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Abstract

A (0,1)-matrix is called graphic if it is a fundamental circuit
matrix of a graph. Given a (0,1)-matrix N, the graph-realization
problem is

(i) to determine whether N is graphic and

(ii) if graphic, to‘realize a graph which has N as its

fundamental éircuit matrix.
We propose a data structure called a PQ-graph based on PQ-trees and
then present an efficient algorithm for solving the graph-realization
problem by méans of PQ-graphs. A running time required for the
algorithm is O(va(v,k)), where Vv is the number of nonzero elements
of a given (0,1)-matrix N, k is the number of rows of N and
o(*,*) is a function defined in terms of Akermann's function. Since
the value of a(v,k) is not more than 3 for all practical values
of v and k, we can solve the graph-realization problem in a
running time almost proportional to Vv, the number of nonzero elements

of N.
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1. Introduction

A (0,1)-matrix is called graphic if it is a fundamental circuit
matrix of a graph. (The precise definition of a fundamental circuit

matrix of a graph will be given in the next section.) Given a (0,1)-matrix

N, The graph-realization problem is

(1) to deterﬁine whether N is graphic and

(ii) if graphic, to realize a graph which has N as its

fundamentél circuit matrix.

The practical importance of the graph-realization problem was
recognized about twenty years ago in the theory of electric networks [9],
while the problem of determining whether a given linear programme is
reducible to a network problem can also be formulated as>the graph-
realization problem (cf. [6], [7] and [2]).

A conéiderable number'of methods have been proposed for solving
the graph-realization problem up to now (cf. [2], [5], [6], [8], [11],
[12] and [13]). However, from the point of view of computational complexity,
most of these methods are not so efficient and seem to be‘improved by
employing recently developed data structures [1]. Denoting by m the
number of columns of a gO,l)Fmatrix N, Iri's algorithm [6] requires
an O(m6) worst-case running time, while N. Tomizawa has recently proposed
an algorithm by describing Tutte's algorithm.[IZ] in a more complete and
efficiently computable form and asserts that the worst-case running time

is O(ms). Also, R. E. Bixby and W. H. Cunningham [2] have recently proposed
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an O(mv) algorithm along the idea of [12], where Vv is the number of
nonzero elements of N. |

In the present paper, we propose a data structure called a
PQ-graph based on PQ-trees due to K. S. Booth and G. S. Lueker [3].
Using PQ-graphs, we present an efficient algofithm for solving the
graph—realiéztion problem which requires a running time almost proportioﬁal
to the number of nonzero elements of a given (0,1)-matrix N. A summary

of this paper was presented in [4].

2. Definitions and Assumptions

Let G(V,A;8+,8-) be a graph with a vertex set V, an arc set A
and functions 8+, 9 : A+ V. Here, for an arc a € A, 3'a and 93 a
are end-vertices of a and they are, respectively, called the initial

vertex and the terminal vertex of a. Such a graph is sometimes called

a directed graph. The graph is sometimes denoted by G(V,A) or more
simply by G if there is no possibility of confusion. If, for each
ae A, we are cbncerned with the set {8+a,8-a} but not with the orderea
pair (3'a,d7a) of the end-vertices of a, then we call the graph G
an undirected graph and we use the term "edge'" instead of "arc".

A path in a (directed or undirected) graph G(V,A) 1is a sequence
(VosapsVys2ys°

and arcs or edges a, (1<i<n) such that

°-,an,vn), with possible repetition, of vertices v, (0<izn)



{3%a.,57a.} = {v. _,v.} (1<i<n),
1 i i-1°'1 ==
where v_. and v, are called end-vertices of the path. When n = 0,

0

the path is degenerate. A closed path is a path whose end-vertices coincide

with each other. A path is called elementary if it traverses each vertex

at most once. Furthermore, suppose that the sequence (VO’al’Vl’aZ’...’an’

v_) 1is a path in a directed graph G. For each i =1, 2, **, n, if
da, = v, and 9 a. = v., then we say that a. is in the positive
i i-1 i i i e

direction of the path, or else, a; is in the negative direction. If, for

each i =1, 2, ***, n, a; is in the positive direction of the path, then

the path is called a directed path from Vo to v, and 5 and vy

are, respectively, called the initial vertex and the terminal vertex of

the path. Also, when 9a=+v' and 97a=v" for an arc a and vertices

+ - + . - - .
v and v, we say that v is adjacent to v  -and - v  is adjacent from

v'. A directed graph with no directed closed paths is called acyclic.

