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Abstract A hamiltonian walk of a graph is a shortest closed walk
that passes through every vertex at least once, and the length of a
hamiltonian walk is the total number of edges traversed by the walk.
The hamiltonian walk problem in which one would like to find a
hamiltonian walk of a given graph is a generalized hamiltonian cyele
problem and is a modified traveling salesman problem, and is of course
NP-complete. Employing the divide-and-conqure  and greedy
optimization techniques, we present a polynomial-time approximation
algorithm with a constant worst-case bound for this problem. Our
algorithm finds, in O(p2) time, a closed spanning walk of a given
arbitrary maximal planar graph with p vertices, and the length of the
obtained walk is always smaller than 3/2 times the length of a shortest

one (i.e., a hamiltonian walk).
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1. Introduction. A hamiltonian walk of a graph is a

shortest closed walk that passes through every vertex at
least once, and the length of a hamiltonian walk is the
total number of edges traversed by the walk {7]. The
hamiltonian walk problem in which one would like to find a
hamiltonian walk of a given graph would arise in situations
where it is necessary to periodically traverse a network or
data structure in sucha way as to visit all vertices and
minimize the length of the traversal.

The hamiltonian walk problem is a generalization of the
hamiltonian cycle problem in which one would like to determine
whether a given gfaph contains a hamiltonian cydle or not.
It is well known that the hamiltonian cycle problem is
NP-complete. Furthermore Garey, Johnson and Tarjan [6]
have shown that the hamiltonian cydlevproblem is NP-complete
even if we restrict ourselves to a class of (3-connected
cubic) planar graphs. Hence the hamiltonian walk problem
is also NP-complete even if we restrict ourselves to the
same class. ~ On the other hand the hamiltonian walk problem
is a special case of the well known traveling salesman
problem, restricted in a way that each edge of a given graph
has a unit weight. Of course the traveling salesman problem
is NP-complete [1]. It has been conjectured that there

exist no polynomial-time exact algorithms for any of NP-complete



158

problems. Consequently, attention has been given to developing
algorithms that solve various NP-complete problems efficiently
but only approximately [5]. We shall restric£ our attention
to approximation algorithms with a constant bound worst-case ratio.
Sahni and Gonzalez [12] have shown that if the triangle
inequality is not satisfied, the problem of finding an
approximation solution for the traveling salesman problem
within any constant bound ratio of the optimum is as difficult
as finding an exact solution. Christofides [4] has developed
a polynomial-time algorithm with a worst-case bound of 3/2
for the problem in which the triangle inequality is satisfied.
On the other hand, Hwang [11l] has given a polynomial-time
algorithm with the same worst-case bound for the rectilinear
Steiner tree problem.
For the hamiltonian walk problem there exists a trivial
approximation algorithm with a worst-case bound of 2: find
a (spanning) tree of a given connected graph; and construct
a closed spanning walk of the graph which traverses twice
each edge of the tree; then the length of the walk is 2(p-1)
if the graph has p vertices; clearly the length is smaller than
twice the length of a shortest one (i.e. a hamiltonian walk).
In this paper we present a polynomial-time approximation
algorithm with a worst?case bound of 3/2 for a restricted

hamiltonian walk problem. Given a maximal planar graph
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with p vertices, our algorithm finds, in O(p2) time, a closed
spanning walk of the graph whose length is smaller than 3/2
times the length of a shortest one. We will empoly, in our
algorithm, two techniques: divide-and-conqure and greedy
optimization. The algorithm is based on two early results :
one is our previous work'establishing that a maximal planar graph
with p vertices always contains either a hamiltonian cycle

or a closed spanning walk of length < 3(p-3)/2 [2]; the other
is Whitney's establishing that every 4-connected maximal planar
graph has a hamiltonian cycle [14]. We conjecture that

the hamiltonian walk problem remains NP-complete even if we

restrict ourselves to the class of maximal planar graphs.

2. Terminology and basic results. We proceed to some

basic definitions. An (undirected simple) graph G=(V,E)

consists of a set V of vertices and a set E of edges.
Throughout this paper p denotes the number of vertices of G,

i.e., p =|v|. A walk of length k of G is a sequence

MACIRALPERRT A .
such that the endvertices of edge e, are v;_;

1 <i<k. The length of a walk W is denoted by 2(W).

whose terms alternately vertices and edges,

and vi for each

The walk W is a closed spanning walk of G if vy = v, and

every vertex of G appears in the sequence at least once.

