goooboooogn
0 4000 19800 1-23

On the algebraic varieties containing a curve in projective space

Silvio Greco

Paolo Valabrega

Introduction.

Let Z be a projective curve in Pn over an algebraically closed
field k; we want to investigate the linear system of all hypersur
faces of Pn through Z with degree t >0, in order to see whether
some member of such a system is smooth everywhere or has at least
"good" tangent cones at the singularities of Z. Moreover we want
to investigate the finite intersections of general hypersurfaces
through Z, to see whether there are r-dimensional algebraic Qarie—
ties containing Z and smooth {(as far as it is possible). When Z

is smooth or has just plane singularities (embedding dimension 2),
then there is a surface, global complete intersection in Pn of hy
persurfaces through Z, which contains Z and is smooth everywhere;
more generally, when Z has at most points with embedding dimen-
sion r < n-1, then there is a smooth r-dimensional variety through
Z, global complete intersection in Pn.

When Z has singular points of embedding dimension n, we look for
hypersurfaces through Z smooth everywhere else and having at these
points ordinary singularities (i.e. with tangent cone projectively
smooth) . There are examples of "bad" singular points of Z for which
such a hypersurface cannot exist. So we introduce the concept of
"quasi ordinary" singular point : when P € 2 € Pn has embedding
dimension n it is quasi ordinary if the projectivized tangent cone

n-1
to Z at P, as a zero dimensional subvariety of P , is contained

as a subscheme in some smooth variety. If all points of Z with em
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bedding dimension n have such a property, then we are able to pro-
duce a hypersurface F through Z smooth everywhere except at these
bad points, where the tangent cones to F are projectively smooth.
In particular a curve Z in P3 just with gquasi ordinary singulari-
ties lies on a surface which is smooth elsewhere and has ordinary
tangent cones at these points.

For embedding dimension r < n-1, the existence of a smooth r-fold
through Z is also proved in [A—K] ;, with different techniques (whi
ch seem less elementary than ours).

One of the main tools of our work consists of a Bertini theorem
(on the variable singular point), valid for any algebraically clo
sed field useful,to deal with the behaviour of the hypersurfaces
at the points of Pn—Z and at the points of embedding dimension n
of Z. It includes the analogous Bertini theorem of {A-K], but

our proof seems quicker and more elementary.

A Bertini type method works also to deal with the behaviour of

the generic hypersurface through Z at the simple points of Z.



O. Conventions and terminology.

0.1 We work over an algebraically closed field k and "algebraic
variety" means "scheme of finite type" over k.

By point we mean "closed point” and we often identify an algebraic
variety with the ringed space of its closed points.

If Z,Y are closed subvarieties of X we write Z¢Y to mean that Z
is a subvariety of Y.

n :
We write P for projective space over k .

0.2 We consider only Cartier divisors. If a divisor is effective,

we identify it with the closed subvariety corresponding to it.

0.3 The intersection of two closed subvarieties is always in the
algebraic sense; that is if Yl,Y2 are the subvarieties of X given

by the sheaves of ideals I_,I then Yl/ﬁ Y2 is the closed subva-

1'72!
riety given by Il+12.

0.4 If YeX is a closed subvariety and D is a divisor of X not
containing any component of Y, then DAY is a divisor on Y and is
called "the divisor cut out by D on ¥Y".

If S is a linear system on X, the restriction of S to Y is the

set S8' of divisors on Y which can be expressed in the form DAY
where De S. It is clear that S' is a linear system. More precise

ly if j : ¥ > X is the embedding and if S corresponds to the vec
tor space V & HO(X,L),L being an invertible sheaf, then S' corre-
sponds to the vector space V' = ¢ (V), where ¢ : HO(X,L) - HO(Y,j*L)

is the canonical map.

0.5 If S is a linear system on X and DO,...,D €S, A= (AO,...,
r

r
A) € P, we write D, for the linear combination A D +...+ A D .
r A 0o rr
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The "+" sign is always used for linear combinations (and not for

sum of divisors) unless explicitly stated.

0.6 Let S be a finite dimensional linear system over X and let
DO,...,Dr be a fixed base of S. We say that the generic element
of S verifies a given property P if the set {Ae Pr/DA has P} con
tains a non empty open set. This is clearly independent on the

Y
choice of the base and of the coordinates in P .

