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Uniformly Finite-to-one and Onto Extensions

of Homomorphisms between Directed Graphs

Masakazu Nasu

Research Institute of Electrical Communication, Tohoku University

Introduction

For two directed graphs Gl and G2, a homomorphism h of Gl into G2 is,

roughly speaking, a mapping of the set of arcs of Gl into the set of arcs of

G2 that preserves the adjacency of arcs. The homomorphism h is naturally

extended to a mapping h* of the set of all paths in G, into the set of all

1

paths in G,, which is called the extension of h.

The main object of this paper is to establish two properties of uniformly
finite-to-one and onto extensions of homomorphisms between strongly connected
directed graphs. One of them is shown to be also a property of those between
directed graphs with no restriction, from which the following result is imme-

diately obtained. For two directed graphs G, and G2, if there exists a homo-

1

morphism h of Gl into G2 such that the extension h* of h is uniformly finite-

to-one and onto, then the adjacency matrices M(Gl) of Gl and M(GZ) of G2 have
the same maximal characteristic value but also the characteristic polynomial
of M(Gl) is divided by that of M(Gz). The other property is stated as follows.

If Gl and G2 are two strongly connected directed graphs such that their adja-

cency matrices have the same maximal characteristic value, then for any homo-

morphism h of G, into G2’ h* is uniformly finite-to-one if and only if h* is

1

onto.
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1. Preliminaries

Let A be a finite nonempty set. A sequence of finite length of elements

of A is called a string over A. The sequence of length 0 is also a string

and is denoted by A. For a string x, lg(x) denotes the length of x. The set
of all strings over A is denoted by A*. TFor a non-negative integer n, A" is
the set of all striﬁgs of length n over A. For x, v € A*, ky'denotes the
string obtained by concatenating the two strings x and y.

A graph (directed graph with‘labeled arcs and labeled points) G is defined
to be a triple (P,»A, ) where P is a finite set of elements called points,
A is a finite set of elements called arcs and 7 is a mapping of A into P x P.

If ¢(a) = (u, v) for a € A and u, v € P, then u is called the initial endpoint

of a, v is called the terminal endpoint of a, and we say that a goes from u

to v.

Let G = (P, A, ) be a graph. A string x = a "'ap (p 2 1) over A with

1
a; € A (di=1, -+, p) is called a path of length p in G if the terminal end-

point of a; is the initial endpoint of 341 for i =1, ¢«++, p~1. The initial

endpoint u of a; is called the initial endpoint of x, the terminal endpoint v

of ap is called the terminal endpoint of x, and we say that x goes from u to v.

Each point u of G is a path of length 0 (going from u to itself). The set of

all paths in G is denoted by 1(G). The set of all paths of length p(z 0) in G
is denoted by n(p)(G). Note that n(p)(G) = AP N 11(G) for P > 1.

A graph G = (P, A, ¢ ) is said to be strongly connected if p ¥ ¢ and for

any u, v € P, there exists a ﬁath from u to v in G.” Of course, a graph con-
sisting of exactly one point and no arc is strongly connected. But, for con-
venience, in what follows we assume, unless otherwise stated, that a strongly
connected graph has at least one arc. However, we remark that all theorems,

the proposition, and all lemmas concerning strongly connected graphs in this
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paper trivially hold for strongly connected graphs with one point and no arc.
Let Gl ={(P, A, 1 } and G2 =(Q, B, Loy ) be two graphs. A homomorphism
h of Gl into G2 is a pair (h, ¢) of a mapping h : A > B and ‘a mapping ¢ : P -
Q such: that for any a € A, if Cl(a) = (u, v) with u, v € P, then zz(h(a)) =
(o), ¢ (v)). °

If Gi-is strongly connected, then a homomorphism h = (h, ¢) of Gl into

G2 is uniquely determined by h. Therefore, when G, is strongly connected, we

1
say that h is a homomorphism of Gl into G‘2 and we denote by ¢h the unique

mapping ¢ such that (h, ¢) is a homomorphsm of‘Gl intO'Gz.

For a homomorphism h = (h, ¢) of a graph‘Gl =(P, A, T, ) into a graph

G2 = (Q, B, 52 Yy and a subgraph Gi ={(P', A", Ci ) of G,, we denote the sub-

1
graph: (¢ (P'), h(A"), Ci y of G2 by h(Gi). (A graph G' =(P', A", ¢') is a

subgraph of a graph G = (P, A, T) if P' C P, A' C A, and ¢'(a) = ¢(a) for

all a' € A'.) It is easy to see that if Gi is strongly connected, then h(Gi)

is- strongly connected. When Gi is' strongly connected, we often denote h(Gi)
' ,
by h(Gl).~

Let G, = (P, A, Zy Y and G2 = (Q, B, %y ) be graphs. Let h = (h, ¢) be

1

a homomorphism of G1 into G2’ We define the extension h* : H(Gl) - H(Gz) of

h as follows. For: each x € H(Gl), if 1g(x)-

0, i.e., x is a point of Gl,

then

h*(x) = ¢(x)

[l

and if x = a; - ap (p = 1) with a; €A (H=1, -+, p), then

h*G) = ha) +- hia).

When G

1 is strongly connected, we often use h* instead of h* and say that n*

is the extension of the homomorphism h,

A mapping £ : A » B is said to be uniformly finite-to-one if there exists
a positive number N such that If*l(y)l < N for all y €B.

-3 -
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Let G1 and G2 be two graphs. Let h be a homomorphism of Gl into GZ'

Two paths x and y in G1 are said to be indistingushable by h if x and y have

the same initial endpoint and the same terminal endpoint and h*(x) = h*(y).

