ON A {1,2}-FACTOR OF A GRAPH

by
Jin Akiyama*
Hiroshi Era**

Abstract.

A criterion for the existence in a graph of a spanning regular subgraph of degree 1 was found by Tutte [4], [2, Theorem 9.4]. We now give an analogous criterion for the existence in a graph of a spanning subgraph whose point degrees are 1 or 2.

1. DEFINITIONS AND NOTATION

A <u>factor</u> of a graph G is a spanning subgraph of G which is not totally disconnected. An <u>n-factor</u> is regular of degree n. We define a new factor of a graph called a $\{1,2\}$ -factor of a graph, which is strongly related to a spnning linear forest of a graph.

Let G be a graph and H be a subgraph of G. A subgraph H is called a $\{1,2\}$ -subgraph of G if $1 \le \deg_H v \le 2$ for every point v of H. Then H is called a $\{1,2\}$ -factor of G if H is a factor of G. In other words, a $\{1,2\}$ -factor of G is a special kind of a spanning linear forest of G having no isolated points. Every graph has, of course, a spanning linear forests, but not necessarily $\{1,2\}$ -factor. We illustrate two graphs having no $\{1,2\}$ -factors in Figure 1.

^{*} Dept. of Mathematics, Nippon Ika University, Kawasaki, 211, Japan ** Dept. of Mathematics, Tokai University, Hiratsuka, Japan

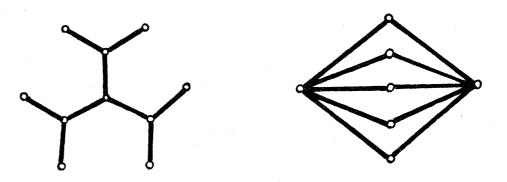


Figure 1. Two graphs having no {1,2}-factors.

Throughout this sections we denote by $S_{\mathbb{Q}}(G)$ a set of isolated points of G. A $\{1,2\}$ -subgraph M of G is called $\underline{\text{maximal}}$ if the inequality $|V(M)| \ge |V(M')|$ holds for any $\{1,2\}$ -subgraph M' of G (M standing for M maximal).

Let v, w be points of G and M be a maximal $\{1,2\}$ -subgraph of G. Then a vw-path P = $[v = v_0, v_1, \cdots, v_{\ell} = w]$ in G is called a vw-<u>alternating path</u> with respect to M if the lines of P alternately lie in M, saying more precisely, $v_{2k}v_{2k+1} \notin M$ and $v_{2k+1}v_{2k+2} \in M$ for $k = 0, 1, \cdots, \{\ell/2\}$ -1. In Figure 2, we illustrate a maximal $\{1,2\}$ -subgraph M by the lines with slash and a vw-alternating path P with respect to M by the bold lines.

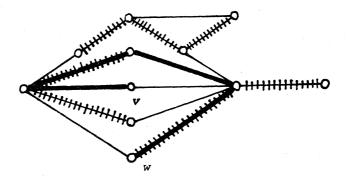


Figure 2 A maximal $\{1,2\}$ -subgraph M and a vw-alternating path with respect to M.

2. CHARACTERIZATION

The following theorem gives a characterization for graphs possessing a $\{1,2\}$ -factor. In general, this test for a $\{1,2\}$ -factor is quite inconvenient to apply.

THEOREM 1 A graph G has a {1,2}-factor if and only if the following inequality holds:

$$|S_0(G - S)| \le 2|S|$$
 for any point subset S of G.

NECESSITY OF THEOREM Suppose that G has a {1,2}-factor F. Denote by F_1 , F_2 ,..., F_r , the components of F. Let S be any point subset of G and $V_i = \{v | v \in S_0(G - S) \text{ and } v \in V(F_i) \}$.

Then
$$\bigcup_{i=1}^{r} V_{i} = S_{0} \text{ (G - S), and } V_{i} \cap V_{j} = \emptyset, i \neq j.$$

From the fact that every component F_i is either a path or a cycle, the following inequality follows at once:

$$2|S \cap V(F_i)| \ge |V_i|, i = 1,2,...,r.$$

Thus we obtain the inequality:

$$2|S| = \sum_{i=1}^{r} 2|S \cap V(F_i)| \ge \sum_{i=1}^{r} |V_i| = |S_0(G - S)|.$$

We require three lemmas in order to prove the sufficiency of the theorem.