Let G(V,E) be an undirected graph with a vertex set 'V and an
edge set E. A set of edges of an elementary closed path in G  is called
a circuit in "G. A tree in G is a maximal set of edges which does not
contain any circuits. The complement, in the edge set E, of a tree is
called a cotree. When a tree or a cotree is given, an edge of the tree or
the cotree is sometimes called a tree-edge or a cotree-edge. For a tree
T in G and an edge e € E - T, there exists a unique circuit in

TY{e}, which is denoted by C*(T|e) and called a fundamental circuit

with respect to the treer T and the edge e in the cotree E - T. The

system of circuits (C*(T{e):eE:E—T) is called the fundamental system of
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circuits with respect to the tree T. Suppose that T = {el,ez,--!,em}

and E - T = { s.e _}. Then the fundamental circuit matrix

e e .
m+1’ m+2° m+k

with respect to the tree T is a kxm matrix with the (i,j)-element

Cij given by

Cij =1 if ej € C*(Tlem+i),
=0 otherwise (i=1,2,+++,k; j=1,2,°°*,m).

Each column of a fundamental circuit matrix corresponds to an edge of
the tree with respect to which the fundamental circuit matrix is defined,
and each row corresponds to an edge of the associated cotree or to a
fundamental circuit.

A graph G(V,E) is connected if for any vertices vy and v,
in V there is a path with its end-vertices vy and vy A graph
G(V,E) is 2-connected if, for any proper dissection {E;,E,} of the
edge set E, there is a circuit C such that Cr\E1 # @0 and C/\Ez
# @, where for any set ‘D a proper dissection {D;,D,} of D is
a partition of the set D into two subsets D1 and D2 such that

2=D and DlnD2=¢.

Let Gl(V,E) and GZ(V,E) be 2-connected graphs with the same

Dy #9, D, #¢, DVD

vertex set V and the same edge sef E. The graphs .G1 and G2 are
said to be 2-isomorphic with each other if the set of all the circuits
in Gl and the set of all the circuits in G2 are the same.

For a 2-connected graph G(V,E), let {El’EZ} be a proper
dissection of the edge set E and let Vi be the set of end-vertices

of edges in E, for i =1, 2. The set V,aV, is called the set of

-5 .
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attachment vertices of the subgraph G,(V;,E)) (and G,(V,,E))) of

the graph G(V,E). If [vl,\v2| =2, then G, and G, are called

+| denotes the cardinality.

two-terminal subgraphs of G, where

A fundamental path in an acyclic;graph is a path P = (Pl,Pz*)

composed of its subpaths Pl and P2* with possible repetition of arcs,

2 be the path in reverse order of P_*, P1 and P2

are directed (possibly degenerate) paths whose terminal vertices coincide

where, letting P

with each other. The terminal vertex is called the turning vertex of

P. As shown in Figure 1, let Pl and P2 be directed paths from the

vertex u, to u* and from the vertex u, to u*, respectively, and
let Pz* be the reversion of P2. Then the composition P = (Pl,PZ*)
of the paths P, and P, * is a fundamental path and u* 1is the turning

1 2
vertex of P. The notion of a fundamental path will be used for a data

structure called a PQ-graph. (PQ-graphs will be defined in Section 3.)
A fundamental path corresponds to a fundamental circuit in a graph expressed

by the PQ-graph.

Fig. 1. An example of a fundamental path.

-6 -
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A rooted directed tree T 1is a directed graph with a distinguished

vertex, calfed the root of T, such that the root is adjacent to no vertex
and each vertex except for the root is adjacent to one and only one vertex.
A vertex of T which is adjacent from no vertex is called a leaf of T.
A roooted directed tree will be uséd for expressing a PQ-tree [3].

Now, let N be a kxm (0,1)-matrix whose graph-realizability
should be decerned. We suppose that there is at least one nonzero element
in each row and each column of .N. Let R and S be the set of rows

and columns of N, respectively. Denote the (r,s)-element of N by

N(r,s), r(s) or s(r) for reR and seS. We regard each row r€R
as a fundamental circuit or the corresponding cotree-edge and each column
seS as a tree-edge, even if N 1is non-graphic. A fundamental circuit
reR will be simply called a circuit. Also, we suppose that the information
about the (0,1)-matrix N is expressed by a bipartite graphy where every
nonzero elemént of N corresponds to an edge of the bipartite graph.

A subset K of R is called connected if for every proper

dissection {KI’KZ} of K we have

{s | sesS, 3r€K1:4sk(r)=l}n{s | ses, _:_]re](zzs(r)=1} £ P. .
A sequence (ro,rl,-f',rn) of circuits rie:R is called sequentially
i

connected if, -for each =0, 1, **, n, A{r '-,ri} is connected.