0.7 When considering local equations of the divisors of a linear
system S (at a point or on an open set) we always take the equa-
tions in a coherent way. That is to say : if S corresponds to

ve HO(X,L), the local equations in U & X, where L/U = OX/U (or in

X € X) are given by one, and the same for all D € S, fixed isomor-

hism L = O (resp. L =0 ).
PRESE 200 ™ Pxpu TP e T

0.8 The base locus of a linear system S on X is the set of points

of X which belong to all D € S; it is a closed subset of X.

1l. A Bertini theorem.

In this section we give sufficient conditions for the generic mem-

ber of a linear system to be smooth outside its base locus.

1.0 Notations. Throughout this section X is a proper integral va
riety of dimension d > O over k, Z € X is a closed reduced subva-
riety and U = X-Z.

S is a linear system on X, of dimension r, and Do,...,Dr form a
fixed base for S. For each A = (XO,...,Ar) € P we put : D, =

A
= IA D, (0.5).
11



1.1 Definition : We say that D separates x,y € X if x€D,yg D. We
say that S separates the points of UC X if, whenever x,y €U and

x # y, there is D€ S which separates x and y. Note that in this
case the base locus of S is contained in Z = X-U (but not conver-
sely). We say that EO,...,En € S separate the tangent vectors at
x € X if x € EO/\.... N En and the local equations of the Ei's
at x generate the maximal ideal mX of OX,x' i.e. they are linear
ly independent modulo mi (see 0.7 for conventions about local e-
quations).

We say that S separates the tangent vectors at x€ X if there are
E ,...,En € S as above (see (4] , 7.3, p.152). If this happens

o]
for all x€U we say that S separates the tangent vectors on U.

We begin with a well known lemma

1.2 Lemma : Let £ : V > W be a dominant morphism of algebraic va-

rieties. Then dim V Z_dim W.

Proof : Let W0 be an irreducible component of W having maximal di

mension and let VO,...,Vn be the irreducible components of V. Then

we have : W=£(V) =\ F(V), hence W =V (F(V.) N W) =
i i (6] i i (6]

\/(f(V_)l\ W ); therefore we may assume that W =f(V ). Therefore
i i (o] ) 0

we may assume that both V and W are irreducible; moreover it is
easy to see that they may be assumed also reduced. Now use the

transcendence degrees over the base field.

1.3 Theorem : With the notation of 1.0 assume that

(i) U € Reg(X);

(ii) The base locus of S is contained in Z (e.g. S separates the

points of U);

(iii) S separates the tangent vectors on U.




Then the generic element of S is nonsingular at the points of U

(i.e. for D € 5 generic Sing(D) € Z).

Proof (compare with {H] , proof of Bertini theorem, I1I,8.18) : Put:

B= {(x,\) €U x P / XESing(Dk)} .

r
Claim 1 : B is closed in U x P .

be an open affine covering such that D, is prin
. i i

J
cipal on Uj, for all i,j. Clearly it is sufficient to show that Bn

Indeed let U =V U
i

(ijPr)‘is closed for all j; so we may assume that U be affine and
Di be principal on U for all i.

Fix a closed embedding U(;kn and let I = (Gl,... ,GS)C k{T]-=

=k [Tl,...,TnJ be the corresponding idgal. For each i = O0,...,r
there is a hypersurface Fi such that Dir\U, in the above embedding,
corresponds to the divisor cut out by Fi on U. Then for each A the

n
variety D.n U is isomorphic to the subvariety of k defined by the

A
ideal (Gl,...,GS, IA F ), so that claim 1 follows easily by the ja
) ii =

cobian criterion.

Claim 2 : dim B < r. Indeed consider on B the reduced structure and
let : p : B> U be the canonical morphism. For each x € U let Bx be
the fiber of p at x. Since dim 0X « = d for all x, it is sufficient
B 14
to show that dim B = r-d-1 for all x (see {M] ,(13.B)). Fix x € U
X
and put : A = 0O < Let - m be the maximal ideal of A. Denote by q :
7’
r x .
U x P > P the canonical morphism and for each i let £ be a local
i
equation of D, at x. Then we have :
i
~ r 2
B =gq@B) =1{AeP /ZX, £ em }.
X X i i +1 5
r
Thus Bx = WP (Ker ¢), where ¢ is the linear map from k to A/m de
' 2
fined by ¢ (A ,...,A ) = ZA £ mod. m .
[¢] r ii

Now by (ii) and (iii) it follows that ¢ is surjective; by (i) we

2 .
have dim A/m = d+l1, so claim 2 follows.