<u>PROOF</u>. Suppose that $deg_M(u_{2i-1}) = 1$ for some i.

Denote by M' the subgraph of G obtained from M by deleting lines $u_{2j-1}u_{2j}$, $j=1,\ldots,i$ and adding lines $u_{2j}u_{2j+1}$, $j=0,\ldots,i-1$ instead. Figure 3 illustrates a path $p=[u=u_0,\ldots,u_{12}]$ in M and M' when i=4, respectively.

P in M:

u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 1 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 1 2

Figure 3 A step in the proof of Lemma 1

Then the following relations are easily verified:

$$\deg_{M'}(u_j) = \deg_{M}(u_j)$$
 for $j = 1,..., 2i-2$.

and

$$\deg_{M'}(u_0) = 1, \deg_{M'}(u_{2i-1}) = 2.$$

Furthermore,

4

 $\deg_{M}(v) = \deg_{M'}(v) \quad \text{for every point v of M other than points}$ $u_{i}, i = 0,1,\ldots 2i-1. \quad \text{Thus we see that M' is also a $\{1,2\}$-subgraph of G, contradicting the maximality of M since $|V(M')| > |V(M)|$.}$

In a quite similar way, we obtain that

$$\deg_{M}(u_{2i}) = 1 \text{ for } i = 1, 2, \dots$$

We denote by $\underline{A(u)}$ (or $A_M(u)$) the set of all points v of G such that there exists a uv-alternating path with respect to a maximal $\{1,2\}$ -subgraph M. Note that A(u) = V(M).

<u>LEMMA 2</u> Let u be a point of G - M and P = $[u=u_0, u_1, \ldots, u_k]$ be an alternating path. If a point w is adjacent to one of u_{2i} of G, then w is a point of A(u) and its degree in M is 2: that is,

$$w \in A(u)$$
 and $deg_M(w) = 2$.

PROOF. Suppose that $w \notin A(u)$ or ''w $\in A(u)$ and $\deg_M(w) = 1$ '',

then we could have another $\{1,2\}$ -subgraph M' of order greater than |V(M)| in a quite similar method applied in the proof of the previous lemma. This contradicts the maximality of M. \square

LEMMA 3 Let u be a point og G - M and v be a point in A(u), then every component of M containing v is isomorphic to the path P_3 .

<u>PROOF.</u> Let v be a point in A(u) and P = [u = u_0 , u_1 , \cdots , u_k = v] be an uv-alternating path. We divide the proof into two cases depending on the parity of k.

CASE 1. k: odd

It follows immediately from Lemma 1 that $\deg_M(v) = 2$, since $v = v_k$ and k is odd. We now suppose that the component of M containing v is not isomorphic to P_3 . Then M would contain either a path $P_4 = w_1$, v, w_2 , w_3 or a triangle $C_3 = w_1$, v, w_2 , w_1 . Again applying the same method as in the proof of Lemma 1 we could construct a bigger {1,2}-subgraph of G than M, contradicting the maximality of M.

CASE 2. k: even

Considering the fact that the line $u_{k-1}u_k$ ϵ M and tha k - 1 is of course odd, the theorem follows at once from Case 1. \square

The second care set of the set

We are now ready to give the sufficiency of Theorem 1 by using the previous three lemmas.

SUFFICIENCY OF THEOREM

Suppose that G does not have a $\{1,2\}$ -factor. Let M be a maximal $\{1,2\}$ -subgraph, u be a point of G - M and S be a set defined by:

$$S = \{v \mid v \in A(u), \deg_{M}(v) = 2\}.$$

Noting that $\deg_{M}(v')$ = 1 for any point v' of A(u) - S, we see that the length

of every uv'-alternating path is even by Lemma 1. Thus every point w adjacent to v' belongs to S by Lemma 2, which implies that the removal of all the points in S from G results in v' isolated, that is, $\deg_{G-S}v'=0$. Furthermore it follows at once from the definition of A(u) that $\deg_{G-S}(u)=0$. Hence the following relation holds:

$$S_0(G - S) \supset (A(u) - S) \bigcup \{u\}.$$

On the other hand, since every component of M containing v ϵ A(u) is isomorphic to the path P₃ by Lemma 3, we obtain

$$2|S| = |A(u) - S|$$
.

Therefore the following inequality holds:

$$|S_0(G - S)| \ge 2|S| + 1,$$

completing the proof.