A hamiltonian walk of G is a closed spanning walk of minimum
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length of G. For a connected graph G, h(G) denotes the
length of a hamiltonian walk of G. Clearly p < h(G) < 2(p-1).
A cycle is a closed walk whose vertices are all distinct.

A hamiltonian cycle of G is a closed spanning walk of length

p, i.e., a cycle that passes through every vertex of G exactly

once. A graph is hamiltonian if it contains a hamiltonian

cycle. A maximal planar graph is a planar graph to which

no edge can be added without losing planarity. Note that
every maximal planar graph G is connected and every face of
G is a triangle. A triangle of a maximal planar graph

is called a nonface triangle if it is not a boundary of a

face. A maximal planar graph with p ( > 5) vertices has

no nonface triangles if and only if it is 4—conne¢ted. For
a graph G=(V,E) and a subset V' of V, G - V' denotes a graph
obtained from G by deleting all vertices in V'. A singleton
set {v} is simply denoted‘by "y, A mﬁltiset is a set with
a function mapping the elements of the set into the positive
integers, to indicate that an element may appear more than
once. We sometimes represent a walk by the multiset of edges
traversed by it. A walk, i.e., a sequence of edges and
vertices, can be easily constructed from the multiset of
edges. Note that this can be done by any algorithm for
finding an eulerian walk of an eulerian graph. Refer to

[1] or {9] for all undefined terms.

We next present some lemmas. Generalizing Whitney's result
[14], Tutte has shown that every 4-connected planar graph has a

hamiltonian cycle [13]. Employing the proof technique used by

5
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Tutte, Gouyou-Beauchamps has given an O(p3) algorithm for
finding a hamiltonian cycle in a 4-connected planar graph G
[8]. If G is maximal planar, we can improve the

time-complexity as follows.

LEMMA 1. There is an O(pz) time-algorithm for finding a
hamiltonian cycle in a 4-connected maximal planar graph G with
p vertices. |

Proof. It is not difficult to implement a recursive
algorithm for finding avhamiltonian cycle of G in O(pz) time,
completely based on the inductive proof of Whitney [14]

ensuring its existence. Q.E.D.

LEMMA 2. (a) Every maximal planar graph with ten or fewer
vertices contains a hamiltonian cycle [3]1[14]. (b) Every
nonhamiltonian maximal planar graph with 11 vertices has a
hamiltonian walk of length 12. (Note that every such graph

is isomorphic to a certain graph depicted in Fig. 1 of [2].)

LEMMA 3. [2] Let xyz be any (triangular) face of a
maximal planar graph G=(V,E) with p vertices, where x,y,zeV.
(a) If p =5 or 6, then at least one of the three graphs G - {x,v},
G - {y,2} and G - {z,x} contains a hamiltonian cycle. (b) If
p =7 or 8, then (i) at least one of G - {x,y}, G - {y,z!}
and G- {z,x} contains a hamiltonian cycle, or (ii) G - x,

G -y and G - z all have hamiltonian cycles.

One can easily develop an algorithm for determining whether a

given graph with 11 or fewer vertices contains a hamiltonian

6
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cycle or not, and finding a hamiltonian walk in constant time.
Let HAMILTON(G) be such an algorithm, which will be used in

the next section.

LEMMA 4. Given a connected graph G=(V,E) with p vertices
and given a cycle C of length c of G, one can find a closed
spanning walk W of G such that % (W) < 2p - ¢, in O(|E|) time.

Proof. Contract all the vertices on C into one vertex,
and find a (spanning) tree of the obtained graph. If C is
the set of edges of the cycle C and T the set of edges of
the tree, then the multiset W=C+ T+ T is a closed spanning
walk of G which traverses twice each edge of the tree and
once each edge of C. Clearly the length of W is 2p - c.

Q.E.D.

For a nonface triangle T of a maximal planar graph G,

let Gopp =(V ) denote the induced subgraph of G inside T,

1’ B

and GTO=(V } the induced subgraph of G outside T.

