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Parameter Tuning and Repeated Application of the IMT-type
Transformation in Numerical Quadrature

Kazuo MUROTA*, Masao IRI¥

Introduction

It has been recognized that the change of variable is one of
the most powerful guiding principles in constructing a numerical
quadrature formula which is both efficient (in the sense that the
number of function evaluations is small) and robust against integra-
ble end-point singularities. Among the quadrature formulas so far
proposed are the IMT rule [5], the double exponential formulas [13]
and the IMT-type double exponential formula [6]. Similar observa-
tions are made for multiple integrals in [8].

To be specific, the given integral

= [7 flx)ds (1.1)
is transformed into

=8 po(e)v (e)de (1.2)
through a suitable transformation x = Y(£). Here the interval of

integration (a,B) may possibly be infinite, as is the case with the
double exponential formula. Then the trapezoidal rule with equal
mesh size h is applied to the transformed integral (1.2) to yield
an approximation to I:
(n)

S, =hzw. fl

5 5 3 (1.3)

When the transformed interval of integration (o,B) is infinite, the

right-hand side involves an infinite number of terms, which should be
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trimmed to a finite number 7 without impairing the accuracy. In
general, if some of the summands on the right-hand side are neglected,
the remaining number n is called the "effective number" of sampling
points. On the other hand, in the case of a finite interval (u,B),
N = (B-a)/h is referred to as the "degree" of a quadrature formula.

The error induced in the process of discretization by the
trapezoidal rule is termed the "discretization error", in contrast
to the error which may be introduced when the sum (1.3) is replaced
by that with a smaller number of terms. The latter is called here
ﬁhe "trimming error", though it was named the truncation error in
[13). {Truncation error sometimes means the same thing as discreti-
zation error!) The discretization error for a constant integrand
is called the "intrinsic error" of the formula, and is known to well
represent the performance of a quadrature formula of this kind for
regular integrands.

The IMT rule [1], [2], [3], [5], [11] employs the following

transformation, called the IMT transformation,
IMT,,\ _ 1 ¢t 1,1
W) = 5 fyexpl-(3 + 7p)) at
(1.4)

[§ exl-(F + 75501 dt

D
1

which maps the unit interval onto itself. The error is due solely
to the discretization by the trapezoidal rule and behaves itself
as exp(-c¢vW) asymptotically, where N is the degree of the formula

(=the nominal number of function evaluations). The transformation

£) = 2 tannl- 33 - 151 + 3 (1.5)

TANH(
2 1-¢ 2

]

which we call the TANH transformation, would be a possible alterna-

tive by which to map the unit interval onto itself.
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The double exponential formula [13], on the other hand, converts
the integral over the unit interval into that over the infinite

interval by means of the transformation function

wDE('{;) = -;— tanh(% sinh ¢ ) + %’ . (1.6)

which will be called the DE (standing for Double Exponential) trans-
formation. The error, due both to discretization and to trimming,
is estimated asymptotically as¥® exp(—cn/logrl), where n is the
"effective number" of function evaluations. The transformed inte-
grand in (1.2) in this case decays like the double exponential
function as |t| -+ «, There may be a variety of potential candidates
for the transformation function which yield different decay rates
of the transformed integrand [4], [12]. But, in [13], the double
exponential decay is claimed to be optimal when the transformed
interval is infinite. This fact has also been observed in the
numerical experiment in [9], where it is shown that the triple or
quadruple exponential transformation is inferior to the double. The
optimality of the constant m/2 in wDE above was reported by Mori.*¥
In this paper, the IMT transformation is generalized to obtain
better quadrature formulas. In the first place, two parameters are
introduced in the IMT transformation.¥*¥*¥ The asymptotic error
estimate for the parameterized IMT rule is obtained in an analogous
manner to that for the original IMT rule. The error estimate sug-
gests a pronounced improvement in the efficiency of the quadrature

formula, to the extent that the IMT rule with tuned parameters can

¥ The relation to Stenger's lower bound [10] is discussed in Appendix.
= BEAN 52 g RUFAF TR RAHMEA TRHMAT « SPTR A (B4
He 0 JR) BIRRAA 1977-12-20/21.

¥%¥¥ Numerical study of the parameterized IMT rule is reported also in [3].