O,rl’.
We suppose without loss of generality that (ro,rl,’--,rk_l) is a

sequentially connected sequence of all the circuits of R, since we can

-7 -
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decompose R into maximal connected subsets and generate sequentially
connected sequences forvthe‘connected subsets in a total running time
proportional to the number of nonzero elements of N and since N is
graphic if and only if all the submaﬁrices corresponding to maximal
connected subsets of R are graphic.

Moreover, we adopt the following notations. For each i = 0,

1, s+, k-1,
s*(r;) = {s Ises,ri(s)=1}, (2.1)
.) = S*(r.) U s*(x.)), 2.2
n(r;) (r; A(j<i_ () (2.2)
o(xr;) = 8*(r;) - m(r;), (2.3)
U(ri,rj) = S*(ri)nc(rj) (G<i). (2.4)

Here, S*(ri}- is the set of tree-edges of the circuit ?i’ v(ri) is
the set of tree-edges, of the circuit T, contained in at least one
circuit T, 2<1i), G(ri) is the set of treeredggs, of the circuit L
contained in no circuits T, (A <i), and U(ri,rj) is the set of
tree-edges, of the circuit T contained in the circuit rj but in

no circuits Ty 2<3.
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3. PQ-Graph

The PQ-tree data structure is proposed in [3] and effectively
applied to several combinatorial problems. In the present paper,
definitions and terminology concerned with PQ-trees almost follow [3],
though we use the term "vertex" instead of 'node" used in [3].

Giveﬁ a universal set U, a PQ-tree over U is a rooted directed
tree whose leaves are elements of U and whose nonleaf verticeé are
labeled either P or Q. A Qertex labeled P 1is called a P-vertex
and a vertex labeled Q a Q-vertex. Vertices Vi'S adjacent to a

vertex v are called children of v and v is called a parent of vi's.

The root has no parent and the leaves have no child. For each nonleaf

vertex, admissible linear arrangements (or permutations) of the children
are specified as follows:
. (1) for a P-vertex, every linear arrangement of the children
is .admissible,
-(ii) for a Q-vertex, only two linear arrangements defined on
the children, one being the reversionbof the other,
are admissible.
If we choose an admissible linear arrangement of the children of each
nonleaf vertex, then it induces, in a natural manner, a linear arrangement
of the elements of the universal set U, the set of the leaves. A linear

arrangement of the elements of U induced in such a way is called

admissible for the PQ-tree. A PQ—tree thus represents a class of admissible

-9
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linear arrangements of the elements of U efficiently.

Furthermore, given a subset W of U and a PQ-tree T over U,
K. S. Booth and G. S. Lueker [3] provide an efficient method

(i) for determining whether there exists at least one linear

arrangement which is admissible for the PQ-tree T and
in which elements of W are consecutive and
(ii) (if such a linear arrangement exists) for constructing a new

PQ—tree T' such that the set of all the 1inear arrangements
admissible for T' coincides with that‘of all the linéar
arrangements which are admissible for T and in which the
elements of W are consecutive.

The new PQ-tree T' is called the W-reduction of T and we say that

T' 1is obtained by reducing Tb by W.

We propose a data structﬁre,'caiied a PQ-graph, bésed on PQ-trees,
which provi@es a foundation for an efficient algorithm for solving the
graph-realization problem. A PQ-graph G over an universal set U is
a directed g£;ph satisfying (Al)-(A4): -

(A1) G consists of disjoint PQ-trees. Ti (i=0,1,+++,n) and arcs connecting
distinct PQ-trees. Each element of U is a leaf of some PQ-tree.

(A2) The leaves of each PQ-tree T. (i=0,1,¢++,n) are distinguished vertices
‘ i : >

called branching vertices, two distinguished vertices called heads

and some elements of U except that T, does not contain heads.

0

Two heads of a PQ-tree are always consecutive for any linear

arrangements admissible for the PQ-tree.

-10 -
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(A3) Each head of a PQ-tree is adjacent to one and only one branching
vertex in the other PQ-tree, while each branching vertex is adjacent
from at least one head.

(A4) The directed graph obtained by shrinking every PQ-tree into a single
vertex is acyclic. (Such a shrunk graph is denoted by G against
the original PQ-graph \G and the labels of the vertices of G are

those of corresponding PQ-trees in G.)

Fig. 2. A PQ-graph G and its shrunk graph &, where parallel

arcs are replaced by a single arc.