10’ Er0
Specifically if T = xyz (x,y,zeV), U'(T) is the set of vertices

lying inside T, and U"(T) is the set of vertices outside T,

then GTI is the subgraph of G induced by the vertex set

{x,vy,2} v U'(T), i.e., GTI= G - U"(T), and GTO is the subgraph

of G induced by the vertex set {x,y,z} U U"(T), i.e.,

The

= - ' = =
GTO = G u'(T). Let Por IVTII and Pro IVTO

following lemma plays a crucial role in the design of our
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algorithm. The precise description of Algorithm LCYCLE and

the proof of Lemma 5 will appear in Section 4.

LEMMA 5. For a maximal planar graph G with p ( > 11)
vertices such that either Ppr= 4 or Ppo~ 4 for each nonface
triangle T of G, Algorithm LCYCLE finds a cycle C of length

2(C) > (p+9)/2, in O(p?) time.

3. Approximation algorithm HWALK. 1In this section we

present a polynomial-time algorithm for finding a closed
spanning walk W with 2 (W) < max {p, 3(p-3)/2} of a given

" maximal planar graph G with p vertices. In the algorithm
we will employ the divide—and—conqure technique : if a given
maximal planar graph G has a nonface triangle T satisfyipg

a certain condition, then (i) divide G into two smaller

maximal planar graphs GTI and G (ii) recursively call the

TO'
algorithm with respect to GTI and Gpo’ and (iii) combine the

closed spanning walks of GT and GT into a closed spanning

I 0

walk of the whole graph G.
The Algol-like procedure HWALK depicted Fig. 1 takes
as input a maximal planar graph and returns a closed spanning

walk of the graph represented by a multiset of edges.
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We can show that HWALK is a polynomial-time algorithm
with a worst-case bound of 3/2, establishing the following

theorem. Remember that h(G) > p for every connected graph G.

THEOREM 1. For a maximal planar graph G with p vertices,
Algorithm HWALK finds, in O(p2) time, a closed spanning walk
W of G such that

<3(p-3)/2 if p > 11; (1-a)

2 (W)

= p otherwise. (1-b)

Proof. We first prove correctness by induction on the
number p of vertices of G. If p < 11, then the Algorithm
finds a hamiltonian walk W in line 1, and Lemma 2 implies
that 2 (W) satisfies (1). For the inductive step, we assume
that the Algorithm correctly finds a closed spanning walk W
satisfying (1) on any maximal planar graph with less than p
( > 12) vertices. Let_G‘be a maximal planar graph with p
vertices. If G has no nonface triangle ( i.e., G is 4-connected),
then the Algorithm returns in line 2 a hamiltonian cycle W
( by the algorithm in Lemma 1) which clearly
satisfies (1). If either Pprp = 4 or Prg = 4 for each nonface
triangle T of G, then the Algorithm LCYCLE called in line 4
finds a cycle C of G such that 2(C) > (p+9)/2 (Lemma 5), and
the Algorithm HWALK returns in line 5 a closed spanning walk

W which is constructed from C of G. By Lemma 4 we have that
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2(W) < 2p - &(C) < 3(p-3)/2. In the remaining case in which

there exists a nonface triangle T such that PP > 5, we

TO

: otherwise

can assume without loss of generality that Pot < Ppo *

interchange roles of GTI and GTO' - Note that both GTI and

GTO are maximal planar graphs with less :than p vertices.

If Pro > Ppr > 9, then recursively calling itself the Algorithm

finds closed spanning walks W, = HWALK(GTI) of GTI and WO =

I

HWALK(GTO) of GTO in line 8. Clearly the multiset W=W_+W returned

in line 8 represents a closed spanning walk of G. We shall show
2 (W) < 3(p-3)/2. It can be shown that Q(WI)S‘3(pTI_3)/2 and
z(wo) < 3(pTO—3)/2 : if Ppr 2 11, then by the inductive hypothesis

z(WI) < 3(pTI—3)/2; otherwise, i.e., if Ppyp = 9 or 10, then HWALK

finds a hamiltonian-cycle WI; S0 Q(WI) = Ppr < 3(pTI—3)/2; the

proof for the case of GTO is similar. Since p = Ppr * Ppg 3,
we have
RO = LW + L(W,) < 3(ppp=3)/2 + 3(pgy=3)/2
| = 3(p-3)/2.

