goooboooogn
0 396 O 1980 O 260-288

260
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ABSTRACT

A desirable sampling should be such that each element in the population
is treated evenly and elements sampled are distributed uniformly in the
population. Furthermorg, a useful sampling should be such that we can
apply various accuracy increasing tricks easily. This paper proposes a
mulgidimensional sampling method which possesses these properties. The
method is based on an analogue of counting numbers of d figures and an
elementary property of prime numbers, and it samples elements system-

atically. The method is formulated so as to accommodate with sampling
with unequal probability. Various merits of the method are pointed out

and numerical investigations are given.
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§1. Introduction

Many important sampling methods were developed before 1950, many
of which can be found in reference [1] or [2]. Such methods were
designed mostly from the need for sample surveys of events in our
world, such as opinions of the people to the national topics, health
status of the people, the number of fishes in a lake, and so on. On
the other hand, computer sampling from populations in the mathematical
world becomes more and more important today. This paper proposes a
multidimensional sampling method which is suited for executing by a
computer and for using together with various accuracy increasing
trické. Since multidimensional mathematical populations often have
large variances, the use of some accuracy increasing trick is inevi-
tably necessary in actual applications.

It is well recognized that a key for increasing accuracy of the
estimation of a mean X is to utilize informations on. the variate X
in the population [3], [4], [5], [6].- Using such an information, we
can perform effective sampling with unequal probability. Note that
another sampling is necessary for obtaining such informations. Ac-
tually, sampling is performed in several phases, and information
obtained in earlier phases are utilized to improve the.sampling
probability function for later phases. A desirable sampling method
is, therefore, such that the necessary informations are obtained most.

In the case of sampling with equal probability, the desirable
method is such that any element in the population has an equal proba-
bility of being sampled and the sampled elements are distributed in
the population as uniformly as possible. The simple random sampling
satisfies the first condition, but the distribution of sampled elements
is not so uniform. The distribution is much more uniform in stratified
sampling than in random sampling. The applicability of stratified
sampling is, however, restricted severely by the constraint that the
size of a sample is not less than two times of the number of, strata.
The method proposed in this paper is a systematic sampling which is
applicable even in high dimensions. It is important to note that
various accuracy increasing tricks are conveniently and effectively
used in our method because of its systematicness.

Several authors investigated multidimensional systematic sampling
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about thirty years ago (see, reference [1], §8.13). It is interesting
to comment that Homeyer and Black's and Yates and Patterson's methods
(7}, [8], [9], based on the latin square have a similarity to ours,
although their design principles are different from ours and their
methods are less elegant than ours. ’

In 82, we briefly survey three samplingimethods, simple random
sampling, cluster sampling, and systematic sampling, for finite popu-
lations in one dimension. The uniformityvof distribution of the
sampled elements is defined in §3 so as to accommodate with sampling
with unequal probability, and a multidimensional systematic sampling
is proposed. Detailed anlysis of our method is presented in §4. Ap-
plicability of various accuracy increasing tricks in our method is
explained in §5. Various merits of the method are also pointed out.

Results of numerical investigations of the method are reported, too.

§2, Survey of sampling methods

We present in this section some elementary results of sampling
theories for finite populations in one dimension. For details, see
reference [1] or [2].

2.1. Simple random sampling
Let D denote a population of N elements yl, Yos "7 yN:
Y
D: {yl,’yz, R A0 B

The population mean is denoted by Y and defined as

I
(1) T=— 1]y,
N i=1
Let a sample of @ be Gi which is composed of n elements yl, y2, v, ¥

sampled randomly from 3):

6: {Yl’ yZ’ R yn}'
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The sample mean is denoted by y and defined as

| =

(2) V..
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The y is an unbiased estimator of ?, that is
E(y) = Y,

where E denotes averaging over all possible samples of size n taken from
the population 9.

The sample mean § is deviated from the population meaﬁ ¥ by some
amount. A useful criterion to represent this deviation is the wvariance,
or the mean square deviation, of y:

1 N-n 2'

(3) V) = B(G-D?) = - — o7,
n N-1

2 . . X .
where ¢~ 1s the population variance defined as

1 N
(4) o’ == ] 5, -D%
N i=1

A slightly different definition of the variance is

1 N
(5) v S2 = — Z (yi—?)z, or S2 = ———'02.
N-1 i=1 N-1
In terms of SZ, the variance of § is given as
52 82

(6) V() =— (1—§> z — (1-f),
n n

where f is called the finite population correction. The quantity
1 n
2 -, 2
(7 s"=— ] ;M
n-1 i=1
is an unbiased estimator of Sz. Therefore, the sample & allows us to
calculate not only an approximate value of Y but also an estimate of

its error, (s/vn)v1-f.
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2.2. Cluster sampling

Suppose all the elements of g)are divided into M subpopulations

of sizes Nl, N +, N ,, respectively:

22 7T M
Q): {{ylls y12’ Sty lel}s STty {YMl, }’Mz, "ty yMNM}},

= + e .
N N1 N2 + + NM
These subpopulations are called clusters. In cluster sampling, a sample
© of %)is constructed by first sampling m clusters randomly and then
sampling elements randomly from each sampled clusters. Suppose the
first m clusters are sampled and n, elements are sampled from the i-th

cluster:

® v, - LDy, v = Ly

Here, §i is the sample mean for the i-th cluster. Note that N/M is the
average size of the clusters.