Figure 2 shows a PQ-graph G and the shrunk graph E, where a P-vertex
is denoted by () and a Q-vertex by [____] , and their children
are written inside them. Also, a branching vertex is denoted by A
and a pair of heads by A—~A. This way of representing PQ-graphs will
be also adopted for the examples in Section 6.

We call a Q-vertex q of a PQ-tree a neutral Q-vertex if q has

- 11 ~
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three children two of which are branching vertices at the both ends of q.

(See Figure 3(a).) Also, we call a PQ—treé T a two-terminal tree if T

has a root q being a Q-vertex, q has three children two of which are
branching vertices at the both ends of q and one of which is a P-vertex

p> and p has two children, the heads of T. (See Figure 3(b).)

q
444»_]3> A ¢ ) A

Yt ]
12

Fig. 3(a). A neutral Q-vertex q. - Fig. 3(b). A two-terminal tree.

For thevséke of féduéing the requifea ruhning time, we adopt the
following (Bi)-(BS):

(B1) Branching vertices which are consecutive children of a Q-vertex are

replaced by a single new branching vertex and all the arcs incident

to those branching vertices are made incident to the new one.

- 12 -
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(B2) For a branching vertex b and a head h which are consecutive
children of a Q-vertex, the vertex b is removed and all the arcs
incident to b are made incident to the branching vertex adjacent
from the head h.

(BS)IIf a parent of a neutral Q-vertex is also a neutral Q-vertex, these
neutral Q-vertices should be replaced by a single neutral Q-vertex.

(See Figure 4.)

(B1) | 1 ZA—AE:}\_?lZQYZi—A

4> 1

(B2)

a] az az a.l

@) 4}4& A ©

3 a3 4 % a3

Fig. 4. Operations (B1), (B2) and (B3).

- 13 -
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Moreover, let T be a PQ-tree in the PQ-graph G and W be a
union of a subset of U in the PQ-tree T and a (possibly empty) set
of branching vertices and heads in T. In this case, W-reduction T'
of T 1is a new PQ-tree, linear afrangements admissible for which are
‘exactly those which are admissible for the original T and in which the
elements of W are consecutive, where any branching vertiﬁes not in W

are allowed to be among the elements of W.

By the following (Cl) and (C2), a PQ-graph G over U determines
a class of graphs G ha?ing a tree—édge set U, each corresponding to
a choice of a set of admissible linear arrangements fo£ the PQ-trees ‘in G.
(C1) For each PQ-tree in G, carry out the following (I) and (II).
(I) Choose a linear arrangement (denote it by L) of fhe leaves which
is admissible for the PQ-tree. If the linear arrangement L
contains heads, then insert a new distinguished element between
‘the heads in L. Then replace the consecutive branching vertices
by a single branching vertex and, if a branching vertex and a
head are consecutive; replace them by the heé& and, according’to
the replacement, make each arc (aéla pointeri incidént to a
replaced branching vertex be incident to the replacing branching
vertex or head. Denote the resultant linear arrangement by L.

~

The L can be expressed as a sequence

L= (Vo’al’vl’aZ’""a,Q,"‘,',Q,)’ (3°1)
where 4 (i=0,1,+++,2) are branching vertices or a head, though
some vi's may be missing in i, and a, (i=1,2,¢°+,%) are
elements of U in L or the new distinguished element between

heads. If vy is missing in L of (3.1) for some i =0, 1,

- 14 -



e++ 2, then insert a new element as v

(I1I) Construct a path which is represented by the sequence (3.1),
where {VO’Vl"..’Vl} is the set of vertiﬁes and {al,az,---,az}
is the set of edges of the path. If the PQ-tree under consideratiop
is not a two-terminal tree, then add an edge with the end-vertices
Vo and Vz,,which will be a cotree-edge, to the path.

(C2) By carrying out (Cl), we have now obtained a graph consisting of
(closed) paths, each corresponding to a PQ-tree in G, and arcs
(or pointers) connecting distinct (closed) paths. Open all the

edges which correspond to the distinguished edges between heads and

short all the arcs (or pointers) connecting distinct (closed) paths.

- ~
7 - \\
V4 AN
/ \
/ \
1 3 2
"\ 7\
¢ ]
\ - 4
10N S 7\\\ I\ \//

(D R ¢ 9

Fig. 5. (I): a graph obtained by applying operation (Cl) to
the PQ-graph- G in Figure 2; and (II): a graph G obtained

by operation (C2).