Now we can conclude the proof of the theorem. Let B be the closure
of B in X x Pr and let T : X x ‘Pr > Pr be the projection. Since X
is proper over k we have that 7 (ﬁ) is closed; and then by 1.2 we
have dim T (ﬁ) < dim B = dim B < r. Thus Pr - T (B) is open and
dense in Pr. On the other hand if )\ePr - 7 (D) it is clear ;hat

Sing(D)\)nU = @ and the conclusion follows.

1.4 Lemma : Let X'e X be a closed irreducible subvariety and put :

U' =U N X'. Let S' be the restriction of S to X' (see 0.4). If s

separates the points (_and the tangent vectors) on U, then S' se-

parates the points ( and the tangent vectors) on U'.

Proof : If x,y € U', x # y, then there is D € S which separates
X,y; hence D?/X' and D' = DN X' is an element of S' which separa-
tes x and y. Assume S separates the tangent vectors on U. Let xeU'
and put : Sx = {pes/ xeD}. Then Sx is a linear system: If U' =
{x} there is nothing to prové; so we may assume that there isye€U’,
v # x. Then there is DESX, with y £D, and hence the generic ele-
ment of sX does not contain X'. Hence the tangent vectoré at x,
viewed as a point of U, can be separated by EO,... ,En € S, with
Ein X' # X'. Therefore Eor\ X',...,Enn X' are elements of S', whi

ch separate the tangent vectors at x, viewed as a point of U'.

1.5 Corollary : Let Y& X be a closed subvariety and let V = YaU.

Assume that S separates points and tangent vectors on U and that

V € Reg(Y). Then if D € S is generic we have : Sing(DnY)ec Y-V.

Proof : Let X' be an irreducible component of Y and put: U'=U0UnX".
Then, if S' is the restriction of S to X', by 1.3 and 1.4 we have

that the generic element of S' is smooth on U'. We may assume that

7.



D' = DiI\ X' for i = 1,...,s form a basis of S' and that Difw X'
l .
for i > s. Let T' ¢ P* be closed such that if (KO,...,Xr) g '
r
then D! = ZA D' is smooth on U'. Let T = {(A ,...,A )& P/
A ii 0 r
A seea A )ET'E.
(Or Ay
Then T is a closed subset of Pr, different from Pr, and it is easy

to see that if A ¢ T then DX{1X' is smooth at the points of U'.

r
The conclusion follows by the irreducibility of P .

1.6 Corollary : Let the notations and the assumptions be as in

1.3 and assume that S separates the points of U. Then for any n>0

there are El,...,En € S such that

(a) Eln ... "E N U is smooth;
n 15 SMooth

() dimE. AN ... NE =d-n (E. A ... "E =@ if d-n <0);

(c) El is generic in S, E2 can be any D, where A varies in a none-

A
r
mpty open subset of P (depending on El) and so on.

Proof : it follows from 1.5 by induction on n.

1.7 Definition : If El,...,En verify (ii) and (iii) of 1.6 we say

that they are generically independent (This clarifies the notion

used in [A-K] , th. 1).

Now we want to apply the above to the case when X is projective.

n (t)
1.8 Lemma : Assume X¢ P and for t>0 let S be the linear sy-

stem cut out on X by the hypersurfaces of degree t which contain Z.

t
Assume that for some t the base locus of S( ) is Z. Then for all

t' >t 8 separates the points and the tangent vectors on U.



Proof : Enough to prove the claim for t' = t+l. Let x,vYeU, x # y.
(t)
Then there is D € S with yZ D. Thus if H is a hyperplane sec-

tion containing x but not y, D+H (sum of divisors) is an element

of S(t+l) which separates x and y.

Let now X € U and let Hl""'HR be hyperplane sections which sepa-
rate the tangent vectors at x. Let D € S with x € D. Then D+Hl,..
..,D+H2 (sum of divisors) are element of S(t+l) which separate

the tangent vectors at x.

(v)
1.9 Corollary : For all t >>0O,S separates points and tangent

vectors on U (hence 1.3 is appliable).

Proof : There is tO such that Z is set theoretic intersection of

hypersurfaces of degree to. Then any tﬁ>to works by 1.8.

n
1.10 Corollary : Let YCP and WE€Y be closed subvarieties. Assu-

me that W is (set theoretically) the intersection of a family of

e

hypersurfaces of degree to and that Y-W is smooth. Then, lf.Gl

..,G are generic independent hypersurfaces of degree t>tO (see
n 2=e

1.7), then Glr\ ce. N Gn N (Y-W) is smooth (possibly empty) .

n n
Proof : Apply 1.8 and 1.9 with X =P , U =P -W.