The variance of §cl can be calculated by noting that the sampling
is performed in two stages, the first is the cluster selection and the
second is the element selection in each selected cluster. According
to the elementary theory of probability, the variance of y in two-stage

sampling is given by
V() = VEG v, ov)) + EOG v,

Here, E(§|vl,---,vm) is the conditional mean of y, or the expectation

of ; over clusters v Tts Vs and V(§Ivl,---,vm) is the condi-

1 V2
tional variance of §. The first term of the above equation gives

1 m MNv- B Si n 9 1 ™ MNi— -2
V= J =Dy ) =— g, s =— ] (—3-D".
mi=1 N 1 m M-1 i=1 N
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The second term gives

1 m MN, S2 n, . ) l 82 n,
— _Viy2 V4 i 2 i _L
E(ZZ( )= Q-5 - Z( = (1 -3
i=1l N Vi \)i mM i=1 N i i
where
1 N 1 N.
2 1 ~- .2 _ i
S =——= ) (v..,-¥.)° with Y, =— } ..
i Ni 1 j=1 ij i i Ni j=1 ']
Therefore,
_ 1 1w MN si
© VG =-siah - [ =D L a- ——)}
. , m M i=l1 N i
The SE is the variance of the cluster mean and‘S: is the variance of
the element in the i-th cluster. “An unbiased estimator of'V(§cl) is
_ 1 1 m MN1 2 sf n, ‘
(10) v(y ) =— {s (1 +— I (— 1=,
cl . N,
L m ; mi=1 N -4 i
where
2 R 2 2 ) i - 2
(11) s, == z (—y.-y )7 and s, =_—= z- (Y. .=y.) "
B O = T T B el =0

2.3. Systematic sampling

Suppose the size of the population is a multiple of the size of
the sample, N = Mn, and all the elemen;s of E)arejsystematically

divided into M clusters in the following way:

D: Wyp e 7 Yepwn s U0 Nge 70 Y (a-1)m+27

e e o & e e+ o e o o s e

s Uy Yy 7% Y (n-1)MM}}

2 Uypps Yyp0 70 Yipds s Uygs Yipe 707 Yl
In systematic sampling, a randomly chosen cluster is used as a sample
of 9. Suppose the i-th cluster is chosen as a sample, then the sample

mean y, is an unbiased estimator of Y:
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(12) ysy 2y; =

The variance of §sy is given by
1 M 02
1y Vo)== I Gy D2 =~ {1+ (-1)o_},
M i=1 n v

1 1

P, =3 —— 2 ) (73570 Gy D

o~ N(n-1) i=1 j#k
The Py is called the intracluster correlation coefficient, and it
satisfies the relation -1/(n-1) = o, s 1.

Formula (13) shows that the accuracy of the estimator ySy depends
strongly on the correlation coefficient L i.e., on how the elements
of g)are labeled. In some cases, where L < 0, systematic sampling
will give more accurate answers than simple random sampling. In many
cases, where elements in populations may be considered to be labeled
randomly, systematic sampling will give almost the same results as
random sampling. If, however, the elements in the population have a
periodic trend with a period of a multiple or a factor of M, systematic
sampling will give less accurate answer than random sampling.

It is important to note that, if we choose only one systematic
cluster as a sample, we have no unbiased estimator of V(§sy)' If we
need an estimation of the error of ysy’ we may choose m clusters as a

sample and estimate Y by the estimator
() oy =

Then, an unbiased estimator of V(§Sy) is given by

. ' - Si m 2 1
(15) V(ysy) = ;— (-5, s, = — lZl(y —y )

This formula is equivalent to (10) with n, = Ni = n/m, i=1,2,+--,m.
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§3. Proposal of a multidimensional systematic sampling

3.1. Multidimensional population

Let ?)denote a population in which each element y is labeled by

parameters Xx;, X,, °**, and X,
@ : {Y(Xl9x29 tc ’Xd) 1.

Let us assume that the parameter range is normalized as

A
7Y

0% £1, i=1,2,---,d.

i
If all the parameters are continuous the population mean Y and the

population variance V(y) are

o 1
Y=J s e J y(x ’...,X)‘dx ..-dx’
0 0 1 d 1 d

1 1 2 2
V(y): v oo y(x ’.-.’X)dx s sodx - Y R
1 d 1 d
0 0
and our problem is nothing but the multidimensional integration and
the estimation of its error. The population.g may be of finite—sized,
but we assume the size is so large that we may regard the parameters

as almost continuous.

We divide the range [0,1] for the parameter X, into 1] subranges:
0 _@ 1 (2, -1 S
=1, PP, e, P Py,
where
0= xgo) < xgl) < X§2) < ree < xgpi—l) < xgpi) = 1.
i i i o i : i
The population 3 is divided into pi subpopulations by this division.
We call such a subpopulation a stratum w.r.t. X We perform the
above division for each parameter. Then, the parameter space which is
the d-dimensional unit hyper-cube is divided into small nonoverapping

hyper~rectangles the number of which is PP We call_such a

.. -p -
2 d
hyper-rectangle a cell. We assume the number of cell is much larger

than the size of a sample.
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3.2. Definitions of uniformity and evenness

In considering the error in a quasi-Monte Carlo method, Koksma [10]
introduced the concept of discrepancy of a set of points in the one-
dimensional interval [0, 1], which gives a measure of how uniformly the
points are distributed. The céncept was generalized to the d-dimensions
by Hlawka [11]. The discrepancy is defined in the following way. Let
R be a hyper-rectangle consisting of all points (xl,xz,--‘,xd) satis-
fying

a, £x, £ bi’ i=1,2,.¢+,4d,

here the numbers a; and bi satisfy the conditions
0 2a,c< bi £1, i=1,2,.--,4.

