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ON A CLASS OF SINGULAR PSEUDO-

DIFFERENTIAL OPERATORS

In the past one or two decades there appeared extensive
works on singular partial differential opérators, see e.g.
S. Alinhac [11,[2] and H. Tahara [13], [147, [15]. Among
them the so-calied Fuchsian type equations are most remarkable,
see Baouendi and Goulaocuic [4] and the author's paper [5].
But in the classical workgof J. Hadamard on the constructilon
of the fundamental solution, there appears non-Fuchslan partial
differential equation whose properties are quite different
from that of the Fuchsian type equations, see [8]1, [5], [6].
Hence it is desirable to study in more detail a class of singular

pseudo-differential operators of the form
Dyu + A(x,t,D )Ju + £~m B(x,D Ju = £, meN (1)

where A, B are proper pseudo-differential operators of first
order on a C* manifold M (countable at infinity, t a parameter)
with complete symbols a(x,t,&) and b(x,£). b(x,§) is positively
homogeneous in £ .0f degree 1.

Our main result is, under certain con&itions, equation (1)

may be reduced to

D,V + A(x,t,D ) V = F. (2)



Now, let's explain our chief idea, but for the moment only

formally.

Consider the equation

t™ D u + B(X,Dx)u =V  m even

and the difffomorphism Rt\o - R-r\ 0
o=ty (1-m) ,

or the equation pair

t>0

n
<

m
t Dtu + B(x,Dx)u

{ m odd. m>1

m -
-t"D,u + B(x,DX)u = v £<0
and the diffeomorphism Rt\O - R€\O
_ o1l-m
T =1t /(1-m) t>0

“(-)}™ / (1-m)  t<0

—
[

or when m=1 consider separately in R; : t>0 and RE T £<0
-~equation

tD u +4B(X5Dx)u =V
+
and the diffeomorphism Rt NQ -~ R{xo

.

T

2nt €>0

gn(-t) t<0,

-2 =
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we shall have

D u + B(x,DX)u"= v o, (9)
hence formally

u = exp ( -itB)v . (10)

SubstitutingLit-into (1) gives

%% + lexp(itB):A-exp(~itB)v = exp(iTtB)f.

when A and B commute, hence A and exp(itB) also commute, we

have

= + iAv = F . (11)

(11) is an equation without singularity in the left hand side.
It is readily seen that the arguments above may be made

rigorous -once {exp(-itB)} (V feIR)iis defineéd rigorously and

proved to be a group. This can be done when the manifold M is

compact without boundary and B(x,DX) formally self-adjoint and

‘ elliptic as is well known in the spectiral theory of self-adjoint

operators. But there is another approach to this aim, i.e. to

solve the Cauchy problem

ou _
= + iBu = 0
(12)

u(0,x) = uo(x).

. In fact, by 'Fourier method", it is easy to see, the solution

of Cauchy problem (12) is just u = exp(~itBlu, .

-3 -
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’But, the Cauchy problem is solvable not only when B is formally
self-adjoint and ellipﬁic. Hence, if we can find the fundamental
solution or at least the parametrix U(i) of the Cauchy probelm
(12), its solution would just be

u(t,x) = U(t)ug(x)
and we may use U(t) as the exponential' exp(-itB).
In defining the parametrix of the Cauchy problem (12),
behavior of the orbits of the Hamiltonian field
Hp = ( DE(x,2)3,, ~b (x,2)3;)
is very important. In our case, we should at least éssume
its existance for éll TGIBT since 1T near 0 corresponds to T
near infinity.
Now, we proceed to construct the parametrix for the Cauchy
problem (12) first for small T; Such contruction, as usual,

amounts to seek an operator U(t): Cg(M) + ¢7(M) such that

(D .+ B) U(t)€ s~

% (13)

Ulo) - 1€ 8~

Linearity of the problem allows us to use a partition of unity

and reduce our problem to the case M = R" , i.e., to consider
s n

(13) in R xR, .

Now assume U(t) to be a Fourier integral operator (F.I.O.)

U(t)f(x) = (2m)™" exp[iS(T,x,y,n)]q(T,X,n)f(y)dydn
(1)

f(x)e Cy (R")

with a distribution kernel

T
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U(t,x,y) = (21)7% exp [iS(T,x,¥,n)]q(T,x,n)dn.
Let S(t,x,y,n) = ®(t,x,n) - y-n, we have the following

Cauchy problem for &(T,x,n)

39

T + B(x,@x) =0
{ (15)
2(0,x,n) = x°*n
In order to solve it, we turn to the Hamiltonian system
dx _ dan _
d—s' - bn(xgn)g ds = —bX(X,ﬂ)- (16)
Assuming the initial conditions
X‘T=o = XO(ZI,-..’Zn> s T]|T=0 = n‘o(zl,...,zn)
where Nys---5N, aren parameters such that
ax
det (-g-z)r___o £ 0 5
we have solution for (16) as
x = x(1,2), n =n(t,2) 2z = (zl,...,zn) (17)

