., hashing operation) and
knowledge about hierarchical data structures with side-effects
(e.g., list store operation in the uppér—level plan) and so on,
¥ Subsegments related with a particular data-type in the concrete
plan are often introduced through the knowledge structure (seé
2.2), based on the functions of subsegments in its abstract plan
(e.g., ‘'arrayfetch! for implementing portion of 'top!
stack-operation).
Only definite dataflow can be drawn when a subsegment is
introduced, and it 1is often useful for deciding whether the

subsegment 1s primitive or it represents a subproblem segment.

3.3.3 Complete Plan Synthesis

1) Goal-directed problem-solving

Problem-solving in a plan proceeds bidirectionally ([9]),
namely, from the goal ( postcondition ) side of enclosing segment
and from the entrance side of the plan. But basically goals ( and
subgoals ) take the initiative, and make 1logical connections by
links between them and introduced (as in 3.3.2 or newly)
subsegments which match the goals. The preconditions of those
subsegments mﬁSt‘ be Justified by the postconditions of segments
already‘exist 1n'the plan or the precondition of the enclosing
segmént (somefimes through axioms). The accumulated postcoﬁdition
of Segménts along the flow of dafa in a plan are useful for
deciding segments and axioms to be introduced and the
specifidations’of subproblem segments.

11
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2) Case analysls of condltion branches
Condition branches occur in the followihg cases with the
result of nested scope of test segments, the order of which
correspond to those of related elements in the structure
description. |
# When DU expresslon exist in the structure description of data.
Candidate axioms are chosen by the goal pattern first, and then
they aré further selected by the correspondence’ of their
part-relations intheir antecedents with the structure
descriptionwof data. |

# When the relation between two input elements of the -enclosing
segment 1s undefined. .'
In this case a test segment 1s Introduced from the knowledge
about goal Information. All possible cases except 'unnecessary
one froﬁ the premise of the pfoblem are enumerated and eaéh case
has its relation as its assumption.

3) Generatilon of‘flow infofmation

Every flow 1s directed from entrance to exit except self-loop
in the plan.

Each data flow is eitherv between a subsegment and its
enclosing segment or between two subéegments. In the former case,
when clausesv like pelow exist 1n the subgoal part 6f an axiom
(Fig.2(a)), o

(rel2 [rell 1] n) = (rell 1 m)(rel2 m n)
andllogical link is generated both between AXIOM—CNand SEGMENT-A,
and between AXIOM-C and SEGMENT-B, a dataflow from the output of
SEGMENT-A to the input of SEGMENT-B is drawn. In the latter case,

12
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when a logical 1link is found and the argument of the subsegment
gets a definite value, dataflow between the subsegment and input
or output of its enclosing segment is drawn (Fig.2(b)). Fig.3 is
the plan of the program to find the maximum and its 1ndex of an
array al[0:n] ([5]), using subsegments ASSIGN with side-effects..
Note the dataflow from MAXINDEX-2 to LESSTHAN-1l. Also note the
independent dataflow of maximum value and its index. Distinction
of dataflow for each case of branch and their join is required.

When there exists case apalysis, control-flow 1s drawn
incrementally, following the progress of problem-solving. This
control-flow can be used to get the outer information from the
inside of a case scope. Drawing control-flow is easy.
4) Simultaneous goals

Quantitative relationship between 1input and output 1s the
basls of problem- solving, so the goal concerned with set relation
is first tried, and it is assumed. Then the other type goal is
tried. If the latter goal 1s found to be inconslistent with the
previous assumptions, control backtrack to the first goal. For
example, sort problems have simultaneous goals; permutation and
sorted ([6],[7]). In this case, simultaneous goals are the cause
of 1introducing subproblem segment 'lnsert', because of function
type program and first-rest decomposition of 1list. Subproblem

'insert'! 1s solved as described above.

3.3.4 Modification

Fig.3 can be seen seen as a modification example; first, the
plan of finding maximum value of the array a[0,n] is synthesized,
and then the plan 1s modified to get the index of the position of

13



243

the maximum value. In this case, because of the mutual
independence of these goals and the features of plan
representation, we need no such complicated modification
procedures proposed in [5]. Generally, plan modification can be
done rather easily, not only because the effect of modification is
easily found as segments have thelr specifications with them, but
also the correspondence between structure description of data and

the plan structure are explicitly taken by our system.