Proposition 1. Let Gl =(P, A,~;1) be a strongly connected graph and
let G2 =¢(Q, B, T, Yy be a graph. ‘Let h: A> B be a homomorphism of Gl into
G2. Then h* : H(Gl) - n(Gé) is'uniformly finite-to-one if and only if no

two distinct paths in G, are indistinguiéhable by h.

1

Proof. Suppose that Xy and X, are two distinct paths ian1 s;chithat
they have the same initial endpoint, séy u, and the same terminal endpoint,
say v, and h*(xl) = h*(xz); Since Gl is strongly éonnééted, there exist; a
paﬁh z going from v to u. For any poéitive integer N, we have I(h*)’l((ﬁ*(
Xl)h*(z))N)l > ZN. Hence h* is not uniformly finite-to-one.
Suppose that h* is mnot uniformly finite-to-one. Then there ekists‘é'

path y € H(Gz) such that |(h*)—l(y)! > |P|2. - Since the number of paths x's’
in (h*)—l(y) is gerater than the number of all possible pairs of the initial

endpoint and the terminal endpoint of a path in Gl’ there exist two distinct

paths with the same initial endpoint and the same terminal endpoint in (h*)_l(y).[j

For a graph G = (P, A, T ) with P = {ul,’---, un}, the adjacency matrix
M(G) is the square matrix (mij) of order n such that mij is the number of
arcs going from u; to uj (1<i, j <mn).

A matrix M with real elements is said to be non-negative if éli elements
of M are non-negative. By the Frobenius Theorem (cf. Gantmacher [2] or'Nikaido
[71), any non-negative square matrix M has a\non—nggative‘real cﬁérécteristic

value which the moduli of all the other characteristic values of M do not

exceed. We call that maximum real characteristic value the maximal character-
istic value of M. For a graph G, we denote the maximal characteristic value
of M(G) by r(G).

A square matrix M is said to be irreducible if there is no permutation
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matrix H such that H—lMH has the form

<f M 0 .
(1.1)
M2 M3

where M1 and M3 are square matrices and 0 is a zero matrix. For a graph G,
G is strongly connected if and only if M(G) is irreducible.

Let M be an irreducible non-negative square matrix of order n. Let r be
the maximal characteristic value of M. By the Perron-Frobenius Theorem (cf.
Gantmacher [2] or Nikaido [7 ]), r > 0 and to the maximal characteristic

value r there corresponds a characteristic vector w = (wl, LK wn) with v, o>

O for i=1, **+, n. Let D = (dij) be the diagonal matrix of order n such

"that dii =W, (i =1, *-+, n). Then the sum of all the coordinates of each
column vector of DMD_1 is equal to r. (Cf. [2]). ‘ For any matrix K,
let us denote the sum of all the elements of K by S(K). Then, since for each

non-negative integer p, MP = D_l(DMD—l)pD and S((DMD—l)p) = nrp, we have

wP < s@P) < (p=0,1, -r0) (1.2)
where o = n min (w,/w,) and 8 = n max (wi/w.).
l<i,jsn * 1 1<i,js<n J

‘Lemma 1. let Gl and G2 be two strongly connected graphé. Let h

be a homomorphism of Gl into GZ' Then the following two statements are
valid.

(L 1f h* is uniformly finite-to-one, then r(Gl) < r(Gz).

(2) 1f h* is onto, then r(Gl) > r(Gz).

Proof. Assume that h* is uniformly finite-to-one. Then there exists a

IA

positive number N such that I(h*)_l(y)l N for all y € H(Gz). Thus since for

* -1 .
each non-negative integer p, |H(p)(Gl)} ](h ) (y)|, it follows

)
yEH(p)<G2)
that
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1P | < nn® | (=0, 1, =)  (1.3).
Since for i = 1, 2,
In® e = scae,)?) (=0, 1, =),

2

Assume that h* is onto. Then it follows that

using (1.2) and (1.3) we have r(Gl) < r(G

1P 6| > 1P )| (0 =0,1, ).

Hence by the same argument as above, we have r(Gl) 2 r(GZ).[]

2. Uniformly finite-to-one and onto extensions.

Let G = (P, A, ¢ ) be a graph with A = {al, sy, ai}. Let Z be the ring

of integers. We consider the polynomial ring Z[al, ceey az] in indeterminates
aps "', @, over Z. Let P = {ul, cee, un}. Let M = (mij) be the matrix of

order n with elements in Z[al, ey, al] such that mij = apl + "+ aPk if
a , °**, a are all arcs from u, to u, in G, and m,. = 0 if there exists no
P1 Pk 1 J 1]

arc from u; to Yy (1 i, j < n). Then the matrix M is called the representa-
tion matrix of G and is denoted by ﬂ(G). Let X be an indeterminate not con-

tained in A. Let fG be the polynomial in Z[al, see, aé, X] which is equal to

the characteristic polynomial of ﬁ(G), i.e., let f. be the polynomial defined

G
by

fG(al, Tty ag, X) = det (Xlﬁ - M(G))

where In is the identity matrix of order n. Then fG(al, Tt g, X) is

homogeneous of degree n. Let fG(X) be the characteristic polynomial of the

adjacency matrix M(G) of G. Then clearly
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£,0 = £, L 1L, 0.
In this section we shall prove the following theorem.

Theorem 1. Let G1 = (P, A, 1 ) and G2n=‘(Q, B, Zy ). be two strongly

]

connected graphs with A {al, s, az} and B = {b

l’

be a homomorphism of Gl into G2. Let g be the‘polynomialvin Z[bl’ teey bm’ X]

‘s b}, Leth: A->23B

~

obtained from fGl(al, e ag, X)‘by substituting h(ai) for ay in fGl for i =

1, ***, . Then, if h* is uniformly finite-to-one and onto, then r(Gl) = r(Gz)

and £ (b

b
Gy

X) divides g(bl, e, b, X) in Z[bl, -, b, X].

l’ b m’ m mn

Theorem 1 can be generalized to graphs with no restriction. Using Theorem

1, we can prove the following theorem. But the proof is omitted in this paper.

