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The Method of Splitting

for Multidimensional Integration with Singularitieé

Hidetosi TAKAHASI

Keio University

Introduction

Numerical integration of functions with one or more singul-
larities always poses some problems. For simple, ~one-dimen-
sional integration, however, the method of transformation of
variables has been shown to be satisfactory for most cases. Ih
multidimensional integration, the same technique: does not help
much unless the domain of integration is a sphere (or infinite
as a special éase) and the singular point is situated at its
center. When the boundary is rectangular, for example, no simple
transformation can be found that eliminate the singularity or
map it to infinity and still retain a simple form of the boundary.

One conventional approach that can be imagined is to di-
vide the domain to a sphere and the remaining part (i.e. a
rectangular body with a spherical hole). Then the integral for
the spherical part can be easily evaluated using polar coordinate,
but the integration over the remaining domain will be intractable
owing to its awkward shape.

Lynessohas proposed a method to be used for such problems.
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It is essentially the method of extrapolation like the well-
known Romberg method. From the knowledge of the type of the
singularity one can find out the general form of the asymptotic
expansion of the quadrature error as function of mesh size. Then
one can determine the unknown coefficients of the expansion, to-
gether_with the true value of the integral, by solving a system
of simultaneous equations obtained from the results of numerical
quadratuie for several different mesh sizes. His method has been
shown to give satisfactofy results for a number of test problems.
However, one drawback of the method is the loss of significant
figures due to the ill condition of the equation, as is often
encountered in curve fitting using a family of more or less
monotone basis functions.

The method I am going to present is much more straighf-
forward and elementary. It soméwhat resembles the method of the
division of the domain. But, instead of dividing the domain into
disjoint parts separated by a sharp boundary, we try to split
the integrand into two parts, so that one part is a function
regular over the entire domain and thg other part is virtually zero
outside a spherical region lying in the domain. In some sense,
this may be regarded as an effective division of the domain, but
the boundary is "blurred" by use of continuous weighting functions.

With this "splitting", the first part is‘easily evaluated
using any known method of dealing with multiple integrals.

Since the domain of integration for thebsecond part is actually

a sphere,it can be integrated using polar coordinate.
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Weighting Functions
To make the argument more specific,we assume with Lyness

that the integrand has a form
(1) foar=r>g(r)

where g(¥) is a polynomial or otherwise a regular function of

the cartesian coordinates Xy XpreeerXp, which means that it
has a convergent power series expansion around the origin. The

above-mentioned splitting can then be realised by splitting the

"singular part" r%¥as

(23 Y =gy (r)+ ¢, (r)
so that

1) ¢ﬁ Y) is a regular, even function of r, and
2)¢2(Y‘) tends to zero rapidly as r tends to infinity, so
¢Z(7‘) is negligible for r > rj.
Then we have the integral as a sum of two integrals I;

and I,, each defined by

(3.1) I1sf¢1(7’)g(r)dr

(3. 2) L =j~¢2 Mgor)dr

respectively.

The first integral Ij can be evaluated in ordinary way, i.e.
using the product form Newton-Cotes formula of any order on a
regular mesh points. It should however be born in mind that,
although ?%(Y‘) is a regular function, it can have a rather
sharp peak around the origin, so that, even when g(1r) is a
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fairly smooth function, the resulting integrand may require a
considerable number of mesh points in order to secure a reason-
able precision.

To evaluate the second integral I; we use the polar co-

ordinate (r, Oy, 8,,...,6,_; ),and write

4> L =J . (1) 9o (r) Ty

with
(5) Ig (01, - Bn-l) (.U (61,-—~'/ en-j ) d6| =" d@n_‘ =9,_>(Y>

where w( 911'--'9n—l) is the metric factor such that P l.

w ( 91,...,9n-1)d6Q ..Ji@n-j is the volume element of the hyper-
spherical shell having a radius r.

The integral ( 5 ) in angle variables may be evaluated
using conventional method. The integrand in ( 4 ), on the other
hand, has a singularity at r = 0, but it is most conveniently

integrated using a variable transformation r = ef, so that

bl [+ 9]
(6) /7 ¢,_()’)go(7))’”"d¥ =/ ¢l(g?)‘% [EP)e"ydp
(2)

In integrating ( é ), one should use the trapezoidal formula

(not the Newton-Cotes or other more sophisticated formula).