3.4 Plan Synthesis of Allall Program ([5])

1) Input-output specification
(DEFSPECS allall
(INPUT list-1 1list-2)
(PRECOND (1ist 1list-1) (list list-2))
(CASE-1  (OUTPUT TRUE)
(POSTCOND (< 1list-1 1ist-2)) )
(CASE=-2 (OUTPUT FALSE)
(POSTCOND (not (< 1list-1 1list-2))) ) )
Here,

(forall (object-1l) (member list-1 object-1) =>
(predicate object-2 object-=1) )

is abbreviated as
(predicate object-2 list-1l) .
2) Structure definition of input data
(DEFMEMBER 1ist-1 integer) (DEFMEMBER 1list-2 integer)
3) Strategy '
(DECOMPOSE list-1)
4) Instantiation of structure description of data
(11st integer) = (DU (CP) (CP integer (list integer)))
- & Pos
list-1 int-1 list-3

14
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5) Introduction of main subsegments into ﬁhe plan (Fig.li(a))
From the structure description of input data, NULLTEST-1 is
introduced by the DU expression and input list-1l is decomposed
into two parts by the selectors FIRST-1 and REST-1 followling the
CP expression. The goal of the problem means the judgement on the
relationship between two inputs of the problem., So the output of
FIRST-1 subsegment (i.e., int-1l) is fed to a subsegment whose role
is comparison test, but the other input of the subsegment 1s list
so that the subsegment becomes a subproblem segment called
LESSTHAN-1. The output of REST-1 subsegment is fed into ALLALL=-2
subsegment (recursive call of the enclosing segment) because
list-3 is defined as list-=1 recursively.
6) Goal directed problem solving
After the goal-directed problem solving has done, the logical
links of Allall plan is shown in Fig.4(b).
7) Complete plan
Dataflow and control flow of Allall plan is shown in Fig.l4(c).
8) Program
allall(ll, 12) = if empty(1ll) then true
else if lessall(first(11l),12)
then allall(rest(1l),12)
else false

9) LESSALL problem can be solved almost same way, but it has no

subproblems.

4. Conclusion

In this paper, we have given a program-plan synthesis method

15



based on the structure description of data and guided by the
knowledge on functional category of problems. This method belongs
to the knowledge engineering approach and has a human-like
synthesls process. The author belleves that this synthesls method
is very hopeful as 1t is good at plan synthesis by modification
which is required very frequently in practicél applications, and
that 1t can contribute to software englneering when developed

further.
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Table 1. Representation of List Concept

(DATATYPE 1ist (TYPE PRIMITIVE))

(DEFSTRUCT listdecomp (list object) = (DU (CP) (CP object (1list object)))
(ASSOCIATION (first 1list object) (PREDTYPE PRIMITIVE))

(ASSOCIATION (rest 1list 1list) (PREDTYPE PRIMITIVE))

(ASSOCIATION (permutation 1list 1list) (PREDTYPE NON-PRIMITIVE))

(ATTRIBUTE (sorted 1list) (PREDTYPE NON-PRIMITIVE))

(TYPE (nulllist 1list))

(TYPE (nonnulllist 1list))

(PREDICATES listdecomp (nulllist nonnulllist))

(DEFSPECS first
(INPUT list-1)
(PRECOND (nonnulllist list-1))
(OUTPUT object-1)
(POSTCOND (object object-1))
(METACODE (car 1list-1)) )
(DEFSPECS nulltest
(INPUT list=1)
(PRECOND (1list list-l))
(CASE-1 (POSTCOND (nullilist list-=1))
(METACODE (null 1list-=1)) )
(CASE-2 (POSTCOND (nonnulllist list 1))
(METACODE T) ) )
(DEFAXIOM vacuous-axioml
(CONSEQUENT (comparison-relation object-1l list-1))
(CONDITION (nulllist list-1))
(SUBGOALS (boolean . TRUE)) )
(CONSTITUENT-SEGMENTS 1ist (first rest cons nulltest - - ))

(ISA first selector (TYPE SEGMENT))

(ISA nulltest test .(TYPE SEGMENT))
(ISA first part-relation (TYPE ASSOCIATION))

18
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Fig.l Some ISA Structure in the Knowledge Base
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Fig.2 The Relatlionship Between Dataflow and Logical Link
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Fig.4(a) Dataflow of ALLALL Plan
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