From classical theory of partial differential equations of first

order, we have

0(1,x) = (xgng) (=) + [T [<n(p,2), T
Y

(18)
-B(x(p,z),n(p,z))]dp ,

. . . 9(t,x) _ X .
which is valid as far as det gT?fET = det (520 #0, i.e., for

|t] sufficiently small.
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The amplitude q(t1,x,n) is to be found in the class

q(T:Xsn)N O_Z?O qk(Taxsbn)3 (_19)

where g, (1,x,n) are positively homogeneous in n of degree - k.
k

For Q) we have the so-called transport equations

aqu +|a£1 b(a)(X’¢x) ai 99 +|u;2 %1 b(d)(x’éx)aié.qo =0,
3:Q * 21 b(a)(x,®x)aqu t ks 53 b<“2x,¢x)az¢-qk (20)
+ Rk(qo,...,qk_l) =0, k21 ,
qk(O,x,n) = Sy - (21)
Hence
ap(t,x,m) = [ %%%f%%l exp[%T %tr<93%§%ﬁpx) ddr] (22)
Where J(t,z) = det %%%f%%. Siﬁilar results hold for Ay when k21.

Thus (22) holds only when det %%%f%% = det (%%—) # 0,
i.e., when |t| sufficiently small.

We shall now follow Maslovs line to contruct a parametrix
valid for all t. The intrinsic object connected with the Cauchy
problem (15) is a Lagrangean manifold An+l of demension n+l
constructed in the following way. Throughevery point of an
n-dimensional isotropic manifold At e Tk (IRTX MY\ O = (ZBTXiRZ )
X [(ZRE x:mg YN 0] passes an orbit of the Hamiltonian veetor
field Hy(x,p)

- 6 -
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drt _ dE

ds = 3 - O

dx _ g - _

s bp(X,p), S bx(xap)

n*l o gere A" € {(1,x,E,p): E+b(x,p)=0},

these orbits then form A
_ E is the dual variable of 1. Later 1 and E will be denoted by
Xq and Py respectively.

'~ Maslov and Arnold [11], [13] proved that there exists a

canonical atlas for ARHL

, such that the local coordinate in

any chart (simply qonnected) should be of the form (xI,pJ),

where I and J are subsets of {0,1,...,n}. IUJ = {0,1,...,n 1},

INT = ¢. Those charts which are diffemdrphic toIRX are called
regular. Those whrerin is a point with no neighborhood diffeo-
morphic toZRX are called singular charts and such points singular
points. The set of singular points Z(An+l) is a cycle — singular.
cycle, which can always be assumed to be an n-dimentional sub-
manifold of An+l .

In Maslov's work, x and p are put on a“completely equal
footing, hénce we should modify the class of symbols of pseudo-
differential operators in accordance.

Definition Let alx,p): cm(.mxxjmp) satiefy the following
condition :

There exists costant Ca >0 such that for all (x,p)eleXJRp

B

e ag a(x,p)| < C o (1 )™= (14 I8 o (23)
we say the symbol a(x,p)eM".
- Now let there exists a c” positive l-density do on M,

which is invariant under the action of HB. Oﬁr main result is

-7 -
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Theorem 1 If M is a ¢” (countable at infity) manifold
of dmension n with a C° positive l-density do defined on it.
Let B(x,Dx> be a proper pseudo-differential operator of order
1 with a real symbol bl(x,ple MY which is positively homogeneous

in (zx ) of degree 1 for arbitrary complementary subsets I

°Pyg

and J of {1,2,...,n} with INJ = ¢. Assume Hy = (bp(x,p)ax s

_bx(x,p)ap) definés a l-parameter groﬁp of diddeomorphism

ntl the Lagrangean

and do is invariant under it. Denote by A
manifold defined by the equation (15) with canonical coordinates

(x,p). Suppose the following conditions of guantization hold

(1) [Y pdx = 0 for every closed path Yy on An+1; (24)
(2) The Maslov index on every cycle is o. (25)

Under these conditions, a parametrix for arbitrary T fof the
Cauchy problem (1l2) exists.

Outline of Proof, Let QO be a regular chart where
do = |dx]|.

The phase function é(t, X, n) in (14) where S(T X,v.10)
s -] 3

o) -~ y-n 1is Jjust the generating function of the
(1,%x,n)

1

Lagrangean Manifold An+ in this coordinate patch, which

may be expressed as

P
= d 6
QQO(T,X,n) &6 pax (26)
where PO is a fixed point in S%) and P = (13 x, nN). In

Maslov's work [11], a pre-canonical operator on @

-8 -
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. d
KQOEQQO(T,X,n)] = qQO(T,X,ﬂ) exp [1i {f pdx] qa%w (27)
0

is defined. Here g, (t,x,n) is just g(t,x,n) constructed
4

above. Thus the local parametrix (14) may be written as

]

[U, (1)£3(Q)

(em)™™ [y [ag (1,@,m)] F(n)dn, (28)
0 0 0

O
n

Q(x)

If we follow the orbit of HQ and enter another
coordinate patch Ql of An+1 with focal coordinate

n+1l

(XI’ pJ), denote the generating function of A on Ql
by ¢
4
¢, (t, Q, n) = fQ pdx - <X (X., P.)s P>
Ql 3 3 Q J I’ J 3 J 3
0
QO € QO N Ql
The pre-canonical operator KQ is
1

Kgl[q(T, Q, n)] = exp (%%al)qu(T, Q, n)-

xp [18g (v, 9, SRl L, Todn |

Q = Q(XI, pJ)

oy = Maslov's index of Ql
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and we try to find a local parametrix UQ (t) of the Cauchy
1

problem (13) as

[V, (0f] (@) = (2m) ™™ 82"
1

R X, [a, (1,Q,n)1f(n)dn, (29)
Py / 8

Q = Q(XI, pJ) s

;l+ is the inverse partial Fourier transform.