(It is found in [5].)

Theorem 1'. Let Gl = (P, A, <] ) and G2 = (Q, B, Zo ) be two graphs with

A= {al, LN al} and B ='{b1, ooy bﬁ}; Let h = (h, ¢) be a homomorphism of
Gi into G2. Let g‘be the polynomial in Z[bl’ ey, bm, X] obtained from fGl(al,
s ag, X) by substituting h(ai) for a; in fGllfor i=1, '4', %, Then if h*

is uniformly finite~to-one and onto, then r(Gl) = r(Gz) and sz(bl, cee, bm’ X)

divides g(bl; “**, by, X) in Z[by, ***, b_, XI.
As a direct consequence of Theorem 1', we have’the following result.

Corollary 1. Let G, and G2 be two graphs. If there exists a homomorphism

1

of - Gl into Gz‘such that the extension h* of h is uniformly finite-to-one and

onto, then not only r(Gl) = r(Gz) but also fGl(X) is divided by fGZ(X).

To prove>Theoremﬂl, we use Lemma 1 and furthermore four lemmas.

Lemma 2. Let G, = (P, A, ;l > and G2 = {(Q, B, C2 ) be two strongly

1
connected graphs with A =‘{a1, ey, ak} and B = {bl, seey bm}’. Let h : A—*B
be a homomorphism of Gl into G2. Write fGl = fGl(al’ +++,a , X)-and f92_=

sz(bl’ -+, b X). Let g be the polynomial in Z[bl’ ceey, bm’ X] defined by

m’

-7 =
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glby, *=*» b, X) = fGl(h(al), “++, h(ay), X)

e ‘ ' o .
Then if h” is uniformly finite-to-one and onto, then for any m positive inte-

gers py, *°°, pm;vtheré exists é real number r such that
g(py, "ts Py ) = sz(Pl’ "tts Py ¥) = 0.

Prdof. Assume that h¥* : H(Gl) > H(GZ) is'uniformly finite—to—bne'an&‘
onto. Let Pys teey, Pp be any m positive integers. We coﬁstruct two gfaphs
Gi and Gé as follows. For each i =1, -, %, let j(i) be the number such

that h(ai) = bj(i) and let Ai = {ai,l’,ai,Z’-...’ ai’Pj(i)} where ai;v’ v:=
,1’ ey, pj(i)’ are new distinct elements for every i. The graph G! is ob-

1

tained from Gl by replacing each arc a; with the arcs consisting of the elements

. v 1 1 LI 2 v, ' .
of Ai’ That is, Gl =(P, A", 21 ) where A iglAi and £y ¢ A" > P x P is

defined by

1 - . - - . v
Cl(ai,v) = El(ai) v 1, s pj(i)’ 1 1, ’ 2)7

For each j =rl, ce+, m, let B, ={b, ., *-*, b, } where b, , v =1,
3 i1 3sP; Jsv

Ty pj, are new distinct elements for every j. The graph Gé is obtained from

G2 by replacing each arc bj with the arcs bj,l’ ceey, bj’pj. That is, Gé =
(Q, B', g5 ) where B' = Bj and g5 : B' > Q x Q is defined by
1

7

1 = = e s = e
CZ(bJ,v) = Cz(bj) (\) 1: ’ Pj’ J l’ ) m)-

Let h' : A' - B' be the mapping defined by

! = | =1, Py, B =1, v, ).
h (ai,v) bj(i),v (v s pj(l)’ i s s )

Then clearly, G! and G

1 o are strongly connected and h' is a homomorphism of

1 1 ceeb. i G', L oeecb, 1
Gl into GZ’ Furthermore, for any path bjl’vl bJs’Vs in G, bJl ig s
a path of G2 and it follows that ‘ ‘

(@Y e, b = (@D, b )

j19V1 JS’ s 1 JS
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* . . 3 . . Al T
Therefore, since h” is uniformly finite-to-one and onteo, so is (h’)*. Hence,

by Lemma 1, r(Gi) r(Gé). Let r = r(Gi). Then the characteristic poly~

nomials £.,(X) of M,, and £_.,(X) of M., have r as their common root.
Gl Gl G2 G2
Write A' = {aj, -, ak,} and B' = {b!, *--, b;!}. Write fGi = fGi(ai’
*y aé,, X) and fG'
2
if gz(bj) = (uj, vj) (uj, vj € Q), then there exist pj arcs going from uj to

= fGé(b" > bly, X). Then since for each arc bj in G,,

1

V. in G2

j , we have

fG (Pl, St pm: X) = fGl(l’ e, 1, X).
2 2

Also, since for each arc a; in Gl’ if h(ai) = bj and gl(ai) = (si, ti) (Si’

t, € P), then there exist pj arcs going from s; to t, in Gi, it follows that

g(pys *+s by X)) = £,,(, 0, 1, X).

1
Since £,,(1, ***, 1, X) = £,,(X), fG,(l, ", 1, X) = £,,(X) and £,,(r) =
1 1 2 2 1
fG,(r) = 0, we have
2
g(py> ***s P s 1) = fcz(pl, ety P, ) = 0. o

An arc a of a graph G is called a loop of G if the initial and terminal

endpoints of a are the same.

Lemma 3. Let Gl =(P, A, g ) and G2 ={(Q, B, Ty ) be two strongly con-

nected graphs. Let h : A - B be a homomorphism of Gl into G2. Let v € Q.