Let |R| denote the volume of R:

IR| = (by-ap) (by-a))---(b -a)).
Let n points be sampled from the d-dimensional unit hyper—-cube and let
Zn(R) be the number of points sampled from R. The discrepancy of these

n points is the least upper bound of the quantity
(16) |z (&) /n - |R]]

over all the subsets R contained in the unit hype;—cube.

According to: this definition, the discfepancy of points sampled by
the square-grid sampling method (cf. Fig.l-a) is quite large: suppose
we sample all mesh points of {xi=(j—0.5)/m ! j=1,2,-;-,m; i=1,2,..-,d}
then the number of points sampled is md while their discrepancy is as
large as 1/m, since no point is sampled from domains {(xl,xz,;--,xd) I

(j—O{S)/m<xl<(j+O.5)/m; Oéxiél, i=2,3,.--,d}, j=1,2,...,m-1, and
these domains are of volume 1/m. This large discrepancy is contradic-
tory to our common sense: our common sense is that square-grid sampling
gives points distributed uniformly. The contradiction arises from that
R is a hyper-rectangle and not a hyper-sphere. We, therefore, introduce

another definition of uniformity. The definition is stated so as to

-9 =
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be applied to sampling with unequal probability.
We denote the cell surrounded by 2d hyper-planes x. = xgji_l)

= (Jl) 1=1.2 *
and Xi = Xi N 1"19 ,".9d) by

: C[Jl,er, . ",Jd].

Definition 1. The distance ple,c') between cells ¢ = C[jl,jz,---,j
2 sy wr oL a1 g
and ¢ v“'C[Jl:st ,Jd] 18

al

;1

J=d Jo=d4
1712, 20202 0, Jd7d g~ d)2}1/2.

(17) pleye’) = {(
o Py Pa

We call a set of all cells that are located within a distance p from

a given cell a sphere of radius p.

Definition 2. Letn cells Be sampled, and extend the sampled cells
periodically:'if C[jl,jz,-",jd] is sampZed then regard all the cells
C[j1+i1p1’j2 '2p2,.. ’Jd dpd] with arbztrary zntegers 11’ 12 vee, id
as being sampled Consider a sphere R and let the volume of.R be |R|
Let z, (R) denote the mumber of ceZZs sampled from R. The dtscrepancy

of these n cells is the least upper bound of the quanttty
(18) |z (R)/n - [RI].

Definition 3. The distribution of a set of cells is uniform 1if the
discrepancy of them is of the same order as the discrepancy of almost
the same number of cells ‘sampled by square-grid éaﬁplingr

Similarly to the definition of'unifofmity; we define the evenness
so as to accommodate w1th sampllng w1th unequal probability. '

Definition 4. If aZZ the cells have an equaZ probabzlzty of betng

sampled, then the sampling is even.

3.3. Requirements on sampling

We require our sampling method to be even and to give a uniform

distribution in a stronger sense than that given in definition 3.

- 10 -
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i) Sampling must be even.

ii) Sampling must give a highly uniform distribution such that the
sampled elements are highly evenly distributed over all strata
w.r.t. each X,

iii) Sampling must be performed fast and easily.

Let us explain the second requirement by considering a simple
example in two dimension: let 1 and pz be 13 so that the parameter
space is divided into 169 cells, and let us sample about 25 elements.
The elements obtained by square-grid sampling are distributed uni-
formly, as is illustrated by Fig.l—a. We see, however, that the
sampled elements are quite unevenly distributed over the strata w.r.t.
Xy and Xy. Let us next consider the sample illustrated by Fig.1-2,
where the elements located at the center of cells numbered are sampled
in this order. We can see that the sampled elements are highly uni-
formly distributed globally as well as over the strata w.r.t. xl'and
Xy. Note that the sample in Fig.l-b is systematic: the sampling was

performed parallelly with the x, axis by skipping six cells in the

2

X, direction and two strata in the x, direction. If we skip no stratum

1

in the X1 direction, we have the sample illustrated by Fig.l-c, the

cells of which are not uniformly distributed.

| Fig.l-a | | Fig.1-b | | Fig.l-c |

3.4. Algorithm

The sampling method to be proposed in this paper is a straightfor-
ward generalization of the method illustrated by Fig.l-b. The essen-
tial factor that makes our sampling method possible is that all P,
i=1,2,...,d, are chosen to be prime numbers. Since we assume the
number of cells is sufficiently ;arge, our problem is essentially how
to sample cells, and how to sample an element in each sampled ¢cell is
a subsidiary problem. We, therefore, describe only the method for
_sampling cells.

Let Py» Pys *°5 Py be prime numbers, which are not necessarily
different from each other. Suppose we want to sample about n, cells,

where
max[py, Pys "7, Pgl << m_ << PPy toRy-

- 11 ~
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Let kl, k2’ LRI kd denote positivg integers such that
0 < kl < Py (detailed specification is given in §4.2),
(19) Pylky = pally = +r- - Py/Kys
(20) PPy P/ (Rykaeeoky) = n .