1.11 Corollary : 1.10 remains true also if we delete the assum-

ption "k algebraically closed", provided k is infinite.

Proof : It follows easily from 1.10, by extension of the ground

field to the algebraic closure.

n
1.12 Corollary : Let W<:Pk (k infinite, not necessarily algebrai-

cally closed) and let dim W = d. Then for all e with d <e<m there

9.
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of dimension e
is a complete intersection Y/containing W and such that Y-W is

smooth.

1.13 Remarks : (i) In characteristic O theorem 1.3 holds without
assumption (iii): this is in fact the classical "second theorem

of Bertini" (on the variablé singular point : see [Z] , section 5).
(ii) In positive characteristic theorem 1.3 is false without assum
ption (iii): see for instance the example given at the end of [2] .
(iii) Other formulations of the second theorem of Bertini in charac
teristic p> 0O can be found in the literature : see e.qg. [A} . For
related results see also [F]., section 5.

(iv) It is not true that in 1.6 it is enough to take EO,...,En ge-
neric, linearly independent and such that dim El¢1 ces N En = d~n.
For example let U = X = P2 and let S be the linear system of all
conics.

Assume there is an open non empty Wc:P5 such that, whenever A,UEW,
D and D are non singular and also D r%Du is nonsingular (i.e.

A 8! A

D}\ and Du are not tangent). Fix C = D>\, A€W, and fix PeC. Let C'
be a nonsingular conic, different from C, tangent to C at P. Then
the pencil generated by C and C' corresponds to a line in P5 which
intersects W. Thus there is U# A such that UEW and DU is tangent
to DA at P, a contradiction.

(v) The following conjecture regarding 1.7 (ii) seems reasonable :
" there is a nonempty open subsethPr X sees X Pr (n times) such
that Dxln cee N DArln U is nonsingular for all (Kl,...,An)E:W“.
(vi) The results of [A-K]) and [F] and of the present paragraph
seem to support the following conjecture : Let X be proper over k

and irreducible of dimension d > O. Let Z¢X be cLosed of codimen-

sion at least 2. Let S be a linear system on X which separates

10.
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points and tangent vectors on X-Z. Then the generic element of S
is irreducible.

(vii) Note that in the above conjecture the assumption on the co-
dimension of Z is necesary. Indeed let X be a nonsingular quadric
in P3 and let L_,L_betwo skew lineson X; then put : Z = Ll(\ L2.
Then S = S(2) (notations of 1.8) separates points and tangent vec
tors on U = X-Z, but all elements of S contain the two skew lines,
so being not irreducible.

(viii) Lemma 1.1 is false for general schemes. For example take

vV = Spec(AP), W = Spec(A), A non local.

ix) The theorem of Bertini for S = linear system of all hypersur-
faces of degree t > O in PN is really stronger : the set of all
nonsingular elements of S is open and # @, as it can be easily

seen remarking that the set B of the proof of theorem 1.3 is clo

N r r
sed in the projective variety P x P, hence ¢ (B) is closed # P .

2. Behaviour of divisors at the points of low embedding dimension

of a base curve.

In this section we keep the notations of 1.0 and we assume further
that Z is a curve contained in every element of S.

Our aim is to study the behaviour of the generic element of S at
the points of Z. In this section we begin with the points of low

embedding dimension (see theorem 2.3).

If x € X and D,D' € S we say that D and D' are non tangent at x if
DND' is non singular at x and D # D'. This is equivalent to say
that the leading forms of their local equations at x (see 0.7) are

linearly independent elements of gr(OX x) of degree 1.

14

11.
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2.1 Proposition : Let Ve Z be an open subset and let ICV be fi-

nite. Assume that:

)

(*) for each x € V-I = V' there are D,D' € S non tangent at x;

and (*%*) for each y¢# I there is D €8S nonsingular at y.

Then the generic element of S is nonsingular at all points of V.

Proof : Clearly by (*%) the generic element of S is nonsingular
at each point of I and hence we may assume that I=dg.