Let Gé be a graph obtained from G2 By adding a loop bv(é B) from v to itself.

Let Gi

for every point u in ¢;1(V). (¢h was defined in the preceding section.)

be a graph obtained from Gl by adding a loop a, (E A) from u to itself

Let h' be the mapping of A Y {aul u € ¢;l(v)} into B U {bQ} defined by

h(a) if a € A

b if a
v

n
©

e
o
2
e
m

=

H

~~
£
Nt
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Then h' is a homomorphism of Gy into Gé and if h* is uniformly finite-to-one

and onto, then (h')* is also uniformly finite~to-one and onto.

Proof. Clearly h' is a homomorphism of Gi into Gé. Any path z in ﬂ(Gé)

. . = Ve e - oo e
is written as z X1Y1%95, XY, where X H(GZ) (i 1, , ), XX,
xﬂ € n(Gz), and vi € {bv}* for i =1, =++, &. It is easily seen that
inEy L %\~1 . % . ..
I((h D) (z)‘ = |(h ) (xl-"xl)[. Hence if h"” is uniformly finite-to-one

and onto, then (h")* is also uniformly finite-to-one and onto. |

Lemma 4. Let G =(P, A, ¢ ) with A = '{al, a_} be a graph such that
for every u € P, there exists at least one loop going from u to itself.. Then

(1) det ﬁ(G) is an irreducible polynomial in Z[al, SN am] if (and only
if) G is strongly connected, and

(2) fG(al, “tts A, X) is aﬁ irreducible polynomial in Z[al, ey am,X]
if (and only if) G is strongly connected.

Proof. We first note that for any homogeneous polynomial f(Xl, SN XQ)

in indeterminates X . Xl over an integral domain k such that £(0, XZ’

1,

ey XZ) $+ 0, if £(0, X . Xl) is irreducible, then f(Xl, -;-, Xz) is

2’
irreducible. (Since f(Xl’ ey, Xl) is homogeneous and £(0, XZ’ LN Xg) £ 0,

deg £(0, X . Xl) = deg f(Xl, cery Xg)' Assume that £(O, X2, N Xl) is

2!
irreducible but f(Xl, ey, XR) is reducible. Then there exist polynomials 8

and g, such that f(Xl’ TN Xl) ='g1(Xl, -;', Xg)gz(Xl, RN XQ) and 1 <

deg g; < deg f. Hence £(0, X9, **°, Xg) = gl(o’ Xyy 0ty Xz)gz(o’ Xy, *s

X2‘>. Since f(O, X2, Sty XQ,) ¥ O’ gl(O, Xz, MY XQ,) + 0. Since f(Xl, "',

Xl) is homogeneous, gl(Xl’ ey, XR) is homogeneous. (Cf. van der Waerden

[9]1, § 23.) Hence deg gl(O, X *, X ) = deg gl(Xl, cee, X%). Thus 1 <

g .
deg gl(O, X2, e Xg) < deg £(0, X2, v, XQ)._ Therefore, £(0, XZ’ U XZ)

is reducible, which contradicts the assumption.) Therefore, since fG(al’
Tttsoans 0) = det (—ﬁ(G)), the if part of (2) follows from that of (1).

Moreover, to prove the if part of (1), it suffices to show the following :

- 10 -
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(3) det &(G) is an irreducible polynomial if ¢ =(P, A, £ ) is a graph
such that (i) G is strongly conneéted, (ii) for any u € f, there exists at
least one loop from u to itself in G, and (iii) any‘graph‘obtained from G
by deleting an arc of G does not satisfy both (i) and (ii).

Let G = (P, A, r ) be any graph. A path z= ai---az with a, € A (=1,

-:?;‘g) is called a circuit of 1ength g if a; ¥ aj fér any i, j, lv< ir'< j:S

o, and the initial and terminal endpoints of z are the same. A circuit z =
_al-~~a£ is said to be elementary if a; and aj have distinct initial endpoints
for any i, j, 1 < i < j < &. (Each loop is an elementary circuit of length 1.)

A set E of elementary circuits in G is called a circuit-cover of G if each

point of G is on exactly one circuit in E.
Let E, be the set of all circuit covers of G. Write M(G) = (a..). Then
’ 3 1]

det M(G) is written as

det M(G) = } (o) 310(1)a20(2)”'an‘o(n)‘
)

where n = |P|, 0 is a permutation on {1, **+, n}, and e(0) = 1 or -1 if per-
mutation g is even or odd, respectively. For every permutation ¢ such that

‘a ¥ 0, the arcs (indeterminates) a.
ng(n)

A i= v e on—
ig(i)’ 1, » I, C

s

stitute all elementary circuits in a circuit-cover of G. Conversely, for
any circuit-cover E of G, the product of all arcs (indeterminates) that are
on the circuits in E is equal to a term in det M(G) up to the sign. Pre-

cisely, we can write

det M(G) = } ¢

E € E(G) E

where for any circuit cover E € E(G), t_ is the monomial z!g E tz where for

E B
any elementary circuit z = a;---a, (aiEE A) in G, tZ is the monomial defined

)Q+la

by tZ =.(fl 17778 Therefore, we shall prove the following by induc-

tion on the number n. of the points of G.

- 11 -
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(4)

P; = _ ty is an irreducible polynomial if G is a graph satis-
E e E@G) ‘

fying the conditions (i), (ii),and (iii).

If n, = 1, then clearly (4) holds.  "Let n > 2 and assume that (4) holds
when n, n-1. Let G = (P, A, £ ) be a graph with n, =n satisfying (i), (ii),
and (iii). Since n, >1 and G is strongly gonnected; tﬁere exists an‘eleﬁenta—

ry circuit z = a .- 2.