We give the term leading cells to the following set of cells

ék}.

3 eoe < 3 < .o < oz
{C[lijz’ ,Jd] l 1 = 32 - kz’ H 1 = Jd d

The shaded area in Fig.1l-b manifests the leading cells. It is easy to
determine k2’ k3, '--,_kd satisfying (19) and (20). Our sampling is

performed by the following algorithm:

Algorithm SYSCLUST

Being given a set of prime numbers (pl,pz,---,pd) and a set of
increments (kl,kz,---,kd) satisfying (19) and (20), this algorithm
samples about n, cells systematically.
Step 1. [Initial cell.] Select an initial cell randomly from the..
leading cells.
Step 2. [Next cell.] Sample the next cgll according to the following
procedure:
PROCEDURE NEXTCELL([§1,3,5"*5341)

Zcomment: this procedure determines a cell to be
sampled next to the cell C[jl,j2,°--,jd];

i<« d;

INCREASE: j < j;+kyg;
if j > py then go to UPPLACE;
replace ji in [j1,33,+-,3gq]1 by 33
return '[j]_’st' M ’jd];

UPPLACE: replace ji in [Jj1,j9,--+53q] by i-pi;
if i = 1 then return [j3,j2,'**,3ql;
i<« di-1;
go to INCREASE;
end;

Step 3. [Terminate.] If all strata w.r.t. xl are scanned then
terminate sampling else go to Step 2.

- 12 -
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That the above algorithm terminates is easily proved by the

following well-known fact in elementary number theory:
{a, atb, at+2b, -+, at+(p-1)b} = {0, 1, 2, -+-, p-1} (mod p),

which is valid for any integers a, b#0, and prime number p. Similarly,
it can be easily proved that the cells sampled are highly evenly dis-
tributed over all the strata w.r.t. each Xi' Furthermore, the algorithm
is quite fast and easily programmed. Detailed analysis of the algorithm
is given in the next section.

Let us show the performance of the above algorithm by a simple
example in three dimensioﬁ, where pl=p2=p3=7, k. =k, =k_ =2, and the

17273
initial cell C[1,1,2]. Then, the sampling will be done as follows:

C[l,l,Z] > C[l,l,l}] -+ C[l:l"6] + C[1’391] - C[la393]
-+ C[1,3,5] »~ C[1,3,7} » C[1,5,2] + C[1,5,4] - C[1,5,6]
-+ ¢[1,7,1] - C€[1,7,3] - Cc[1,7,5] - C[1,7,7] = €C[3,2,2]

> e

The sampling will terminate after scanning the first, third,  fifth,
seventh, second, fourth, and :-sixth strata w.r.t.'xl in this order. -We
can see the sampling is similar to counting numbers modulo 73, where
the numbers are of three figures with radix 7 and the increment in each

place is 2.

§4, Analysis of the sampling method proposed

Let N and M denote the number of total cells and the number of

leading cells, respectively:

(21) N = PPy Py

“kokocvek

(22) M 9%3 4

Let us call a set of cells sampled by algorithm SYSCLUST a cluster.

- 13 -
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4.1. Structure of a cluster

It is clear that algorithm SYSCLUST samples only one leading cell
when it is scanning the first stratum w.r.t. Xy» and no leading cell is
contained in other strata w.r.t. x,. The algorithm will scan 121 strata

1

w.r.t. X successively, and the scanning terminates before the first

stratum is scanned again. This proves the following lemma:
Lemma 1. Algorithm SYSCLUST samples only one leading cell, that is
the cell sampled initially. v

Let us next consider what happens when we remove the termination
condition in algorithm SYSCLUST. Then, the sampling will continue
forever, while the number of cells is finite. Hence, the same cell
will be sampled periodically. Suppose a cell is sampled twice just
after sampling %, cells. This means that the sampling is done by

d

transferring from a stratum w.r.t. X, to another Ed times, zd_l
= [ldkd/pd]xtlmes for the strata w.r.t. Xq_10 %o = [Qd—lkd—l/pd—l]
times for the strata w.r.t. xd_z,.and,so on, where [a]. is the Gauss'..

notation denoting the largest integer not exceeding a. That is
= < i= e
llkl Sli_lpi + ri’ 0= ri < Pi’ i=2,3, 24,

+r 0

A
ol
A

fiky = 2pRy * Ty 1 <P

On the other hand, since the same cell is sampled again, 2.k k

© d*a> a1
+y 2.k, must be multiples of Pg» Py_1> "°°» Pp» respectively:

da-1’°
11
ii iti

2.k, = q.p., 4y is an integer,. i?l,Z,f"sd{

These relations on li are consistent only when r, = 0 and qi = li—l:

kg = 9Py
foky = 4Py
gk, =

d“a = *a-1Pa’
The first two of these equalities give lzklkz = q;P¢P,- Since

- 14 -
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GCD(klk ) =1, &, must be a multiple of PiP,- Similarly,

2°P1P> 2

liklkzo-'ki = qlplpzoo.pi’ 1:2,3,---’d,

and li must be a multiple of P1Py Py i=1,2,+-+,d. Since the number
of total cells is plpz---pd, the same cell is sampled if Ed = plpz---pd.

This gives ql =k k «ook and li ';kd, i=1’2’...’d0

152" kg = P1PptPikiiRiy”
Thus, we have proved the following lemma:

Lemma 2. The procedure NEXTCELL in algorithm SYSCLUST does not

sample the same cell until it samples all the N cells.