- 15 -~
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The procedure of (Cl) and (C2) applied to the PQ-graph shown in Figure 2

is illustrated in Figure 5. The (Cl) and (C2) are carried out when it

is required to construct graphs representing a given graphic (0,1)-matrix.

Every PQ-graph, appearing in the course of carrying out the

algorithm presented in the next section, determines a class of graphs

2-isomorphic with one another.

4. Algorithm for the Graph-Realization Problem

In this section, we shall propose an efficient algorithm for

solving the graph-realization problem.

4.1

An OQutline of the Algorithm

For the sequentially connected sequence (ro,rl,‘°',rk_l) of

fundamental circuits of N, we can easily see that

(1)

(ii)

if N 1is graphic, then for each i = 0, 1, *++, k-1 there exists
a graph whose fundamental system of circuits are (ro,r1,°-°,ri),

if there exists a graph éi whose fundamental system of circuits

~

-o,ri_l), then there exists a graph G, whose

e (r
are ( G

Oer’ °
fundamental system of circuits are (ro,rl,--?,ri) if and only if

there is a graph éi* such that ﬁi* is 2-isomorphic with Ei and

the edges of n(ri) defined by (2.2) form an elementary path in ‘Gi*.

- 16 -
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Therefore, we can consider a (not efficient) method for solving the

graph-realization problem as follows.

10

20

30

50

to

composed of the circuit Ty where the order

is arbitrary. Set i « 1.

Construct a graph 61

of the edges of the circuit T,
If i =k, then the algorithm terminates and N 1is graphic.

Find a graph Ei* which is 2-isomorphic with &i “and in which the
edges of N(ri) form an elementary path. If such a graph Ei* does
not exist, then the algorithm terminates and N is not graphic.
Connect the end-vertices of the path, in Ei*, formed by ﬁ(ri)

to each other by an arbitrary elementary path formed by the edges

of O(ri) defined by (2.3) and the cotree-edge corresponding to

~

the circuit T, . Denote the resultant graph by Gi+1'

Put i « i+l and go back to Step 2°.

The correctness of the above method is clear but it seems difficult
carry out Step 3° efficiently without any sophisticated data structure.

In order to carry out Step 3° efficiently, we shall use PQ-graphs.

A PQ-graph G, expresses a class of graphs which are 2-isomorphic with

the graph éi of Step 3°. The next PQ-graph G, , is efficiently

constructed and expresses a class of graphs which are 2-isomorphic with

the graph Gi+

, of Step 4°,

._1.7_
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An efficient algorithm is given as follows.

Algorithm (An Outline)
Algorithm

1° Construct a PQ-tree labeled T, with a root which is a P-vertex

0
and has the elements of S*(ro), defined by (2.1), as its children.
Put

2(xy) < 0,

G1 < a PQ-graph consisting of the PQ-tree T, alone,
i< 1,
2° If i =k, then the algorithm terminates and N is graphic.
3°-1 (Finding a Fundamental Path)
In the shrunk graph @i ‘of the PQ-graph Gi’ find a minimal fundamgntal
path Pi traversing all the vertices which correspond to the PQ-trees
containing elements of S*(ri), where use is made of the labels £
and d° on PQ-trees. If such~avfundamenta1 path does not exist,
then the algorithm terminates and N is not graphic; of else,
determine the '"'type'" of Pi. (There are'possible eight types. See
Figure 6.) ' -
3°-2 (Reducing PQ-trees)
Reduce each PQ-tree corres?onding to a vertex in. Pi to obtain
a PQ-graph G* such that the graphs generated by G* are exactly
those generated by Gi in which the elements of ﬂ(ri) form the
edge set of elementary paths. If such a reduction is impossible,

then the algorithm terminates and N is not graphic; or else,

- 18 -~
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Type v P1
0 u* O——>0——20—> * ¢ o — O UF*
1: : ooo‘{ o.Ao. gl U**
2: Farrg—— ur*
o
3: }—Vc-o }aoo. ._)ou**
®

Fig. 6. Types of fundamental paths Pi

- 19 -
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insert branching vertices bil* and biz* and, if necessary, a

neutral Q-vertex such that 'bil* and biz*- become end-vertices of

a path with the edge set. n(ri) in every graph generated by G*.