173y of length £ > 1 in G where aiE A(1=1,

Lgt u;s -;-, u, be the poinfs ?n the circuit z. Since G satisfieg the conéi~
tions (iii)‘aﬁd (i);yif we delete all the arcs a;, ceey a, from G, Qe ob;ain
pairwise disconﬁécted 2 strongly connected‘subgréphs Gi’ i=1, ***, 2, of G
such that ug is a point in Gi and each point’of G is a point of exactly oﬁe
of Gi's. Clearly each Gi is a graph satisfying (i), (ii), énd (iii). For
i=1, ***, 2, let Hi be the subgraph éf Gi obtained by deletingvthé point ug

from Gi' Then we can write

PP 5 2 S e e

1 2 "1 L
where if Gi is a graph consisting of the point ug and a loop from u, to itself,
then we set Py, = 1. Clearly Pg is a polynomial of degree 1 with respect to

aq- By the induction hypothesis, is an irreducible polynomial for i = 1,

PG,
. 1
ey . For i=1, «++, o, any indeterminate in Py appears only in Pg -
: i |
***a P,y Py °°°P can not divide p P .
2 [3 Hl H2 Hk Gl | Gz
we conclude that Pg is an irreducible polynomial.

Hence any factor of the a Thus

Thus we have proved the if part of the theorem. (It is easy to see that
the only if part of the theorem holds.) O

t .
Lemma 5. Let f and g be two: polynomials in Z[al, Tt A, X]. +1If £ is

irreducible in.Z{ai, Ttts oA, X] and if for any m positive integers Pys Tt

T See Acknowlegement.
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© P there exists a real number r such that

£(pys ***s P> ¥) =8Py, *v+5 P> T) =0,

then f divides g in Z[al, tts oA, X].

Proof. Assume that f is irreducible in Z[al, "tts ans X] and assume
that for any m positive integers Pis "% P there exists a real number r
such that f(pl, Tty P r) = g(pl, Tty P r) = 0. Suppose that g is not
divided by f in Z[al, tth oA, X]. Let K be the quotient field of Z[al, ceey
am]. We can consider £(X) = f(al, Tty A X) and g(X) = g(al, s A, X)
as polynomials in K[X]. Since f(X) is irreducible and g(X) is not divided by
f(X) in Z[al, cee, am][X], f(X) is irreducible and g(X) is not divided by
f(X) in X[X]. (Cf. van der Waerden [9], §23.) Therefore, there exist s(X)

and t(X) in X[X] such that
f(X)s(X) +gXtX) =1 (3.1).

Since the coefficients of s(X) and t(X) are rational functions in indeter-

minates al, e, am over Z, there exists a nonzero polynomial u in Z[al, LN

e+, a , X]. Let 8§ =us and t =

am] such that both us and ut are in Zla -

l’

ut. Then by equation (3.1) we have

£(a, ***5 ap, X)8(ag, 0, ay, X) +glay, o, ay, Ny,

m’
.’am’ X) = u(al, ..', am)- (3-2)
Since u is a nonzero polynomial, there exist m positive integers Pys "5 P

such that u(pl, LRI pm) ¥ 0. (Cf. van der Waerden [9], §21.) By hypothesis,
there exists a real number r such that f(Pl’ Tty P r) = g(pl, "ty P
r) = 0. Substituting (pl, Ttts P r) for (al, Tty oA, X) in the poly-

nomials in equation (3.2), we are lead to a contradiction. Thus the lemma

is proved. []
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Now we are ready to prove Theorem 1.

Proof of Theorem 1. Assume that h* is uniformly finite-to-one and onto.

By Lemma 1, we have r(Gl) = r(Gz).

It follows from Lemma 3 that by adding new loops ai, ceey, aé to Gl and

new loops b!, +--, b& to G, if necessary, we can obtain two strongly connected

2

graphs Gi and G! and a homomorphism h' of Gi into Gé satisfying the following

2

conditions, from G

1° GZ’ and h.

(1) For each point u of G!, there exists at least one loop from u to u.

(2) h'(a) = h(a) for all a € A and h'({a;, **, a;)}) = {b!

. ¥
1o s b

“(3) (h")* is uniformly finite-to-one and onto.
£ .- ' £ . e v 1 o e 1
Let fGi(a y ap, X) -and fGé(bl’ s bm, bl’ , bq’

X) be the polynomials which are equal to the characteristic polynomials of

l’ ...’ aﬂ,’ ai’

ﬁ(Gi) and ﬁ(Gé), respectively. Let g' be the polynomial in Z[bl, "',‘bm,

bi, vy bé] defined by
i cee v e e '
g (b].’ ’ bm9 bl, H bq * X)
- £ ' s e ' ' ! "o ' '
- fGi(h (al)’ s h (az)a h (al)’ ] h (ap)s X)'

Then, since Gé is a strongly connected graph and condition (1) is satisfied,

it follows from Lemma &4 that f . is irreducible in Z[b,, -+, b, bl, -,
G2 1 m 1

bé, X]. Since (h')* is uniformly finite-to-one and onto, it follows from

Lemma 2 that for any m + q positive integers p;, *°*, p_, pi, Ty pé, there

exists a real number r such that

1 .o A .o '
g'(pys s P> Pps » Pg> r)

= fGé(Pl, T, Pm, Pi, Tt péa r) = 0.