If C[jl,jz,"',jd] is the cell sampled last by algorithm SYSCLUST,

then it satisfies the conditions

g =1+ (pl—l)kl (mod pl),

Pi_ki < ji £ Pi, } i=2,3,+--,d.

Hence, the cell to be sampled next to C[jl,j2;°--,jd] by procedure
NEXTCELL in algorithm SYSCLUST must be one of the leading cells. This

consideration leads us to the following corollaries:

Corollary 1. Any two sets of cells sampled by algorithm SYSCLUST

with two different initial cells have no common cell.

Corollary 2. The total N cells are completely divided into M non-
overapping clusters by algorithm SYSCLUST.

Since a cluéter is selected randoml& in algoritm SYSCLUST, each
cell has an equal probability of being sampled due to corollary 2.
This proves the evenness of our sampling. Since the .number of clusters
is equal to the number of leading cells, the average number of cells

contained in one cluster is
N/M = pypy e 1Pyl (kpkyr ooky) = m-

This proves that algorithm SYSCLUST samples about n, cells.

- 15 -
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Let us first consider the minimum distance between two sampled
cells ¢ and c' which are contained in the same stratum w.r.t. Xg-
¢
Then, the distance is not less than k2/p2 because these cells are

Suppose ¢ and c' are not contained in the same stratum w.r.t. x

sampled with the increment k, in the x, direction. Next, suppose

2 2
the cells are contained in the same stratum w.r.t. x, but not in the
same stratum w.r.t. x3. Then, the distance is not less than k3/p3

by the similar reason to the above. Continuing this reasoning, we

find the following lemma:

Lemma 3. Let aq cell ¢ = C[jl,jz, ---,jd] be sampled by algorithm
SYSCLUST. Then, no cell is sampled from the set of cells &
{C[jl,jé,---,jé] | jiéjé<ji+ki’ 1=2,3,+++,d} except for ec.

Corollary 3. In each stratum w.r.t. Zqs the distance between two
cells sampled by algorithm SYSCLUST is not less than

pl = min[kz/?z, k3/p3; Tt kd/pd]m

If we consider the distance between cells contained in different

strata w.r.t. xl, the minimum distance may be less than pl.

Let us next consider the maximum distance between two neighboring
cells sampled. Let us consider, for a given cell C[jl,j2,°~-,jd], the
set of ;ells {C[jl,jé,jé,"‘,jé] l jzéjé<j2+k2; léjiépi, i=3,4,-++,d}.

Since the increment in the x2 direction is k2

samples at least one cellvfor some value of j!, let the value be 52,
from this set)

» algorithm SYSCLUST

t
and does not sample cell for other value of jé. Next, consider the set

of cells {C[jl:jzajés"'sjé] I j3éjé<j3+k3; 1§j£§Pi, i=4’5:"'sd},
then we see algorithm SYSCLUST samples cells from this set for only

one value of jé by the similar reason to the above. Continuing this

reasoning, we finally see that algorithmVSYSCLUST samples at least one

. Y eee i .t s Lstos .. .
cell from the set {C[Jl,JZ, . ,Jd_l,Jd] l Jd_3d<3d+kd} Since the
increment in the Xy direction is kd, it is impossible to ‘sample more
than one cell from this set. This leads us to the following lemma:.

- 16 -
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Lemma 4. For any cell C[jl,jz,---,jd], algorithm SYSCLUST samples
Y PSIY
only one cell from the set of sells {C[Jl,gz, ,Jd] | Ji_Ji<Ji+ki,
1=2,3,+++,d}.

Corollary 4. The maximum of the distance between two neighboring
cells sampled by algorithm SYSCLUST is not greater than

2 2
0y = Why/o)" + (y/p™ + oo+ Gyl HM/2,

Lemmas 3 and 4 show that, in each stratum w.r.t. X the distri-
bution of the cells sampled by our method is quite similar to that in
square-grid sampling. The corollary 4 tells us that the discrepancy

of the cells sampled by algorithm SYSCLUST is of order

23 by = o = a¥Paspl,

where <k/p> is the average of ki/pi’ i=2,3,-F-,d:
<k/p> = (ky/p, + kg/py + =++ + Kk, /p)/(d-1).

Using the relation (20), we have 1/nc = <k/p>dh1/pl and

(23") D, = dd/2

1 p1<k/p>/nc.

On the other hand, if about n, cells are sampled by the square-grid
sampling methd, the minimum distance between two cells sampled is about
_ 1/d
Pg = (l/nc) s
and the maximum of the'distance between two neighboring cells sampled
is about L -
2 2 - 2,1/2 _ 1/2 ¢
(pp *pg + 2+ pg) " = e
Hence, the discrepancy of the cells sampled by,the square-grid sampling

method is of order

(24) D, = (4
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The quantity D, is not so much different from D, and algorithm

>
SYSCLUST gives a hiéhly uniform distribution. Note ghat, if we sample
cells randomly, the discrepancy of the cells sampled is O(l//E;) and
it is much greater than DO and Dl.

So far, we have not mentioned on how to determine the value' of kl.
(The above discussions are valid for any value of kl.) Comparison of
Figs.1l-b and 1-c shows that some value of kl will give a highly uniform

distribution in the x plane while another value of kl will not.