- 3=



4

compete with the double exponential formula at least for practical
purposes. Another direction of generalization is to apply the
parameterized IMT transformation repeatedly, which is possible since
it maps the unit interval onto itself. Asymptotic error estimate,
as well as numerical study, shows that, as opposed to the case of
the infinite interval, the double exponential decay is not optimal
in a finite interval. Repeated application of the IMT transforma-
tion leads to quadrature formulas which are more efficient in the
asymptotic sense, though the numerical experiment shows that the
efficiency is rather insensitive to the number of repetitions of
the IMT transformation. It is remarked that the IMT-type double
exponential formula by Mori [6] may be regarded as a formula obtained
by the repeated application of the TANH transformation wTANH, and

its possible generalization is also discussed.

1. Parameterization of the IMT transformation

Two parameters a(>0) and p(>0) are introduced in the IMT

transformation (1.4):

I™mT 1 t 1 1
Va,pt) = Qlapy Jo el-alipr )l A,
@p to (1-t) (2.1)
Qlap) = [& expl-a(3 + —2—)] at .
a,p IO expl-a » (1_t)p

The resulting family of quadrature formulas will be called the
IMT-Single(a,p) rule. The IMT-Single(1,1) rule is nothing but the
original IMT rule.

By the saddle point method, the asymptotic estimate for the

intrinsic error of the formula of degree N is derived [T]:

p+5 p+2 1

L P
1 2TN \p+1 .
e ~2p 2 (é%%)z(p+l)exp{*a p+ (p+1)(—5—0p si

msry + a0,

(2.2)
L -
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The formula of degree N apparently requires N-1 function evaluations
at N-1 sampling points, but part of them may be omitted without
impairing the accuracy. The effective number n of sampling points

is asymptotically estimated as

1 1
n~alL -2 (2P (EP

(2.3)
for constant integrands [T].

As is shown in Table 1, the asymptotic estimates (2.2) and
(2.3) are in good agreement with the observations made in numerical

experiments, though the agreement is expected to become the poorer

the larger the parameters a and p are.

Table 1. Errors of the IMP-Single rule for fé %—dx

IMT-Single(1,1) IMT-Single(10,1)
Degree Error¥ Points Error¥ Points

N Obs. Est. Obs. Est. Obs. Est. Obs. Est.

Y -2.6 -2.3 -0.4h 42,5 3
“4h.5 -k -1.8 -1.4 L
16 -5.5 -=5.5 15 1k -8.7 -6.6 10
32 -8.4 -8.4 29 29 |-15.3 -15.3 23 23
6L | -12.5 -12.6 61 60 | -27.8 -26.2 51 51
128 |-17.4 -17.h4 123 122 /  =he.T 109
256 |-25.4 -25.5 2h7  2L8 / -66.6 230

IMT-Single(1,2) IMT-Single(0.4,3)
Degree Error¥* Points Error* Points

N Obs. Est. Obs. Est. Obs. BEst. Obs. Est.

L -0.7 -0.2 3 1 -0.4 +0.b4 3

-2.7 -3.1 5 L -2.0 -1.6

16 -6.7 -6.4 9 9 -5.0 -=5.1 7
32 |-11.5 -11.b4 21 21 |-10.2 -10.1 17 17
gk 1-20.3 -20.0 L7 L7 | -18.8 -18.7 39 38
128 /  -33.6 / 100 '/ -33.2 85
256 / -5h.2 / 212 / =57.9 183

¥ Errors in 1oglO]absolute error|

Obs.: Observed by experiments; Est.: Estimated by asymptotic formulas



The error € and the effective number »n of sampling points are
implicitly related by (2.2) and (2.3) for a formula of degree N with
parameter (a,p). In order to grasp the relation intuitively, we
draw contour lines of € and n on the plane, for a fixed p, with
abscissa N and ordinate a, as shown in Fig. 1, where p=1. When we
need the accuracy of 10—6, for instance, we can choose, among the
formulas with p=1, those formulas with a and N lying on the contour
line of €=lO_6. The optimal formula, i.e., the formula with the
least effective number n, with p=1 for €=10—? is approximately found
to be the formula of degree N=1L with a=8.