(A new two-terminal tree may be introduced except for the case of
types 0, 1 and 4.) Denote the resultant PQ-graph by G* again.
Construct a PQ-tree, labeled T such that its root is a P-vertex,
the children of the root are the elements of 0(ri) and a P-vertex p,

and the children of the P-vertex p are the heads hil* and hiZ*’

where, if G(ri) is empty, let the P-vertex.. p. be the root of the
PQ-tree T Put

G.

je1 T 2 PQ-graph consisting of the PQ-graph . G*, the PQ-tree T

* * .
and the arcs (hij ’bij ) (3=1,2),

%(x;) « max{&(r; j)) + 1] j=1,2},

(

where, for each j =1, 2, is the PQ-tree which contains the

i(3)
branching vertex bij*. Also, put

d (ri) « 1 if ri(l) = ri(z)’

+ -2 if type = 0 or 1  and ri(1) # ri(Z)’

« 2 otherwise.

Set i« i+l and go back to Step 2°.

Steps 3°-1 and 3°-2 are the most involved part of the algorithm

and the details are given in subsections 4.2 and 4.3, respectively. It

may be helpful for reading subsections 4.2 and 4.3 if readers refer to

examples in Section 6.

- 20 -
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4.2 Finding a Fundamental Path

It should be noted that, for the label & determined in Steps
1° and 4°, Z(ri) is equal to the maximum number of arcs in directed
paths from the vertex T to the vertex T, in ai, where arcs

entering into two-terminal trees are not counted.

" Let us define d;(u) for each PQ-tree u in &i by

d;(u) 1 if the vertex u is adjacent to one and only one

~
vertex in Gi’

-2 if d'(w) = -2 or if d'(u =1 and the vertex u

A

is adjacent to distinct vertices in Gi’

2 otherwise.

Note that d;(u) # d"(u) only if d'(w) =1 and the rule (B2) described
in Section 3 is applied. Also, note that we do not actually prepare the
label d; since for each u the value of d;(u) is found in a constant
running time if necessary. When d;(u) =1, F+(u) denotes the vertex,
in Gi, adjacent from u and, when d;(u) = -2 or 2, F;(u) (G=1,2)
denote the vertices, in ai, adjacent from u such that l(FI(u)):;

(T (W) .

Néw, let K be the set of the PQ-trees in Gi containing the
elements of S*(ri). Note that one of the end-vertices of the fundamental
path Pi should have the maximum value of £ among K.

We find, in Step 3°-1, the required fundamental path P. in
ai by extending a directed path, starting from a degenerate path composed

of an end-vertex of Pi alone, according to the following rules.

- 21 -
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Let u be the terminal vertex of a temporarily constructed
directed path Pi in ai and 2* be the minimum value of 2(v) among

v's in K.

+

Rule 1: If d.(u) 1, then extend Pi from u to the vertex P+(u).

+

Rule 2: 1If di(u) = -2, then let uj = F;(u) (j=i,2) and let b1 be the

branching vertex, in the PQ-tree u,, adjacent from a head of the PQ-tree u.

1’
(2-1) If l(ul) = £*, then extend Pi from u to the vertex ups
(2-2) else, if the elements of a subset of S*(ri) exists consecutively

between a head of u, and the branching vertex bl’ then extend

1

P. from u to u,,
i 1

(2-3) else, extend Pi from u to u,.

Rule 3: If d;(u) = 2, then for each j =1, 2 let uj = T;(u) and let
bj be the branching vertex, in the PQ-tree uj, adjacent from a head of wu.

(3-1) If neither wu, nor u, is in K, then

1
if 2(u,) 2 2%,

2

then stop (the algorithm terminates and N is not graphic),

else, extend Pi from u to Uy,

(3-2) else, if either u, or u, is in K, then extend Pi from u to

1

either Uy or u,

{3-3) else (both uy and u, are in K), then there'are the following

three possible cases (I)-(III), i.e., letting Aj (j=1,2) be two

2

which contains an element of S*(ri),

propositions defined by
Aj = "the elements of U(ri,uj) exist exactly between the

branching vertex bj and a head of uj" (j=1,2),
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(D) neither A1 nor: A2 is true,
(ID) either A1 or A2 is: true, and
(I11) both Al and A2 are true.

In case of
(I): stop (the algorithm terminates and N is not graphic),
(IT): extend Pi from u- to Luj, where j. corresponds to the
true proposition 'Aj’
(IID): if m(u) # \J{U(ri,r) | TeK, (1) <L (W},
-~ then stop (the algorithm termihates and N 1is not graphic),

else, extend Pi from u to both Uy and u,, connect

Uy with u, by the fundamental path Pp’ where u = rp
(but. this process is not actually performed and the
attachment of Pp is hypothetical only for Pi to form

a complete fundamental ‘path), and set v* + u and

w.* « u, (j=1,2).
3 J(J )

4.3 Reducing PQ-Trees

In carrying out Step 3°-2, the points are the following (Dl)—(DS);
(D1) We proceed from the PQ-tree, corresponding to the turning vertex
of Pi’ to those PQ-trees thch have greater values of {.
(D2) Suppose that, for the PQ-gréph G, , subsets V and W of the ground
set U are, respectively, contained in PQ-treés v and w and
that fﬁe elements of VVUW form a path in every graph generated by

Gi' Then, there are essenfially the following three cases (see

Figure 7):
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(iid)

Fig. 7. Examples of cases (i), (ii) and (iii) of (D2), where V = {1,2}

and W = {3,4}.