Hence it follows from Lemma 5 that f

. e [] . e 1] PR
divides g' in Z[bl’ > bos by >

i
€

X]. Obviously,

sz(bl’ N bm’ X) = fGé(bl’ cee bm’ 0, *++, 0, X)
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and by condition (2),

'gwl,‘”,bm,X)=g'®i,~“,bm,0,-H,O,XL

Thus we conclude that %G divides g in Z[bl; s, bm, x1.
, 2 R ; , L om T

Example 1. Let G =(P, A, ) be a graph. For any non-negative integer

. P, we define a graph L(P)(G) as follows. - L(O)(G)- G. TFor p > 1, L(p)(G).=

» (p+1) (®) ceen ) = eee ... v
(H (G)’ H (G), C l ap+1) = (al ‘ap’ az ap+l) for
aprra, € 1) (6) with a, €& (1 =1, *++, ptl). (Recall that 1 (6) =

AP N m(G) for p > 1.) We call L(P)(G) the path graph of length p of G.

Especially, L(l)(G) is called the line graph of -G and is denoted by L(G).

(This is the same as the line digraph of G in Hemminger and Beinke [4] and
the adjoint of G in Berge [l].)» Clearly, if G is strongly connected, then

I&»&Dis strongly connected for all p > 0. Let p be any non-negative integer.

H(p+l)(G) (p)

We define mappings h : >Aand ¢ : I - P as follows. For any

a and

(p+1) th [ =1, .- -
a a €1 (G) with a; €A =1, , ptl), h(al ap+l) = a4

1 p+l
for any x € H(p)(G), ¢(x) is the terminal endpoint of x. Then clearly

h= (h, ¢) is a homomérphism of L(p)(G) into G and h* is uniformly finite-
to-one. Clearly if G is strongly connected, then h* is uniformly finite-to-

one and onto. Let g be the polynomial obtained from f by substituting

L L(P) (g)
h(y) -for y for all indeterminates y E-H(P+ )(G) in fL(p)' . Then, whether G
(©)
is strongly comnected or not, we can show that
- mA
g =X fG s (3.3)

and hence we have

£ x) = X"f_(X),

L(p)(G) G
where m = |H(p)(G)| - |P| and we assume that f¢ = f¢ =1 for the graph ¢

with no point. Note that m may be negative. Particularly we have
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r@P @) = r@.

Proof of Equation (3.3). It suffices to show the result for p = 1 be~

cause L(p)(G) is isomorphic to LP(G) for any p 2 Ofand hence the result for
general p (> 0) is straightforwardly proved by induction. Thus we assume
that p = 1.

Assume that G is strongly connected. Let P = {ul, s, ﬁn} and let A =
{al, s, al}. Then h : H(Z)(G) ~> A is a homomorphism of the strongly con-'v
nected graph L(G) into the strongly connected graphvG. Since h¥ is uniformly
finite-to-one and onto, it follows from Theorem 1 that there exists o e'Z[al,

L X] such that

~

g(a1’ ..., az’ X) = a(al’ ...’ a 3 X)fG(al, ...’ a

Iy X). ‘ (3.4)

'q”

Let M be the sqﬁare matrix (mij) of order 2 in which m, aj if the

0 otherwise.

1

terminal endpoint of a; is the initial endpoint of aj and mij

We can consider g(X) = g(al, *++,a, X) as a polyﬁomial in K[{X] where K is

2”
the quotient'field-of Z[al, LRI ak]. Then g(X) is the characteristic poly-=

nomial of M. By the construction of M, if a, and aj have the same terminal

i
endpoint, then the i th and j th rows of ﬁ are the same. Therefore, for
each point U of G, if the number of arcs going to U is dk’ then dk rows of
M are the same. Let m = |A| = |P|. Then it is easily shown that there
exist m linearly independent row vectors V's such that W = 0 where 0 is the
zero vector. Thus O is a characteristic value of M with at least m linearly
independent characteristic vectors corresponding to it. Hence 0 is a root

of g(X) of multiplicity at least m. Thus g(X) is divided by XT,

We assume without loss of generality that (*) for each point u of G

t We define LP(6) by L(6) = G and LP(6) = La? o) > 0.
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there exists at least one loop going from u to itself. (For assume that a;
is a loop. Let G' be the graph obtained from G by deleting the loop a;.
Let g' be the polynomial in Z[az, Tty g, X] defined for G' in the same

way as g for G. Then it is easily checked that g(0, ays "tts ags X) = Xg'(az,
ey az, X) and fG(O, ags "t Ap, X) = fG'(aZ’ Ttts o ag, X). Hence it follows
that if (3.3) holds in case G satisfies (*), then it also holds in case G

does not satisfy (*¥).) Thus since G is strongly connected, it follows from

Lemma 4 that EG is irreducible in Z[al, +++, a,, X]. Therefore, since g(al,

IE
e, ag, X) is divided by Xm, so is a(al, Tty Ay, X) in (3.4). Since deg o
= m, we conclude that (3.3) holds.

For the general case where G is not necessarily strongly connected, the
result is straightforwardly proved by induction on the number of the maximal
strongly connected subgraphsTof G. Therefore, the remainder of the proof is
omitted. [7]

It was mentioned in Hemminger and Beinke [4], p.298 that A.J. Hoffman

had asked whether one can determine fL(G)(X) in terms of fG(X). The question

has been solved by a result in Example 1.

3. The extension of a homomorphism between two strongly connected graphs

G1 and G2 with r(Gl) = r(GZ).

In this section, we prove that if Gl and G2 are strongly connected graphs
such that their adjacency matrices have the same maximal characteristic value,

then for any homomorphism h of Gl into GZ,‘h* is onto if and only if h# is

+ Here, "strongly connected graph" is used in the usual sence, that is,

it includes "' strongly connected graph with one point and no arc".
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uniformly finite-to-one, and hence the surjectivity of h* is equivalent to
the nonexistence of two distinct paths which are indistinguishable by h, in Gl'
Let G = (P, A, ¢ ) be a strongly connected graph. Let p be a non-negative

integer. We define a mapping 6

C,p : H(L(p)(G)) - igp H(i)(G) as follows. (Cf.