Let W= {(x,\) eV x Pr/ xf:Sing(DA)} . Then W is closed in VxPr
(same proof as in 1.2, claim 1l). Moreover by the jacobian crite-
rion the generic element of S has only finitely many singular
points on V. Hence there is a non empty open set UC:Pr such that
the fibers of p : W *’Pr at the points of U are finite. By [EGA],
IV3,(9.7.8), we may also assume that the number of geometric con
nected components of the fibers over U be equal to the number of
geometric connected components of'the fiber over the generic po-
int of Pr; but, if x€U is closed and if the base field is alge-
braically closed, such a number is simply the cardinality of the
fiber over x ( [EGA], IV2,(4.5.2)). So we may assume that the
fibers over the points of U are’finite and of constant cardinali
ty s. Our aim is to show that s = O. Assume s> 0. Fix D = D_,

A
A€ U, and let Pl,...,PS be its singular points on V. Let Vl,...,V

h
be the irreducible components of V and let Qie Vi be simple for D
(i =1,...,h). By (*) there are EO,...,Eh € S such that EO is non
singular at Pl and‘Ei is nontangent to D at Qi for i = 1,...,h. |
Then the generic element E of the linear system generated by EO,..

..,Eh is nonsingular at P_. and nontangent to D at Ql,...,Qh; hen~

1
ce, by the jacobian criterion of simple points applied to D/?E,
it is tangent to D at only finitely many points (other than Pl,..

..,PS), say Rl,...,R . Now the generic element of the pencil gene

L

12.
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rated by D and E has at most P2,. ..,P as singular points. On .the
s
r
other hand this pencil corresponds to a line in P which intersects
U, hence almost all the elements of the pencil are of the form DU’

HEU. But this is a contradiction.

2.2 Corollary : Let the assumptions be as in 2.1 and assume fur-

ther that U = X-Z be smooth, that Z be the base locus of S and

that S separates the tangent vectors on U. Then if DE€S is generic

we have : Sing(D) € Z-V.

Proof : Apply 2.1 and 1.3.

The assumptions of 2.1 and 2.2 are verified by a large class of 1i

near systems if X is projective. To see this we need first a lemma :

n
2.3 Lemma : Assume XCP and let x€Z. Put : A = O and B=0 =
R D— X/ x 7™ Z,X
= A/a. Let fl,. ..,fS be non zero elements of A4. Then for any t >0
(t) ,
there are Dl,...,Dt € S whose local equations at x (see 0.7) are

. . . (t)
fl,...,fS (as in the previous section S is the linear system cut

out on X by the hypersurfaces of degree t which contain 7).

Proof : Let R be the graded ring of X in Pn and let I,PC€R be the
homogeneous ideals of Z and X respectively. Then 4 is the set of
all fractions of the form a/b, where a,be¢ Rt (for some t depending
on a and b), a € a,b £ P. Thus there are an integer tO and al,..

..,a EAN Rt , s € R -P, such that f, = a_ /s, and this is also
s i i

t
(6] [0}
true for all t>t . Then it is easy to see that al,...,aS define
Dl,... D €S whose local equations at x are fl,...,fS
s

13.
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2.4 Corollary : The notations being as in 2.3, assume that A be re~

gular of dimension d and that emdim B <d. Then for all t> 0 there
(t)

) (t)
is DES which is smooth at x. Hence the generic element of S

is smooth at P.

Proof : Let m,n be the maximal ideals of A,B respectively. Then we
2 2 2
have dim (m/m ) > dim(m/m + a), hence a;!m . The conclusion follows

by 2.3.

n
2.5 Theorem : Let X€P Dbe an irreducible projective variety, let

ZCX be a closed reduced curve and let V be an open subset of Z.

Let xl,. ..,xS € 2-V and let p = (pl,...,ps) be an ‘s~uple of posi-
. . (t) . () (t)
tive integers. Let S be as in 2.3 ; then put : S ={pes /

p
/eX (D) > p.}, where e (.) denotes multiplicity at x . Assume
; —"i T x i
i , i
that:

(i) dim X > 3;
(ii) Ve Reg(X);
(iii) emdim OZ <dim X = d for all x€eV.

14

Then if t» 0O and DE€S is generic, we have:
- - P

(a) D is nonsingular at each point of V;

(b) if moreover X-Z CReg(X), then Sing(D)¢ Z-V.

Proof : To prove (a) it is enough to show that both (¥*) and (%*) of

2.1 hold, with I = Sing(V). Assume first that p = (1,...,1), so that
(t) (t)

S = 8 for all t. Let x € V and put : A = 0O , B=0 = A/a.
p X,X Z,X

Let myn be the maximal ideals of A,B respectively. If x € Reg(V),

then a4 = (f ,...,fe), where e > 2, and fl,...,fe are contained in

a regular system of parameters of A (use (i) and (ii)). Hence by
()

2.3 there arxre D, EES (for some t) which are non tangent at x.