If poy = 7 or .8 and pyy > 9 (in line 9), then by Lemma 3(b)

at least one of GTI - X, GTI -V, GTI - 2z, GTI - {x,v}, GTI - {y,z}
and GTI - {z,x} has a hamiltonian cycle, say CI' Clearly
2 = - ‘ - 7 = i .

(CI)_ Pop 1 or Py 2. Let W, HWALK(GTO), i.e., a closed

spanning walk of GTO obtained by recursively calling HWALK

for GT Then since 95lpTO < p, Q(WO) < 3(pTO—3)/2 as shown

0"
above. Hence W = CI + Wo

2(W) < ppp - 1+ 3(ppg=3)/2 < 3(p=3)/2.

is a closed spanning walk of G and

i0
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Using Lemma 3 and the inductive hypothesis we can easily
establish the correctness for the remaining cases.

We next prove that the fotal amount of time spent by
HWALK is at most O(p2). Algorithm HAMILTON used in line 1
etc. determines whether a given graph with 11 or fewer vertices
is hamiltonian or not and returns a hamiltonian walk (or
cycle), both in constant time. By Lemma 1 the
algorithm used in line 2 requires O(pz) time. By Lemma 5
LCYCLE called in line 4 requires O(pz) time, and by Lemma 4
a closed spanning walk of G can be constructed, in O(p) time,
from a cycle found by LCYCLE. Note that O(|E|) = o(p)
since G is planar. It shall be noted that if a maximal planar )
graph G contains a vertex w such that both endvertices u and
v of an edge e = (u,v) are adjacent to w and the triangle
uvw is not a face, then uvw is a nonface triangle of G.
Using this fact, one can determiné, in O(p) time, whether G
contains a nonface triangle with e as a boundary edge. Since
O(|E|l) = O(p), one can find all nonface triangles of G in
O(p2) time. It can be easily shown by induction on p that
every maximal planar graph with p vertices contains at most
p - 4 nonface triangles. Hence one can determine all Pot
and Pro for all nonface triangles T of G in O(pz) time.
Moreover one can deterﬁihe the inclusion relation among
all nonface triangles of G. The relation is
represented by a rooted tree R such that

(i) the root of R corresponds to the exterior face

triangle of G;

11
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(ii) each vertex of R except the root corresponds to a
nonface triangle of G; and
(iii) a directed edge joins vertex x to vertex y in R if
and only if the nonface triangle of G corresponding
to y is an outmost triangle contained in the triangle
corresponding to.x.
If T is a nonface triangle of G, every nonface triangle except
T is also a nonface triangle of GTI orzGTO. Once one finds
all nonface triangles T of G together with Pt and Pro and
determines the inclusion relation among them, one can update

such information for GTI and GT in O(p) time. Hence it

0
is not difficult to implement HWALK so that the time T(p) spent
for a graph with p vertices satisfies

T(P) < maX{klpz. T(Ppy) + T(Ppg) + KyPy

k3 + T(PTO)},

where kl, k2 and k3 are constants. Noting that
p=pTI+ Pro~ 3, and solving the above equation, we have that
T(p) < O(pz), establishing Theorem 1.

Q.E.D.

4, ALGORITHM ILCYCLE. In this section we describe a

polynomial-time algorithm LCYCLE and prove Lemma 5. Given a
maximal planar graph G with p (> 11) vertices such that either
pTI=4 or pTO=4 for each nonface triangle T of G, Algorithm

LCYCLE returns a cycle C with &(C) > (p+9)/2 in O(p2) time.

12
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In order to find a required cycle in a given graph we
will employ a kind of greedy algorithm : whenever the graph
contains a vertex x off a currently obtained cycle C
satisfying a certain requirement, some edges of C are replaced
by appropriate edges off C so that X becomes a vertex on the
newly obtained cycle and the length of the cycie increases by one.
Consider the configurations depicted in Fig. 2, where C is
written as ¢ = Qovlvz...vo.

(I) Fig. 2(a) shows a configuration in which G has a
vertex x off C which is adjacent to the endvertices vy and v,
of an edge (vl,vz) on C. It shall be noted that probably
vj = Vg where vj is the thirdkvertex to which x is adjacent.
(It will be known that evéry vertex off C is of degree 3.)
Clearly cycle C' = VoViXVyVae -V of G is longer than C.