The optimal formulas for different requests of accuracy are
indicated by a broken line. Thus no uniformly optimal set of parame-
ters exists. It is also observed that the efficlency strongly

depends on the parameters, especially for a small.
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Fig. 1. Contour map of € and TL-for INT-Single with p=1



The TANH transformation (1.5) can also be parameterized as

t) = 1 tanh[- ¥ 1 -1 1

a,p 2 2'p -(l—tﬂ)] To- (2.4)
The corresponding quadrature rule, to be called the TANH-Single(a,p)
rule, or simply the TANH(a,p) rule, behaves itself quite similarly

to the IMI-Single(a,p) rule when a is small, while, for a large, it
is significantly inferior to the IMT-Single(a,p) rule. This is due
to the fact that, as depicted in Fig. 2, the parameterized TANH
transformation (2.4) possesses aﬁ infinite number of extraneous poles,
some of which are located close to the real axis at the middle of

the interval of integration when a is large. UWote that the parame-
terized IMT transformation (2.1) has no singularities except those

at the ends of the interval of integration.

t-plane t-plane

r—.—.—-..-—-

Q=1 a=5

Fig, 2, Singularities of TANH transformation ryngNT (t)



2. Repetition of the IMT transformation

Repeated application of the parameterized IMT transformation
leads to a further extension of the IMT rule. That is, the composite
Y I oy MT of the IMT tarnsformation functions may be considered
as a transformation function ¥ in (1.2). The family of quadrature
formulas thus obtained will be called the IMT—Double(al,pl;az,pz)
rule.

The error of the IMT—Double(al,pl;ag,pz) rule of degree N is
asymptotically estimated [7] as

e N
(log W)

exp(_ ):

1+1/p,

where ¢ is a positive constant depending on the parameters. This

estimate implies that the second transformation ¢ IMg is asymptoti-
2’2

cally of dominant importance, though, in the range of practical
interest, the numerical experiment points to the contrary, as will
be shown later.

The IMT-type double exponential formula [6], originally designed
to simulate the double exponential decay in a finite interval, can
be viewed as the quadrature formula resulting from the repeated
application of the TANH transformation: ¢ = wzﬁg?lowgﬁg?l.

The fact that the coﬁposition of the IMT transformation favors
the efficiency of the quadrature formula seems to suggest that
further improvement will be brought about by the repeated change
of the variable of integration through the IMT transformation.

I LI P I will be called

01[) o
the IMT—Triple(ai,pl;ag,pg;a3,p3) rule. The formula with
IMT oy IMT o IMT oy IMT
1Py 9Py ApPy 4Py
(al,pl;a2,p2;a3,p3;ah,ph) rule, and so forth.

The quadrature formula with Y = ¢

Y = wa will be called the IMT-Quadruple

-8 -



The asymptotic error estimates for the quadrature formulas of

Y
degree N obtained from the repeated application of wihz are given by
>
IMT-Single rule: exp(-cvl)
IMT-Double rule: exp(~ ——9~E—2;)
(log mv)
. el
IMI-Triple rule: exp(- 5
(logN)(log logN)
c N

IMT-Quadruple rule: exp(-

).
(logN)(loglogN)(logloglogN)2

Though these estimates are not claimed to be of practical value,
they suggest that the double exponential decay, which is realized
by the IMT-Double rule, is not optimal, and that the repeated change
of the variable of integration will result in an improvement, at
least asymptotically. It is also seen that none of these formulas
can outperform the double exponential formula in the asymptotic
sense, where the asymptotic error estimate for the latter is given

by exp(-en/logn).

3. Numerical study

Before presenting the numerical results, a comment is made on
what is the practical measure of efficiency of a quadrature formula
when used as an automatic integrator. When given necessary input
data such as the integrand function and the renquested accuracy, an
auvtomatic integrator based on an iterative scheme would continue
computing successive approximations until it is convinced to have
achieved the requested accuracy. Thus it should evaluate a larger
number of function values than is really necessary before it returns

an answer with confidence.
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For a particular choice of initial mesh size A., the relation

0’
between the requested accuracy and the number of function evaluations
looks like a "staircase" consisting of solid circles in Fig. 3.

The corresponding seqguence of hollow circles representing the relation
between the achieved accuracy and the number of function evaluations
also forms another "staircase". These staircases slide like an
escalator within the region bounded by the upper and the lower

envelope, depending on the initial mesh size A the optimal value

0°
of which cannot practically be found before the computation. Note
that the lower envelope of the "solid staircase" agrees approximately
with the upper envelope of the "hollow staircase".