By the jacobian criterion applied to DNE we see that D and E are

14.
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non tangent in a neighbourhood of x and, by the compactness of V, ,

(t
we see that S ) verifies (¥*) for all t>> 0.

Ta ofs

As for (¥*) it follows immediately from 2.4.

ofs ': ofs )
.

u
Let now p be general. Fiw u such that S( ) verifies (¥) and (¥%

u
Let e, be the minimal multiplicity of the elements of S( ) at x,
i i

u
(then e, is the multiplicity of the generic element of S( ) at x,).
i i

oL

r -
11(1

t) X
-e ). Then it is clear that, for all t > utv, S; verifies (*)
i Z

We may assume that ei > pi if and only if i > e. Let v =

and (*¥*) (add t-u suitable hyperplanes to suitable elements of
u
S( )). This proves (a). To prove (b) apply 1.9 and the same argu-

ment used for (a).

2.6 " Corollary : In 2.5 put : e = su {emdim(oZ Y/x € V}. Then for
Lorollary =1 put Sup) emalm % 2hen tor

r

t
generic independent El,...,En € S( ) (see 1.7), if £>0 and mi

d-e we have: Eln ... n E is nonsingular at all points of V. If mo-
E— n

reover X-Z € Reg(X), then Elf\ cee M En is nonsingular also in X-2Z.

Proof : It follows from 2.5 and 1.6, with an argument similar to

the one used in 1.6.

n
2.7 Corollary : Let ZCP be a curve and let s be the maximum em-

bedding dimension of the points of Z. Then there is a complete in-

n )
tersection YCQP , of dimension r and smooth (hence irreducible by

{r) , 111, ex. 5.5) containing Z. In particular:

(a) if s<n, Z is contained in a smooth hypersurface;

(b) if s<2, Z is contained in a smooth irreducible surface.

Remark : When Z is contained in a smooth irreducible surface we

say that Z has only plane singularities.

15.
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3 (t
2.8 Proposition : Let Z&P be a curve of degree d and let S )Qg

the linear sistem of the surfaces of degree t which contain Z. Then:

(t

) . .
(a) For t > 4.8 is non empty and its generic element is smooth

at all points of Reg(Z);

(1) .
(b) For t > d+1 the generic element of S is singular at most at

the points of Sing(Z);

(d+1)

(c) If Z is smooth, then the generic element of S is smooth.

In particular Z is contained in a smooth surface of degree d+1.

Proof : (a) If F is a cone which projects Z from a point, then deg
F < d and hence S(t) is non empty for All t > 4 (add hyperplanes
to F). Moreover if x € Reg(Z) let Ll # L2 be two lines through x,
not tangent to Z, not meefing Z outside x. Pick yie Li,yi # x and
let Fi be the cone projecting 2 from yi. Then Fl and F2 are not
tangent at xj and by adding a suitable number of planes not conta
ining x we see that, for t 2_d,s(t) verifies the assumptions of
2.1 and (a) follows.

(b) By 1.3 and 1.8 it is enough to show that S(d) separates the
points of U = P3—Z; by the above remark it is enough to show that
the cones which project Z from points of P3 do the same. Let then
Xx,ye€U, x # vy, and let L be the line joining x and y. Let z€Z,z ¢
L, and let L' be the line joining x and z. Then if F is the cone
which project Z from x,it is clear that L'% F. Let wgl', we¢gF,
and let G be the cone which projects Z from w. Then it is eaéy

to show that x€G,y8’G. This proves (b), while (c) is an immedia

te consequence of (a) and (b).

2.9 Remarks : (i) The results of ‘this section are in part contai

ned in [A—K] . However our methods of proofs seem much simpler.

le6.
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(ii) Corollary 2.5 and proposition 2.6 are false if dim Z>1. In-
deed if Z<:P4 is a smooth surface which is not a complete inter-
section, then every hyperéurface which contain Z must be singular,
for otherwise one could apply the Lefschetz - Grothendieck theo-
rem to show that Z = Fr\Fl, where Fl is gnother hypersurface.

Note however that there are hypersurfaces containing Z and smooth

outside 7z (by 1.9).

3. Points of high embedding dimension and quasi ordinary singula-

rities.