(II) Fig. 2(b) and (c) show configurations in which for
some integer k > 1,

(1) (vi_l;vi+l)eE for each i, 1 < i < k,
and

(ii) a vertex x off C is adjacent to vy and Vigoe
For simplicity vertex vy is indicated by "i" in Fig. 2(b) and
(c). If k is odd, then clearly cycle C'

c' = VoVoVyar s Ve 1Vt 1 Vi Vk=2" = * V3V 1 ¥V 40 0
of G is longer than C. (See Fig. 2(b).) If k is even, then

ee oV

cycle C!

C' = v,.v VyeeoVyV

) e sV, V

kVk+1 k-1 3V1¥V%42 0V

0

13
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of G is longer than C. (Sse Fig. 2(c).)

The configuration illustrated in Fig. 2(a) is éalled
of type I, and both in Fic. 2(b) and (c) togethei with symmetric
ones are called of type II. Note that a configuration of type I
can be regarded as a speéial case of type II with k = 0.

For an illustration we depict in Fig. 3 a maximal planar
graph G=(V,E) with v = {0,1,2,...,16}. Cycle C = 012...(14)0
is drawh by lines on a cir:le.’ Vertices 15 and 16 off C are of
‘degree 33 G contains a configuration of type I with respect
to vertex 16 : (16,0),(16,L)éE. G also\contains a configuration
of type II with respect to vertex 15 : (6,8),(7,9),(8,10),
(15,7),(15,11)€E (k = 3). The new cycle C' = 0(16)1234568(10)9
7(15) (11) (12) (13) (14)0 loncer than C is drawn by thick lines.

-Algorithm LCYCLE ié depicted in Fig. 4. We assume that
cycle C is writﬁeﬁ generically:as VOVlVZ"'Vz(C)-lvo at any
stage of the algdrithm. ’ ‘ | '

We next presént the proof of Lemma 5

Proof of Lemma 5. Ir order to prove the correctness

of Algorithm LCYCLE, it is sufficient to show that (i) if

p < 16 then G contains a cfcie C of length £(C) 2 (p+9)/2,

and that (ii) if p > 17 anc C is an arbitrary cycle of length
L(C) < (p+9)/2Asuch that every vertex off C is degree 3} then

G contains.a configufation of type I or II. In Section 4

of our previous paper [2] we showed via a lengthy argﬁment that
every maximal planar graph satisfying the requirement'of Lemma

5 contains a cycle C of leagth &(C) > (p+9)/2. Thus the

14
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above (i) has been verified. Furthermore one can see that

above (ii) is implicit in the arguments in Stages 1 and 2 of

Section 4 of [2]. =~ It shall be noted that the graph G' = G - V

in line 3 is 4-connected since G' contains no nonface triangles ;

otherwise G would contain a nonface triangle T with Pyt rPog

contradicting the assumption of G. Thus every vertex off C

is of degree 3 for the cycle C obtained in line 4. Once a

vertex of G is inserted into C, it will be never deleted from C

in the algorithm. Consequently, every vertex off C is of
degree 3 at any stage of LCYCLE.

We next establish our claim on the time complexity of
LCYCLE. If p < 16, one can find a cycle C of length
2(C) > (p+9)/2 in constant time. Therefore lipe 1l of LCYCLE
requires 0O(l) time. Clearly lines 2 and 3 can be executed
in O(p) time. In line 4 we use the algorithm of
Lerma 1 which is the most time consuming part of LCYCLE

and requires O(pz) time. Clearly line 5 requires 0O(1l) time.

2 5

3

If edge e = (vl,vz) is on C, (vl,x) is an edge which is incident

to v]_and is clockwisely or counterclockwisely next to e in

the plane embedding of G, and x is off C, then v, is adjacent

2
to x, i.e., G contains a configuration of type I. Using

an appropriate data structure for representing the plane
embedding of G so that an edge embedded next to a given edge
can be directly accessed, one can determine in 0(1l) time
whether both endvertices of a given edge on C are adjacent

to a vertex off C. Checking this for each edge on C, one

can determine in O(p) time whether G contains a configuration

15
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of type I. Note that one can embed a planar graph G on the
plane in O(p) time [10]. Similarly one can determine in
O(p) time whether G contains a configuration of type II.