-X
We want to determine ihezvalue of kl so that the discrepancy of the
cells sampled may be minimized. The determination of the best value
of kl is, however, quite difficult. We, therefore, calculate only a
good value of kl’ instead of the best value, in the following way. We

project the d-dimensional distribution on the x plane and consider

-X
only the two-dimensional distribution, as is shiwnzby'Fig.l. Note
that the projected distribution is the same as that obtained by
applying algorithm: SYSCLUST in two dimension. Then, for a given kl’
we can easily compute the minimum of the two-dimensional distance
between neighboring cells sampled. By changing kl from 1 to [pl/Z],
we determine the value of~kl so that the minimum is maximized. This
process can be performed easily by a computer. The distribution

shown in Fig.l-b was obtained in this way.

4.3. The mean and the error

We have seen that the total N céllé are divided into M nonover-
lapping clusters. In actual sampling, we may apply algorithm SYSCLUST
several-times and sample_several cluSteré. ‘Supbose’ﬁe sample m
different élustérs fandoml&. Let ni:déqopg thg nﬁmbe?vqf cells
contained in the i-th cluster,uwi‘thg size of the i-th cluster, and
Wij the sizg of the j-th cell in the i-th clqster:

M
N = .Z,ni,

i=1

W nl
,Wi,=fz LAFE
. j=1 %)

- 18 - -
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Let §i be an unbiased estimator of the i-th cluster mean §i' The
expression of v is the same as that for stratified sampling, since

in both our and stratified sampling methods, the population is divided
into subpopulations (in our case, a cluster is divided into cells) and

sampling is done in each subpopulation. That is;
(25) y.= )Y Gw, MW Y. .,

where §ij is a sample mean in the j=th cell of the i-th cluster.
According. to section 2.2, an unbiased estimator of the total population

mean Y is given by
(26) 'y =
Next, let us consider the variance of y, the square root of which

gives an estimate of the error of y. The same reasoning as used. in

deriving formula (9) leads us to the formula

o1, 1w 2. -
@27 ‘:VV(Y) = —151- {Sb (l-ﬁ) +_"z (Mwl) Y(Yi)}'s
. M i=1
where Si and V(§i) are given by
1 M

2 - =2
(28) S =— ) (W,y, -7,

by g TR
2 sy =} 2ys
@ 95 - B i,

Here, V(§ij) is”the'éariance of §ij and we neglec;ed tﬁe figite .
population correction. (The finite population corrections go to zero
as the population size increases.) ' ‘ ' - A
The above formulas are mot expressed in terms of quantities
being calculable from‘a'éaﬁple:“ In order to estimate the error from
a sample, we need estimators of SE, V(§i), and V(y). Let nij denote
the number of elements sampled from the j-th cell in the i-th cluster.
It is clear that, unless m > 1 and ﬁij > 1, we have no unbiased
estimators of V(y) and V(§i). Ifm > 1, nij > 1, and elements are

sampled randomly in each cell, we have

- 19 -
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(30) v(y) = —v{s (1——) +—= 7 (MW ) v(y )1,
m om i=1
2 1 n 2
(31) 'sb=———Z(Mwy—y),‘
m-1 i=1
L n{
(32 v = [ (v /w> st 5/my;
j=1

as estimators of V(y), Si

estimator of the variance of yij'

and V(§i),'respectively, where sij ls‘the

Practically, however, it is quite often that nlJ = 1, i.e., only
one element is sampled from a cell, and it may even happen that m = l
i.e., only one cluster 1s sampled. We,»therefore, present practlcal
(biased) estimators for the case of nlj = 1.

1f Pys> Pys **°» Py are suff1c1ently large, we may neglect the
intracell variance because the cell is sufficiently small, that 1$,
we set sij to zero. This approximatlon gives the follo&ing~under—

estimating estimator:
(33 v, = (Z/m (1D,
1V T M

This estimator can be used only when more than one cluster is sampled.
The second estimator is obtained by regarding a cluster as a
random sample. The cells in a cluster are highly un1form1y dlstrlbuted
over the parameter space, and the discussion in section 2.3 tells s’

that this approximation is not bad in most cases. Then, variances

V(y ) and V(y) may be estlmated by

_ 1 1 . . ij v N ‘S]!.,z, .
(34) v, (5) =— -y = —,
; o 2 Y1 - ny n 1 z ( Wy 7ij yl) } 0y
) l., - , 3{2 :
(3% v,y == W)=,
%L o mti=l ny.

respectively. The estimator (35) can be used only when m =-1.
‘The third formula is obtained'by combining formulas (33) ‘and- (35):
‘ 1 1 m '2
(36) vy = —{ (1—-) += ] (MW) 1,
U , o

m i=1 nj

- 20 -
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where siz is defined in (34). This estimator can be used only when
m > 1. Note that the variance of the sample maen in stratified sampling
is always smaller than that in simple random sampling. That is,
V(§i) < V2(§i), where V2(§i) is the same as v2(§i) defined in (34)
except that the averaging is done over all the elements contained in
the i-th cluster. Therefore, formula (36) is an overestimating esti-
mator of V(y).

In applying formula (26), the author finds that it is often better

to use the estimator
_ m m
| -
(37) y' = .Z LA / ('Z W)
=1 i=1

)

than to use (26). The reason is as follows. Putting y(xl,x2,~--,xd

to 1 in (26),_we have the theoretical identity

This identity is, however, not always satisfied in actual cases, which
often causes a considerable error in y if M is much greater than m.