In this section we study the behaviour of the generic element of

a linear system of hypersurfaces containing a reduced curve ZZCPn,
at the- points of embedding dimension n, specially when these poiE 
ts are "quasi ordinary" singularities (in a sense we are going to

introduce).

n )
3.1 Definition : Let FgP be a hypersurface. A point x € F is
said to be ordinary if the projectivized tangent cone Proj(gr

(0 )) of F at x is nonsingular.
F,x .

If x is ordinary we have clearly:.

(i) if x is singular, then the singularity of F at x can be resol
ved by the blowing up of F centered at x;

(ii) if n > 3, then the projectivized tangent cone at x is irre-

ducible.

n
3.2 Definition : Let XCP be a closed subvariety and let x € X.
We say that x is quasi ordinary (g.o) if there is a hypersurface

F containing X such that x is ordinary for F.

17.
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If x € X is g.o. we put :
px) = min{s (F) /F hypersurface with x ordinary, YCF}, where
X

e (V) denotes the multiplicity of the variety V at its point x.
X

Example : if X is a hypersurface, then x is g.o. if and only if

X is ordinary and, if this is the case, p(x) = eX(X)-

' n
Observe that the notion of g.o. depends on the embedding X< P .

We begin with some more or less obvious remarks.

) n
3.3 Lemma : Let x € XCP and put : R = gr(0O ) R' =gr(0_ )=
= R/J.

The the following are-equivalent :

(1) x is g.o. and p(x) = p;

(ii) there is a form ¢ € J, of degree p, such that Proj(R/¢R) is —

smooth.

Proof : Easy from 2.3.

3.4 Remark : Condition (ii) of 3.3 can be interpreted in the fol
lowing way : the projectivized tangent cone Proj(R'), naturally em
bedded in Pn_l = Proj(R) (with its irrelevant component, if any)
is a subscheme of a smooth hypersurface. Equivalently : the tan-

.. n
gent cone Spec(R') is a subcone of a cone contained in k = Spec(R)

and smooth outside the vertex.

3.5 Corollary : The point x € X is g.o. with p(x) = 1 if and only

if emdim O < n.
— X,X

Proof : 2pply 3.3 and 2.4.

18.
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Now we want to give a sufficient condition for a curve singulari

ty to be g.o.; for this we need a lemma.

n
3.6 Lemma : Let n > 2 and let ICP Dbe a finite set of cardinali-

)
ty r, not contained in any hyperplane. Let S ~ be the linear sy-

stem consisting of the hypersurfaces of degree t which contain I.

(t)
Then if t > n-r+2 the generic element of S is smooth.

Proof : By 2.2 and 1.9 it is enough to show that if u = r-n+l then

u)
(i) the base locus of S( is I ;

)

(u
(ii) for every Pe€ 1 there is D€ S which is smooth at P.
n
Let then P¥% I. Since I spans P. there are Pl,...,P € I which are
. n
independent and such that the hyperplane Ho they span does not con

.tain P. Let P ,...,Pr be the remaining points of I and let Hi be
n

+1

a hyperplane containing Py+, and not containing P. Then HO\J,,,\J
n+i .

H r is a hypersurface of degree u, which contains I but does not

n-

contain P. This proves (i).

The proof of (ii) is quite similar.

n
3.7 Proposition : Let ZCP be a reduced curve and assume n > 3.

Let Xx € Z be a point of embedding dimension n and assume that

gr (o,

) be reduced. Then x is g.o. and p(x) < eX(Z)—n+2.
X -

n-1
y)cp = Proj(gr(O. n )). Then I is
X P ,x

. 14
containing r = eX(Z)

Proof : Let I = Proj(gr(OZ

14

n
finite and also a reduced subscheme of P

: n
points, which span P . Since gr(OZ ) is reduced it is easy to
x

7

see that the conclusion follows from 3.6 and 3.3.

19.
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n
3.8 Corollary : Let Z€P , n > 3, be a reduced curve and let x

be a seminormal point of Z of embedding dimension n. Then x ig

g.o0. and p(x)=2.

Proof : Recall that x is seminormal if and only if gr(oZ ) is re
X —_

duced and ex(Z) = emdim(oX X) (see (B} or [D] ). Then the conclu

1

sion follows from 3.7 and 3.5.

n
3.9 Lemma : Let S be a linear system in P and assume that S con-

tains a smooth element. Then the generic element of S is smooth.

Proof : Let S(t) be the linear system of the hypersurfaces of de-
gree t and identify S(t) with a projective space Pr (see section 0).
Then using remark 1.13, (ix), we see that the set {AePr/DX is
smooth} is open and dense in Pr. The conclusion follows easily sin
ce S is a linear subsystem of some S(ty'and corresponds to a 1li-

: r
near subspace of P .