Example 1.) If 2z is a path of length 0 in L(p)(G), then z € H(p)(G). For
this case, we define
0 z) = z.
G,P( )
If z is a path of length %(> 1) in L(p)(G), then z is of the form
Z=

(al- . .ap+1) (az- . -ap+l) ceo (a/Q/- B .a,Q,-]-P)

2+
€ H( p)(G). For this case, we

i o = ce
with a;, s a2+p A such that a; ag+p
define

=) - “on .
G,p(z) #1 a,Q+p
Clearly, 6 is one-to-one and onto.

G,p

Theorem 2. Let G, = (P, A, ty ) and G, = {(Q, B, Z, ) be two strongly

connected graphs with r(Gl) ='r(G2). Then for any homomorphism h : A - B

of G1 into GZ’ h* is uniformly finite—to-one if and only if h* is onto.
Proof. Let h : A > B be a homomorphism of G1 into G2. Lét p be any

non-negative integer. We define a mapping h(p) : H(p+1)(Gl) *—H(p+l)(G2) by
n® 6o = n* ) x € 1" D)),

Then h(p) is a homomorphism of the strongly connected graph L(p)(Gl) into
the strongly connected graph L(P)(Gz). Moreover, we have, for each z €
n(L(p)(Gl>),

W (o () = 85 (PR,

1 2

Therefore, since GG P and GG are one-to-one and onto, h* is uniformly
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finite-to-one [OntQ] if and only if (h(p))* is uniformly finite-to-one [onto].
Assume that h* is uniformly finite-to-one btut not onto. Then there
.exists y € H(Gz) with 1g(y) 2 1 such that (h*)—l(y) =¢. Let p = lg(y) - 1.
We consider the homomorphism h(p) of L(P)(Gl) into L(?)(Gz). Since h* is
uniformly. finite-to-one, (h(p))* is uniformly finite-to-omne. Moreover? y is
an arc of L(p)(Gz) such that (h(p))_l(y) =¢. Let H = h(p)(L(p)(Gl)) (cf.

Section 1 for this notation.). Then H is a strongly comnected subgraph of

L(P)(Gz). We define a mapping (h(P))' : H(p+l)(Gl) ﬁ-h(p)(ﬂ(p+l)(G2)) by
(h(P)) "(x) = h(P) (%) ‘(X c H(P+l) (Gl)) .

Then clearly (h(p))' is a homomorphism of L(p)(Gl) into H. Since (h(p))* is
uniformly finite—to—one,‘((h(p))')* is uniformly finite-to-one. Thus, by
Lemma 1, we have

c@w® ©) < r@).

On the other hand, the following result is known (e.g., Nikaido [13]).

- (1) For any two distinct non-negative square matrices M, and M, of the

1 2

same drder, if Ml is irreducible and Ml -—.M2 is non-negative, then the maximal
characteristic valuevof>M1 is greater than that of ﬂz.

-$ince h(P P G ¢ n(p+1)(G2) - {y}, it follows from (1) that the
maximal characteristic value 9f M(L(p)th)) is greater thaﬁ that of M(H).

Hence we have

r@P(6,)) > ra.
By Example 1 and hypothesis

r@®(6)) = £6) = r@y) = x@® e,

9)

Therefore, we have

(p)

r(L (Gl)) > r(H),
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which is a contradiction. Thus we have proved that if h* is uniformly
finite-to-one, then h* is onto.

To show the converse, we assume that h* is. onto but not.uniformly finite-
] and G) from G =(P, A, t; ) and G, = (Q,
B, z,), respectively, as follows. Let A= {a]la€ A} and let EV?‘{EIb € BhL

to-one. We construct two graphs G

The graph Gi is obtained from G1 by adding a new arc @ having the same

initial and terminal endpoints as a for every arc a of Gl' That is, Gl =

(P, A', Ci Y} where A' = A U A and Ci is defined by ci(a) = ;i(a) = ;l(a) (a €
A). In the same way, Gé is obtained from G,. That is, Gé =4(Q, B'?,Cé)
where B' = B U B and Cé is defined by Cé(b) = Cé(E) = Cz(b) (b € B). Clearly,
Gi}and Gé are strongly connected and M(Gi) = 2M(Gi) for i = 1, 2 so that | ‘
r(Gi) = 2r(Gi) for i =1, 2. Since, by hypothesis, r(Gl) = r(GZ)’ Gi and.Gé
are two strongly connected graphs with r(Gi) = r(Gé). Define a mapping h'

A' - B' as follows. For each a € A, hf(a) =b and h'(3) = b where b = h(a).

1

l N
with d, € B' (i = 1,

Then, since h is a homomorphism of G, into G2, h' is a homomorphism of G

1

Anto Gé., Let dl.'.dl be any path of length > 1 in Gé
**+, %). For i=1, ---, &, let bi be the element of B such that bi = di or

b, = di' Then by-**b, is a path in G, and

' _l LAY = *—1 e
[('F) 7@y rd ) | = [T by eb ) |

Therefore, since h* is onto, (h')* is onto.
Since h* is not uniformly finite-to-one, it follows from Proposition 1

that there exist two distinct paths X and X, in G1~which are indistingush-

abie by h. Let p = 1g(x1) - 1. For i 1, 2, we write xi'= a,.*"*

i1 3 (pH1)

.. PR . ee PR '-:;A"-'; .o .
with aij EAG =1, » ptl). TFor i 1, 2, let £33 a;jai9 ai(p+l)'.