From the practical point of view, the relation of the number
of sampling points to the requested accuracy is more significant than

that to the achieved accuracy. The upper envelope of the staircase-

like relation between the requested accuracy and the number of

l
accuracy 4 —® requested accuracy

requested

accuracy
. ——
achieved

<--0 achieved accuracy

log (accuracy)

number of points actually involved in computation
= effective number of function evaluations

Fig. 3. Measure of efficiency of an automatic integrator
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sampling points is adopted here as the relevant line representing
the efficiency of the automatic integrator, though, usually in the
literature, the lower envelope of the relation between the achieved
accuracy and the number of sampling points has been used [6], [9],
[12], [13].

Intrinsic errors of several quadrature formulas are shown in
Figs. 4 to 9 in terms of the efficiency curve mentioned above.
The original IMT rule, the double exponential formula and the IMT-
type double exponential formula are compared in Fig. 4. The parame-
ter tuning of the IMT—Single(d,p) rule enhances the efficiency to
a considerable degree; (a,p) = (10,1) is fairly good (Fig. 5).
The TANH-Single(a,p) rule is inferior to the IMT-Single(a,p) rule
when p=1 and a is large (Fig. 6), as has already been explained.
(For p=1, the optimal choice of a for TANH-Single(a,p) rule is a%3.)

In Fig. 7, formulas of the IMT—Double(al,pl;ag,pg) rule with different

parameters are compared. The first transformation waIMg of
: 1221
I .
MI oy IMI is influential, as opposed to the theoretical asymptotic
1Py @50

estimate. The parameter dependence is not so conspicuous for the
IMT-Double rule as for the IMT-Single rule. The IMT-type double
exponential formula can be improved considerably by introducing
parameters and tuning them (Fig. 8). The triple repetition of the
transformation does not deteriorate the efficiency (Fig. 9); compare
the IMT-Triple(1,2;1,131,1) rule in Fig. 9 with the IMT-Double(1,2;1,1)
rule in Fig. 7. This means that the iMT—Double rule does an excellent
job even when it is applied to a function with an exponential decay
before the transformation. In other words, the quadrature formula

of this kind is robust not only against bad, or singular, integrands

but also against well-behaved integrands.

- 11 -
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The algebraic singularities (Fig. 10) and the logarithmic
singularity (Fig. 11) can be successfully dealt with by these
formulas. Repeated application of the transformation results in

the robustness against end-point singularities.

. Coneclusion

Introduction of parameters in the IMT transformation and its
repeated application with tuned parameters enhance the efficiency
of the resulting quadrature formulas to the extent that they can
compete with the double exponential formula at least in the range
of préctical interest.

In the case where the integrals are transformed to those over
a finite interval as in the IMT rule, there is no particular reason
for insisting on the superiority of the double exponential decay
in the neighborhood of the end-points; repeated application of the
IMT transformation does no harm.

The IMT—typ¢ double exponential formula by Mori can be improved

by selecting better parameters of the transformation.
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Appendix. A comment on Stenger's lower bound

F. Stenger [10] gives a lower bound for the possible asymptotic
behavior of the errors involved in a quadrature scheme. Theorem 1.1
in that paper states that, for any £€>0, there exists an integer
n(€)=0 such that for all n>n(e)

. 1 - n > -
mlnwj f;;;l()u) [} f@)de 5L wf(e;)| > expl-(/Smre)val,

d
Il E9=1
where H?(U) denotes the family of all functions f that are analytic

in the unit disc U such that

171, = 1im A2 srexp(50)) 1Pa0) P < o

r+1

This theorem implies that for any quadrature formula with » function
evaluations, there exists an "unfavorable" function fh, depending on

n, for which the quadrature formula gives a "poor" approximation

with "relative" error larger than exp[-(v5m+e)vn]. But this theorem
says nothing about the asymptotic behavior of the error when an
integrand function is kept fixed and the number of function evaluations
is increased. Thus, the theorem does not contradict the asymptotic
error estimates in the present paper such as exp(—c;zp/(p+l)),

exp(-en/logn ), etc.
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