(1) there are two branching vertices b1 and b2, in the PQ-tree w,

adjacent from the heads of Vv such that bl’ b2 and - the
elements of W are consecutive with bl and b2 being at the
both ends of W in every linear arrangement admissible for w

and the elements of V and the pair of heads of v are consecutive
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"

in every linear arrangement admissible for v,

(ii) there is a branching vertex b, in the PQ-tree w, adjacent from
a head h of v such that b (resp. h) and the eleménts of W
(resp. V) are consecutive with b (resp. h) béing_at an end of
W (resp. V) in every linear arrangement admissible for w .
(resp. v),

(iii) a head h of v and a head h* of w are adjacent to one
and the same branching vertex and h (resp. h*) and the elements
of V (resp. W) are consecutive with h (resp. h*) being at an
end of V (resp. W) in every linearfarréngement admissible fo£
v (resp. w).

Suppose that, in the PQ-graph Gi’ the heads h, and h2 ‘of a

1
PQ-tree v and the heads hl* and hz* of a PQ-tree w are adjacent
to the same branching vertices b1 and b2, ‘that the parent of h1

and hz (resp. hl* and hz*) is a P-vertex, and that the PQ-tree v
(resp. w) contains elements of $*(r;). Then, if the PQ-graph G, ,
is constructed, it includes a new two-terminal tree t such that

the heads of t are adjacent to b1 and b2 and that h1 and

h, (resp. h.* and h,*) are adjacent to the branching vertices of t.

1
(Cf. Example 3 in Section 6. This corresponds to the fact that two
two-terminal subgraphs with a common set of attachment vertices

merge into a single two-terminal subgraph by an additionr.ofi:an edge

connecting the two two-terminal subgraphs.)

It should, however, be noted that by (B3) of Section 3 we exclude

such a PQ-tree that the parent of a neutral Q-vertex is also a neutral
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(E &) (&) &=

(1) - (ID)

Fig. 8. A reduction (II) of a PQ-graph (I) such that the set of

elements 3 and 4 forms a path.

Q-vertex.  If there are not less than two PQ-trees, each of which has

heads adjacent to the common two branching vertices of a neutral Q-vertex

q of a PQ-tree r and if the neutral Q-vertex q collapses, or is absorbed
into the other Q-vertex, by a reduction of the PQ-tree r such that one

of the branching vertices of q should be at an end of some specified

leaf subset of r, then before the reduction we presuppose that there
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is one more neutral Q-vertex q' which is the parent or a child of q
and to which the heads of a PQ-tree adjacent to r and relevant to the
present reduction of the PQ-graph is made adjacent and that q remains

neutral after the reduction. (See Figure 8.)

5. Validity of the Algorithm and the Computational Complexity

We shall give two theorems, one for the validity of the algorithm
and the other for the computational complexity of the algorithm. Their
proofs will also be given, (However, they should be considered as

sketches of the proofs.)

First, we show the following.

Theorem 5.1: Suppose that the PQ-graph Gi generates exactly all the
graphs which have the fundamental circuit matrix Ni of rows Tgs Tys
1 Tor T1»

is constructed from Gi by

et Ty g (1 <i<k) and that the matrix Ni+ of rows T,, *°°,

T, is graphic. Then the PQ-graph Gi+1

Stzps 3° and 4° and generates exactly all the graphs which have N1

as the fundamental circuit matrix.
(Proof) First, we can easily show that all the graphs generated by the

PQ-graph Gi+1’ if it is constructed, have Ni+1 as their fundamental

circuit matrix.

be an arbitrary graph which has N. as

Next, let Gi+ i+1

1

its fundamental circuit matrix. Here, because of the assumption,
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at least one such graph exists. Then, delete from Ei+ the edges of

1
g(ri) and the cotfee-edge T, (and isolated verticeg, if any), and
denote the resultant graph by Ei*. Since the graph in* has Ni as

its fundamental circuit matrix, there exists a set of linear arrangements
admissible for the PQ-trees in Gi which correspondingly yields ﬁhe graph
Ei* by the procedure given by (Cl) and (C2) in Section 3. Because Qf

the existence of such admissible linear arrangements for PQ-trees in Gi’

we can easily see that the PQ-graph Gi+ is constructed by Steps 3° and ‘

1

4°. Furthermore, since the path of the edge set, given by the union of

~

c(ri) and the cotree-edge T, in Gi+l can be generated by the PQ-tree
T, and since the heads of the PQ-tree r, are adjacent to the branching
vertices which correspond to the end-vertices of the path of the edge set .

n(ri) in G the graph G,

141° thus can be generated by the PQ-graph

1.