Each time a configuration of type I or II is found, cycle C

is replaced by a longer one in lines 10, 13 and 14. Each
replacement requires O(p) time. Clearly each execution of
line 9 or 12 requires O(l) time. Thus every execution of

the loop of lines 7-14 requires O(p) time. Since % (C) increases
by one after every execution of the loop, the loop is executed

at most p times. Hence the total amount L(p) of time spent

by LCYCLE for a graph G satisfies L(p) < O(pz), so we have

the Lemma. ’ Q.E.D.
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procedure HWALK({G):

begin

if p < 11 then return a hamiltonian walk W of G which

can be found by the Algorithm HAMILTON;

if G has no nonface triangle (i,e., G is 4-connected)

‘then return a hamiltonian cycle W of G which can be

found by the algérithm in Lermma

else

1

if either Ppp = 4 or p = 4 for every nonface triangle

T of G then °

=TO

begin
find, in G, a cycle C of length &(C) > (p+9)/2
by Algofithm LCYCLE (Lemma 5); ”

return a closed spanning walk constructed

els

end

e

from C by the algorithm in Lemma 4

begin

Fi

be K

1

comment p =

et T = xyz (x,y,zcV) be a
such that PTI’pTO > 5;

Prr * Pro
1g ‘assume that Poy < Pro

1

roles of Gny and G, in
begin

nonface triangle

-3 > 12;

otherwise interchange

> 9 then return

HWALK(GTI) + HWALK(GTO);
&g_pTI = 7 or 8 and Prg 2 9 then

comment By Lemma 3(b) at least one of

Cry™*r Gpr7¥r

GTI—Z’ GTI_{XIY}I G

and GTI—{z,x} is hamiltonian;

find a hamiltonian cycle Cs of one

of the six graphs in the above

comment;

return CI + HWALK (G

end ;

Algorithm HWALK.

X

TO)

(continued)

TI

{v,z}
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14

15

16

17

18

end
end

end

Fig.

L Porp
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= 7 or 8 and Pog = 7 or 8 then
if either GTI—{x,y}, Gpr~lys2z} or
GTI-{Z,X} contains a hamiltonian

cycle C )

then return CI + HWALK(G

I TO

else
if either G, -{x,y}, Gny~{y,z} or

GTO—{z,x} contains a hamiltonian

cycle CO then return HWALK(GTI) + C

else return

M - 1AM 2 —v) -
HA“ILTON(GTI x) + hALILTON(GTO Yl

if Ppp = 5 or 6 then

begin A
comment Either GTI—{x,y}, GTI—{y,z}

or GTI—{z,x} is hamiltonian;

wlg GTIf{x,y} is hamiltonian in
find a hamiltonian cycle Cy of
GTI-{X’Y};

return CI + HhALK(GTO)

end

Algorithm HWALK.
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(a)‘Type I (b) Type II withlodd k {c) Type IT with even k

Fig. 2 Configurations of type I and II. (An old cycle is drawn by

lines on a circle, and a new cycle is drawn by thick lines.)
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Fig. 3 An Illustrating Examole.
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procedure LCYCLE(G):
if p < 16 then return a cycle C of length ¢(C) > (p+9)/2

found by any reasonable algorithm

else
begin
let Vs, be the set of all vertices of degree 3;
G' ¢«— G - V3;
comment G' is a 4-connected maximal planar graph;
C ¢— a hamiltonian cycle of G' which can be found
by the algorithm in Lemma 1;
g(C) «—p - [Vyl;
while ¢(C) < (p+9)/2 do
begin ‘
if G contains a configuration of type I then
wlg assume that vertex x off C is adjacent
to vy and Voo the endvertices of edge
(Vl,Vz) on C otherwise rename the vertices
on C in
begin
2(C) «— g (C) + 1;
Cﬂé—-volev2v3...v0
end
else
begin
comment G contains a configuration of type II;
wlg assume that for some k > 1 (1) (vy_ 4.V, {)€E
for each i, 1 < i < k, and (ii) vertex x off C
is adjacent to vy and Vit otherwise rename
vertices on C in
begin ¢
o g{C) & g (C) + 1;
if k is odd then
C ¢« VoVoVae s Vi 1Vip1 Vi s V3V1¥eio0 -V
else ,
C &= VoV Ve s VIV Vo1 -2 V3V XV 00 - Y
end
end
end
end

Fig. 4 Algorithm LCYCLE.
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