Using formula (37), the above identity is always satisfied.

§5. Practical aspects

5.1. Merits of the systeﬁatic sampling proposed'

Our sampling method has various merits.

i) Applicability of various acéufacy increasing techniques. In order
to attain accuracy without increasing the sample size, it is generally
necessary to utilize information about the popuiation and design an
effective sampling method. For exampie, in stratified sampling, a high
- accuracy will be obtained if we perform sampling in such a way .that the
number of elements.sampled from each stratum is proportional to the
square root of the intrastratum variance. Thus, to collect information
about local behavior of the-populatioh is a key for using various accu-

racy increasing techniques. Such information is usually collected by

- 21 -
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sampling and accumulated as one-dimensional or, at most, two-dimensional
data [3], [41, [5], [6]. That is; the information in the d-dimensional
space is projected on one- or two-dimensional spaces. If the informa-
tion is éollected by square-grid sampling, the data will be accumulated
in several narrow regions in each axis. Such data do not give enough
information about the local behavior of the population. On the other
hand, the information is collected from the population highly uniformly
in our method and projected over all strata w.r.t. each axis highly
evenly.

ii) Predictability of sampling. Let & = 0[31,52,---,§d] be one of
the leading cells and let ¢ = C[jl,j2,~--;jd] be the cell to be sampled
2th by algorithm SYSCLUST with the initial cell &. We can calculate
(jl,jz,---,jd) by solving simple cOupléd equations. Let li be the
number of times of transfer from a stratum w.r.t. ii to another in the
course of sampling from & to ¢. Then, referring to the discussion

pfeceding'the lemma 2, we have the following relations:

A

' = k 5 = - Y T L2 :
ziki zi_lpi + s 0= r, < p;» 1 d,d-1, .1, 0 20 < P;-

From these relations, we can successively calculate-zi and ri, i=d,d-1,
«-+,1. 'The set (rd,rd_l,-oF,rl):gives (jd,jd_l,--'5j1) directly, for

:.____? : s 6 < . © . e .
example, PR Y + r, 1f i; + ri 2 p,- That is, any cell- to be sampled
is predictable. Similarly, for a given cell c ='C[ji,j2,"',jd], we

e e

can predict whether c‘isvsampled oTr not. Eliminatingrld, ld—l’ s

and ll in the above relations, we have

gy qoeoky) = ryley gk ooock) + (pxy (kg 5o tky) o

) (

+

(PP T2 Kaug™ k) * 70
+ (PgPgoqt PP Tyt (PgPg gt PP Ay

as a necessary condition for £, ri, i=d,d-1,---,1, and.lo. Conversely,

i < cee S r ‘
if 2, 2., 0= £0‘< Pys and a set (rd’rd—l’ ,rl), 0 .= r, <Py

0,

- 29 -
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i=d,d-1,---,1, satisfying the above condition are given, we can
calculate li’ i=d,d-1,---,1, uniguely. Therefore, by converting
(jl,j2,~--,jd) to (rl,rz,---,rd) and by checking the above gondition,
we can predict whether ¢ is sampled or not. The predictability of
sampling makes our method quite flexible in actual applications.

iii) Applicability of parallel sampling. In our method, all the N
cells are divided into M nonoverlapping clusters and each cluster is
specified by one of the leading cells. Therefore, if only we choose
m different leading cells initially, we can sample m clusters
parallelly.

iv) Controllability of sample size. Controllability of the sample
size is directly related to controllability of the computing time,
hence it is important in high dimensions where large sample sizes
are often necessary. Our experience shows that the size of a cluster
in our method can be controlled within the accuracy of about 0.1.

On the other hand, in square-grid sampling for example, the size of
a sample is‘md with m an integer and it changes largely when m is
changed.

v) Sequential access to the memory space. Suppose the population
§)=:{y(xl,x2,--',xd)} is composed of a large amount -of data. Then,
in the scheme of random sampling, random access to a large data space
is necessary, which is computationally quite inefficient. In our
method, we can make an ordering of the data so that the access to
the memory may be done sequentially. Another merit of scanning the
parameter space sequentially is found in [12].

vi) When y(xl,xz,---,xd) is a rational function in Xys Xy 000, and
Xy, We can sample y quite fast so far as the sampling is done from
the elements located at the centers of the cells. Let us explain
this by the following simple example in three dimension:

1

y(x »X ,oco’x) = .
1°72 d xg + 2x3(x2 + xl) + x2 + 2x,x. + x2 +1

2 271 1

In our method, the value of x, is changed each time an element is

3

2
changes only Py times. Therefore, the

sampled, while the value of x, remains unchanged for several changes

of Xgs and the value of 3
following FORTRAN program will evaluate y(xl,xz,---,xd) efficiently.

- 23 -
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FUNCTION Y(I) ‘,
c "I" IS THE SMALLEST OF INDICES OF XI WHICH ARE
c CHANGED BY PROCEDURE "NEXTCELL".