Then xi and Xé are two distinct paths in“Gi which are indistinguishable by h'.
Put Hj =’n(P)(Gi), H, = L(p)(Gé),\and g= 0P hen

1

strongly connected graphs. and g is a, homomorphism of H, into H

1  Moreover,

27
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x! and x! are distinct arcs of Hl' Let H, =(R, E, ¢} be the maximal

1 2 1

strongly connected subgraph of H 1

having the arc x; but not having the arc

1

xé. Now we shall prove the following.

(*) H, exists and for any z Ewﬁ(Hl) - H(ﬁl), there exists z € 1 (H

such that g*(z) =g*(z).

1)

Let z € H(Hl) - H(ﬁl). Since H, is strongly connected, there exists a

1

circuit C in Hl such that the arcvxé is on C and z is a subpath of C. (For

two paths z, and Z55 29 is a subpath of z, if there exists paths w, and w

1 1 2

5 = wlleZT) Let D. = eG' p(C). Then D is a path inaGi and x!

1 2

appears in D at least once as a subpath of D. Hence we can write D = wlxéw2

such that z

: = 1 = iy : ' 1
with Wis Wy H(Gl). Let Dl WK W, Then since X and ) have the same

*
initial endpoint and the same terminal endpoint and ¢h') (xi) = (h')*(xé),

. . ' 1y % = ry* . v =
Dl is a path in Gl and (h'") (Dl) (") (®). Since X; = 81785, alP and

x.! ‘a, , xi and xé do not intersect, that is, there exist no paths

2 - 221%227 "%p
. 1 | - L L -
tl, t2, and s of length >0 in Gl such that X = tls and X, st2 or Xy st1

d x! =
an x2 t
1

new subpath xé in D,. Therefore, by replacing every subpath X, in D by x!,

98- Hence replacing any subpath xé in D by Xi does not generate a

we can obtain a path D in Gi such that xé is not a subpath of D, xi is a

subpath of D, and

MH*@) = "Y*@). -

D has the form B = al'°'d£dl"'ap where éi‘e A' (i =1, <++, 2), by additional

replacements if necessary. (D is of the form D = dl.'.dgdl...dp where di_e

A' (i =1, *-+, ). If a part of one of the initial and terminal subpaths

dl--'dP of D is replaced by a subpath of xi in the above replacements, the
corresponding part of the other subpath dl---dP of D must be replaced by the
same subpath of xi.) Let C = (GG, p)_l(f)). Then C is a circuit in Hl.

1!

T We assume that uy = yv = y for paths u and v of length 0, i.e. points
v and v, and a path y going from u to v.
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Moreover, C passes through the arc xi but does not pass through the arc x

1
2.

Hence, Hl exists and C is a circuit in Hl' Furthermore, we have

* oo -1 nE T - -1 1y o o
g (C) (eGé,P) (") (D)) (eGé,p) ((")"(d)) = g™ ().

Since z is a subpath of C, there exists a subpath z-of C such that g¥(z) =

g*(i). Of course, z is a path in H

(

1° Thus we have proved (%).

~ + ~
Let g ¢+ E~> 1 P l)(G?_) be the restriction of g. Then g is a homomorphism
of B, into H,. Since (h")* is onto, g* = ((b") PH* i Theref i

1 2° s B = 1s onto. ererore, 1it

follows from (*) that (é)* is onto. Thus it follows from Lemma 1 that
r(Hl) > r(Hz).

However, Hl is a strongly connected graph and ﬁl is a subgraph of Hl
which has not the arc xé of Hl' Hence it follows from (i) that the maximal

characteristic value of M(Hl) is greater than that of M(H Thus we have

l)'

r(ﬁl) < r(H,).

From example 3, r(Gi) = r(L(p)(Gi)) = r(Hi) for i = 1, 2. Therefore since

Y(Gi) = r(Gé), r(Hl) = r(Hz). Thus we have
r(H,) <r(H).

%
which is a contradiction. Thus we have proved that if h" is onto, then h*

is uniformly finite-to-one. The proof of the theorem is completed. []

Corollary 2. Let G, = (P, A,

1 1 ) and G2 = (Q, B, Zy ) be two strongly

connected graphs with r(Gl) = r(Gz). Let h : A > B be a homomorphism of G1
into G2. Then h* is onto if and only if no two distinct paths in Gl are
indistinguishable by h.

Proof. This follows from Theorem? and Proposition 1.[]

We remark that Theorem 2 and Corollary 2 are no longer true if either
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Gl or G2 in tHem is ndt strongiy connected. ' This is shown by the following
examples.
Define graphs G;, G, and G, as follows. G, = ({ul,:uz},‘{al, a,, agl,
Ly ) where gl(al) = (ul, ul), ;l(az) = (ul, u2), and ;1(a3) = (uz, u2) H G2 =
({v}, {b}, Z, ) where gz(b) = (v, V) 3 G3 = <{W1’ WZ}’ {Cl’ CZ}’ Zq ) .where
;3(cl) = (Wl’ Wl) and §3(c2) = (wl, w2). Then G2 is strongly connected but
G, and Gy are not strongly connected. Clearly r(Gl) = r(G2) = r(G3). Let
hl = (hl, ¢1) be the homomorphism of Gl into G2 defined by hl(al) = hl(az) =
'hl(a3) = b and ¢l(ul) = ¢l(u2) = v. Let h2 = (h2, ¢2) be the homomorphism of

Then hi is onto but not

G2 into G3 defined by hz(b) = %_and ¢2(v) =W,
uniformly finite-to-one because, for each n > 1, h*(ala an_l—l) = b for any
y 1*717273

i with 0 £ i < n-1 so that ((hi)_l(bn)l > n. Note that a;a, and aja, are

distinct and indistinguishable by hl' Clearly h; is one-to—-one but not onto.
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