The Incomplete Gamma Function as the Splitting Function
To find a good splitting function having the properties

(1) and (2), we observe that

o) L2 ,
f{ ukte ™ du = Tikyr 2k

C
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This leads us at once to the following splitting functions:

C o2
(7 1) L (y) = —1——~J Uk e dy
P () re )

00

. _ 2
(7.2)  ¢(r)= ‘:GS wkte ™ du
Evidently,
(8 G (1) + @y (r)= v 2R

so that, if «<0, we may put k=- /2. If « >0 we can always
find a positive integer m so that
(9 A=2m-2k, O<R<2

and we may put

(10 fr) = r¥g(r)=r2kor g ) = r=2kgr)
It is indeed possible to take as m any integer larger than the
one given by (9 ), but use of unnecessarily large m, and hence
of large k, is undesirable. A large value of k results in a
sharper peak of:¢ﬁ'r) and hence leads to the necessity of a
finer mesh in evaluating I; to secure a prescribed precision.

It is easy tc see that these functions satisfy the requirements
(1) and (2) above. The condition for ¢,(r) is satisfied since it
results from a convergent superposition of regular functions e‘uyz

with a bounded parameter u. The condition for ¢2(r) follows from

the following estimation. Take ry; so that 0<r3<rg. Then

_ _A.rz
U =TI Ty

¢‘”'r%xf

; >
< hlj(k) o TC =T f Wk du = O (e <)
[
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The functions ¢1(r) and ¢2jr) can be written as
(11.1) @ (ry= Y (k,cr*)/ T (k)

11.2) @ (r) =Tk, er2)/ T (k)
where ‘yﬂk, x) and I (k, x) are the incomplete gamma functions

defined by

X
Yk )= | thletyr

I (k, 2) :L th! o Tdt

There are tables of these functions, but they are also easily
calculated using power series or continued fractions.
For smaller x, the most convenient way 1s to use the power
series s 7 N o
SR AUT R v vy B kckﬂxk»ﬁz)*"J
-X = __EXfQ__———:X"
7m0 [ (k4n+D)

=€

For larger x (x >3, say) the following continued fraction for

[T(k, x) is recommended:

'x"kr(k) x)

=e"(1 1-k 2-k 2 n-k n J

1
X AT o+ X+ AT -4 ] 4 X v

Practical Considerations

In applying the method, the first thing to do is to choose
the parameters. It is apparent that Lor the radius of the sphere,

should be made largest possible subject to the condition that the

sphere lie wholly inside the integration domain. Then the cut-
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off point c is determined in accordance with the precision re-
quired. It should be taken just large enough to keep the error
due to the neglect of the integral outside the sphere below the
tolerance. Making c larger would result in a sharper central

peak of ¢1(r) and a finer mesh as a consequence, increasing the

computing cost.

Numerical Examples

The accompanying figures show the results of the method
applied to a few examples which are similar to those used by
Lyness. They are:

£(7 )= r¥.exp(-2x2-y2), w=-3/2,-1/2,1/2;

f(r)= r¥x X==1/2, 1.

The figures show the dependence of the error on the number of
mesh points used. The errors for I and I, are also shown.
Lyness' method was also tested and its results are shown for
comparison.

So far as one can see from these figures, our method does
not compare favorably to Lyneés‘ method. However, it must be
stressed that our method gives results which are correct almost
to the working accuracy, as contrasted to Lyness' method.

It will be seen from the figures that most of the computing
cost concerns the first pare Ij. It should also be noticed that
contribution of the second part I) to the result strongly depends
on the exponent in the singularity. When «=-3/2, I,is comparable
in magnitude to Iy, but it is two orders of maénitude below I;

when ol =1/2.
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To summarise, it will be said that the method of splitting
offers an alternative way to evalute the special type of multiple
integrals as dealt with by Lyness, which is at least as efficient
as his method as to the amount of computation.

Finally, the author would like to thank Mr. Akio Saito for
numerical works, which was done as a part of his work for preparing

the Master's Thesis.
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