G, This completes the proof. o _ Q.E.D.

i+l’

Note that the PQ-graph G1 constructed in Step 1° generates all
the graphs which have the fundamental circuit matrix of the row T alone.
Hence, the correctness of the algorithm follows from Theorem 5.1.

Next, we show the computational complexity.

Theorem 5.2: A running time required for the algorithm is at most
O(va(v,k)), where Vv is.the number of nonzerd elements of the given
(0,1)-matrix N, k 1is the number of rows of N and oa(+,*) is a
function defined by R. E. Tarjan:[10] in terms of Akermann's function.

(Proof) Note that changing, according to (B1) and (B2), the incidence
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relation of the arcs which connect distinct PQ-trees in the PQ-graph Gi
is equivalent to the operation of the union of disjoint subsets of the
set of heads in Gi' We call such an opefation a UNION. Furthermore,
finding a branching vertex adjacent from a head is equivalent to finding
the label of thé subset which contains the head. We call such’an operation
a FIND. In Step 3°-1, if a vertex u (not a turning vertex) of Pi
corresponds to a PQ-tree which contains no elementkof S*(ri), then a
UNION is applied to a head 6f u in Step 3°-2. Hence, the number of
FINDs performed till the end of the algorithm is at most O(Vv). Therefore,
by employing the UNION-FIND algorithm in [10]; the total running time _
required for the UNIONs and the FINDs is at most O(va(v,k)).

On the other hand, a total running time required for reducing
PQ-trees is O(v) (cf. [3]), where it should be noted that the number
of occurrences of PQ-trees which are vertices of Pi's' without containing
any élements of S*(ri) (i=0,1,+++,k-1) is boundedkby 3k. This completes

the proof. ' ‘ Q.E.D.

Since, for practical values of v and k, a(v,k) is not more
than 3 [10], we can solve the graph realization problem in a running
time almost prbportional to Vv, the number of nonzero elements of the

given (0,1)-matrix N.
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6. Examples

In the following examples, given (0,1)-matrices are connected
and the rows are ordered such that they afe sequentially connected.
Furthermore, all the given (0,1)-matrices are graphic and, for each
example, PQ-graphs Gi's constructed in the course of carrying out the
algorithm are shown together with a graph ék, having the fundamental
circuit matrix as specified. In Figures 9 -11, an integer beside each
PQ-tree denotes a label of the corresponding cotree-edge, and an integer

with an asterisk a tree-edge contained in the next fundamental circuit.

Example 1 [6] For a (0,1)-matrix N given by

1.2345
6111100
N = 700111
- 801011} °
9111010
see Figure 9.
Example 2 For a (0,1)-matrix N given by
12345
6 111100
7101110
N = 801101
T 9101010 ’
1010001
11111110
see Figure 10.
Example 3 For a (0,1)-matrix N given by
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12345
6111100
7111010

N = 811001
901100 ?
1011011
11 110010

see Figure 11. Note that a two-terminal tree appears in the PQ-graph

Fig. 9. Example 1.
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Example 2.

Fig. 10.
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Fig. 11. Example 3.
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7. Concluding Remarks

We proposed an efficient algorithm for solving the graph-realization
problem by means of PQ-graphs. The algorithm requires a nunning time
almost proportional to the number of nonzero elements of a given (0,1)-
matrix. The problem of detefmining whether or not there exists a linear-
time solution algorithm is left open.

Finally, it should be noted that, when a (0,1)-matrix N is graphic,
the finally obtained PQ-graph Gk expresses the structure of the set of
the two-terminal subgraphs [14] of graphs which have N as the fundamental
circuit matrix and that we can easily determine such a structure from the‘

PQ-graph Gk'

Acknowledgments: The author is deeply indebted to Professor Masao Iri of

the University of Tokyo who made useful discussions on the present paper
and directed the author's attention to PQ-trees the use of which significantly

simplified the original version of the algorithm.
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