COMMON X1,X2,X3,A,B,C,D

Go TO (1,2,3),I

1A=X1*X1+1
B = 2%X1
2 C = X2%(X2+B) + A
D = 2*(X24X1)
3 Y= 1/(X3*%(X34D) + C)
RETURN
END

5.2. Numerical investigations

We have tested our method by the following three functions:

(A) Y(}\cl’xz’ M :xd) = .-ﬁ_(zxi) s
i=1
d 2

(B) y(xl,xz,o'-,xd) = ;Eg{l + b(l—6xi+6xi)}, b =1,
d 2.3

) y(xl,xz,---,xd) = ;[E{l + c(xi—3xi+2xi)}, c =8,

where the population mean is 1 for all examples and the population
variance is (4/3)d-1 for A, (l+b2/5)d—l for B, and (1+c2/210)d—1 for
C, respectively. -We set Py =Py = **° =Py =P and determine the

£ .o < S oo S <

increments kz, k3, s kd so that k2 = k3 s = kd = (k2+l) and
the average cluster size may be slightly greater than n_.

Tables I and II show results of sampling in eight dimension.

| Table T | | Table II |

We see that, for A and C, our method gives the results which are not
so much different from those expected from simple random sampling.
While, the sample means for B are systematically smaller than the
population mean. This is due to that function B has narrow and high
peaks at X, = 0 and 1, i=1,2,--*,d. Hence, the same trend will be
observed if we apply simple random sampling to B.

Using functions A, B and C, and setting p to 23, 31, 43, d to

- 24 -
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4, 6, 8, 10, m to 2, 4, and n, to‘IOOOO, 20000, 40000, 80000, we have
tested our method many times. ' The results show almost the same trends
as those observed in tables I and II. We, however, noticed the fol-
lowing two phenomena: the sample means for A and C obtained by our
method are often much more accurate than those expected in simple
random sampling; for each example, the sample means are sometimes
deviated much from the population mean, while the estimated wvalues

of the errors are not deviated much. We observed that the latter
phenomenom is related to the selection of initial cells.r The set of
leading cells {C[l,jz,j3,---,jd] | 15 ig g k., i=2,3,.--,d} form a
hyper-rectangle. If a cell located closely to a corner of this
hyper-rectangle is selected as the initial cell, then thevséﬁple mean
is often-deviated much. This phenomenom is an intrisic fault of the
systematic sampling. In actual applications, therefore, we had better
choose initial cells carefully.  The author recommends to sample the

initial cells not randomly but uniformly from the set of leading cells.
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center of the cells numbered are sampled in this order, c) sampling is same

as b except that the increment in the x

1
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Problem A
cluster ?1 = 0.9897, Vv2(§1) = 0.0271 ( 0.0298 )
cluster ?2 =1.019 , Vv2(§2) = 0.0288 ( 0.0298 )
total y' = 1.0046, ¢v3(§') = 0.0234 ( 0.0211 )

Problem B
cluster ?l = 0.9757, Vv2(§l) = 0.0161 ( 0.0181 )
cluster iz = 0.9757, sz(?z) = 0.0170 ( 0.0180 )
total ¥' = 0.9757, Vv3(§') = 0.0118 ( 0.0128 )

Probiem C
cluster ?l = 0.9922, sz(?l) = 0.0268 ¢ 0.0271 )
cluster 72 = 1,015 , sz(iz) = (0.,0285 ( 0.0270 )
total §' = 1.0036, Vv3(§') = 0.0219 ( 0.0191)

Table I. Results of sampling in eight dimension (d = 8). Other
parameters are p = 31 (the number of intervals in each axis), m = 2
(the number of clusters sampled), and n = 10000 (the expected size

of a cluster). The population mean is 1. The estimators (25) and
(34) are used for each cluéter, and (37) and (36) are used for the
cluster sum. For comparisqn; the expected error in simple random
sampling are appended in parentheses. The cluster size is 10095

for cluster 1 and 10150 for cluster 2.
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Problem A

cluster 1 : §, = 0.9497, /vz(yl) = 0.0266 ( 0.0298 )
cluster 2 : 5_’2 = 1.025 , ,(3,) = 0.0298 ( 0.0298 )
cluster 3 : §, = 1.005 , /v,(3;) =0.0288 ( 0.0298 )

cluster 4 : y, = 0.9773, Vv2(§4) = 0.0278 ( 0,0298 )

total : §' = 0.9893, vv, (¥') = 0.0166 ( 0.0149 )

Problem B
cluster 1 : ?1 = 0.9642, sz(?l) = 0.0158 ( 0.0181)
cluster 2 : ?2 = 0.9295, /v2(§2) = 0.0154 ( 0.0180 )
cluster 3 : ?3 = 0.9540, ¢v2(§3) = 0.0154 ( 0.0181 )

o

cluster 4 ?A = 0.9688, Vv2(§4) = 0.0166 ( 0.0181 )

F' = 0.9541, Jv3(§r') = 0.0088 ( 0.0090 )

total

.

Problem C

0.0283 ( 0.0271 )

cluster 1 : §. = 1.006 , VV2(§1)

0.0290 ( 0.0270 )

cluster 2 : 72 = 0.9944, /v2(§2) =

cluster 3 : §3 = 0.9882, sz(?3) = 0.0283 ( 0.0271 )

cluster 4 : §4 = 0.9862, sz(?é) = 0.0276 ( 0.0271 )
total : §' = 0.9938, VV3(§') = 0.0144 ( 0.0135)

Table II. Results of sampling in eight dimension. Parameters are
the same as in Table I except that m = 4. The cluster size is 10095
for cluster 1, 10151 for cluster 2, 10097 for cluster 3, and 10095

for cluster 4,
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