3.10 Corollary : Let S be a linear system in p" and let x be a ba-

se point for S. Assume that x is ordinary with multiplicity e for

some element of S and that ex(D) > e for all DeS. Then x is ordi-

nary with multiplicity e for the generic element of S.

Proof : The generic element of S has multipiicity e at x and hence
there is a basis DO,...,Dr of S such that e (D) = e for all i. Let
x i

¢, be the leading form in gr(OPn
i

x) of the local equation of D at
o i

X (see 0.7).
Then (with the conventions of 0.5) if QX is the leading form of

the local equation of D, , where A = (AO,...,Km), we have that for

A

A generic the degree of ¢

A

The conclusion follows from 3.9.

is e and, 'if this is the case, mAfZA.Q_.
i1

20.
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n
3.11 Proposition : Let n > 3 and let ZCP be a reduced curve. Let

V be the set of g.o. points of Z and let I = {xl,...,x } be the set

of points of V with embedding dimension n. Let e = p(xi) and let
i anag et

(t)
S be the linear system of the hypersurfaces of degree t which
e

contain Z and which have multiplicity at least e, at x,. Then if
i— i —

(t)
t>0 and FE:Se is generic we have:

(a) Sing(F) ¢ (Z2-V)V I;

(b) xi is ordinary for Fi with multiplicity ei.

Proof : It follows from 3.9 and 2.5.

n
3.12 Corollary : Let n > 3 and let ZC€P be a reduced curve and

let I be the set of points of Z which have embedding dimension n.

Assume that gr(OZ ) be reduced for all x€ I. Then the generic hy-
' X

persurface F of degree t> O containing Z is singular only at the

points of I. Moreover each x€ I is ordinary for F and ex(F) < e (2)-
- X

-n+2.

Proof : Apply 3.10 and 3.7.

We do not know much about g.o. singularities in higher dimension.

We can prove only the following.

n
3.13 Proposition : Let x€XCP and assume that n > 2+dim OX

’

Consider the following conditions :

(i) x is g.o. ;

(ii) if 2 = Proj(OX ) and z € Z, then emdim(OZ ) < n-2.

X '

Then (i) - (ii). If moreover gr(oX } is reduced and dim OX =2,
—_— X

’ ' X

the converse is also true.

21.
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Proof : By 3.3 and 3.4 we have easily (i) - (ii). Conversely if

. n-1
dim O < = 2 we have that Z is a reduced curve in P = Proj(gr
’
(OPn X)). Hence if (ii) holds Z is contained in a smooth hypersur
, L
face by 2.5. Since gr(OX ) is reduced, it is easy to deduce (i),
' X

using 3.3.

3
3.14 Remarks : (i) Consider the curve C in P given by the ideal

2 3 2 3
I= (xox3-xl,xlx3—x2)‘and let x = (0,0,0,1). Then x is singular-
for C and moreover the leading ideal of I in gr(OPn ) = k:tTO,
x ' X

2 2
Tl,T2] is a = (TO,Tl) (e.g. apply [V-V] , prop. 1.2). Now it is

clear that if ¢€ & is any form, then Proj(k [TO,Tl,T2] /{@)) must
be singular at (0,0,1). Hence x is not a g.o. singularity for C.
(ii) In 3.6 we have shown that any set I of r points in Pn which
spans Pn is contained in a smooth’hypersurface of aegree t=r-n+2.
Given n and r, the above number is clearly not the minimum one
that has the property: we do not know which is'the minimum one.
Note its relation with the character p(x) of a.q.o. singularity
(see 3.7).

(iii) The implication (ii) + (1) of 3.13 is false if dim OX,X? 2.
Indeed let Z<:Pn be a smooth irreducible surface which is ﬁot a
complete intersection and lethk5 be the corresponding affine
cone. Embed k5 in'P5 and let X be the closure of V in P5. Let

X € X be the vertex of tﬁe cone V. Then dim OX = 3, gr (O ) =

X X,x
‘ 5 4 I
ring of coordinates of Vek and hence Proj(gr(oX )) = Z. So
: X

’

4 ,
the given embedding of Z in P coincides with the embedding Z&
4
Proj(gr(OPS )) = P . Hence Z verifies (ii) of 3.13 and moreover
' X : .

gr(OX ) is reduced. However Z is not contained in any smooth
X

’

hypersurface (see 2.8 (ii)); hence x is not g.o.

22.
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