COROLLARY 1. Every regular graph has a {1,2}-factor.

<u>PROOF.</u> Let G be r-regular and S be any point subset of G. Consider the following two numbers D_1 and D_2 :

$$\begin{aligned} & \mathbf{D}_1 = \sum_{\mathbf{v} \in \mathbf{S}_0} \deg_{\mathbf{G}} \mathbf{v} = \mathbf{r} |\mathbf{S}|, \\ & \mathbf{D}_2 = \sum_{\mathbf{v} \in \mathbf{S}_0^{\Sigma} (\mathbf{G} - \mathbf{S})} \deg_{\mathbf{G}} \mathbf{v} = \mathbf{r} |\mathbf{S}_0(\mathbf{G} - \mathbf{S})|. \end{aligned}$$

Then the inequality $D_1 \ge D_2$ holds, since every point of $S_0(G - S)$ is adjacent to only points of S in G. Thus we obtain

 $2|S| > |S| \ge |S_0(G - S)|$ for any point subset S of G.

The proof is completed by Theorem 1. \square

This result follows at once from Tutte's \boldsymbol{T} heorem [5].

3. {1,2}-FACTORIZATION

If G is the sum of {1,2}-factors, their union is called an {1,2}
<u>factorization</u> and G itself is {1,2}-<u>factorable</u>. Using this terminology,
it has proved in [0] that every cubic graph is {1,2}-factorable.

A criterion for the decomposability of a graph into 2-factors was obtained by Petersen [3].

THEOREM A graph is 2-factorable if and only if it is regular of even degree.

By applying this, we obtain the following result:

THEOREM 2. Every regular graph is {1,2}-factorable.

<u>PROOF.</u> Let G be r-regular. If r is even, then G is 2-factorable by Theorem A and thus trivially $\{1,2\}$ -factorable.

We thus assume r odd. By Corollary 1, we see that G has a $\{1,2\}$ -factor F. By G' we denote the graph obtained by deleting all lines of F from G. Note that the degree of every point in G' is either r-1 or r-2. By adding a set I of new points and applying the method in the proof of Theorem 1.2 in [1], G' can be embeded into some (r-1)-regular graph G' as an induced subgraph. Applying Theorem A again, G' can be decomposed into (r-1)/2 2-factors, F_i , $i=1,\cdots$, (r-1)/2. Removing a set I of points from G', every F_i rusults in a $\{1,2\}$ -factor of G, since the deficiency e(v)=r deg v of each point v of G is at most one. Thus, these $\{1,2\}$ -factors F_i , $i=1,\cdots$, (r-1)/2, together with F constitutes a $\{1,2\}$ -factorization of G.

Theorem 2 has the following corollary, which was independently proved by Tutte [5].

COROLLARY 2. Every r-regular graph G has a $\{k,k+1\}$ -factor for every k, $1 \le k \le r$.

PROOF. The corollary is trivial when r is even, since G is 2-factorable by Theorem A. Thus we assume r odd. Then G can be decomposed into $\{r/2\}$ $\{1,2\}$ -factors F_1 , F_2 , \cdots , $F_{\{r/2\}}$ by Theorem 2. Note here that for any point v of G there exists exactly one $\{1,2\}$ -factor F_j such that the degree of v in F_j is one. Deleting all lines of F_1 , \cdots , F_i from G, we obtain an $\{r-2i, r-2i+1\}$ -factor of G, for any $i, 1 \le i \le [r/2]$. The proof is thus completed. \square

Acknowledgement.

The authors would like to thank Professor Frank Harary for some helpful suggestions on the presentation of this paper.

References.

- [0] J.Akiyama, G.Exoo and F.Harary, Covering and packing in graphs III: Cyclic and acyclic invariants. Math. Slovaca. (to appear)
- [1] M.Behzad, G.Chartrand and L.Lesniak-Foster, <u>Graphs and digraphs</u>, Holt, Rinehart and Winston, N.Y. (1979).
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading (1969).
- [3] J.Petersen, Die Theorie der regularen Graphen, Acta Math.

 15 (1891)193-200.
- [4] W.Tutte, The factorizations of linear graphs, <u>J. London Math. Soc.</u>
 22 (1947)107-111.
- [5] W.Tutte, The subgraph problem, Advances in Graph Theory (B.Bollobas, ed.), North-Holland, Amsterdam (1978)289-295.