3%

where F

When (29) is substituted into equation (13), we shall have

corresponding transport equation for dq (t, @, n), but the
YL

initial condition will no longer be (21), but with the values

at QO € QO n Ql of qQOk (t, Q, n) as the initial values

Of qQ k(T’ Q, n)‘
1

It is known [11], at Q = Q(x) = Q(xI, pJ) € QO{W Ql N

[Ug ()£1(Q) = [Uy (1)£1(Q) . (30)
0 1

Thus, we may piece together the local parametrices obtained
on each coordinate patch as follows. Let {ei} be a parti-

tion of unity subordinated to the cancnical atlas {Qj} s

define
q(t,Q,n) = I q.(1,Q,n) = Ie.qy (1,Q,n),
i 39
_ -1
KA[q(T)Q’n)] - ; Fp >X KQ.[eij‘(T,Q,n)],
RC PR P j

- 10 -
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(Maslov's global cononical operator).

The parametrix for arbitrary 1 will be
futorle = (2m)™"[k, [a(v,Q,n) I (n)dy . (31)
In order (31) be well-defined, it is sufficient that
(i) Q}pdx = O on every éycle v

(ii) The Maslov's index for every cycle is O.

Q. E. D.

Now, it is easy to prove the following properties of U(t).

Theorem 2 If the Cauchy problem (13) has a unique

(up to mod S™ ) solution U(t), then

Uty + 15) = U(ry) o U(1,), (mod S77%). (32)

Theorem 3 If A(x, DX) is independent of 1 and
[A, B] = 0, then [A, U] = 0. Equalities are in a mod S ©
sense.

The proofs are omitted.

Now we fturn to some concrete cases,

First let M be a compact C° manifold (countable at infinity)
without boundary, B(X,DX) formally self-adjoint and elliptic.
In this case {exp(itB)} may be defined by spectral-theoretic
method and is a group of unitary operators. It is easy to prove

Theorem U4 If A andB commute, A and U(t) also commute
(both in a mod S~ sense)

Proof is omitted.

- 11 -
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Turn to the equation (1). Introduce the new unknown Vv

by
u = exp(-itB)v(t,x) = U(t)v(t,x) (mod s™, (33)

for v(1,x) we have

1 1

D.v + UTTA(t,x,D UV = U™*f (mod S™°7). (34)

Theorem 5 If A and B commute, equation (1) may be reduced

to

D.,v + Av = U™ °f (35)

If [A,B] # 0, but [[A,B],B] = 0, equation (1) may be reduced

to
Dtv'+ Av + —iLéLE%:T v = Ut m>1, (36)
(1-m)t
D v + Av + 1nt-[A,Blv = ule m=1,

With lower order singularity. All the equalities are taken in
mod S™ sense. |
The proof is also straightforward.
In the second case, M is no longer assumed to be compact,
but the symbol b(x,£) of B(x,D ) is assumed to be real and the
Hamiltonian of b(x,&) is not the radial direction, i.e., H

B

and gag are not parallel. A typical example of this case is

m _ m
t* (D, + A(t,x,D ))u + Dxlu = tf. (37)

- 12 -
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We may use the method above or the vartial Fourier transformat
to construct its parametrix, but the most straightforward way

iIs to introduce new variables, e.g., when m>1,

0= xg 1™ s (1em), £ o= t, %, = x, 3>1

Then we have (still use the notations t and x)

D,u + A(ﬁ,x

1-m
£ +t /(1-m), XoseoesX D Yu

1 X

= F(t, x +tl—m/(l—m),/x2,...,xn)

1

In fact, in this case B = D = % axl is still a self-adjoint
i

X

operator and its exponential is Just the translation operator.
What is more important is that we may use :a canonicai trans-
formation such that microlocally equation (1) 1s equivalent to
(37). |

Theorem 6 Under the conditions above, equation (1) may

be reduced to an equation without singuldrity when [A,B] = 0

(mod S'“)s or reduced to an equation with lower singularity w

[[A,B],B] = 0 (mod S™°).

ion

(38)

(39)

hen

Proof It is well known [71,[9] that there exists a unitary

Fourier integral operator U such that microlocally

1

UT"BU = Dx., (mod S™7)

1

Denote by Al(t,x,DX) = U_lAU, we see

0 = UTI[A,BIU = [A1,Dy,]

- 13 -
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when [A,B] = 0. By computing the symbols , we have

DXlal(t,x,g) = 0, (mod S™7),

where al(t,X,E) is the symbol of Ay, hence aj is independent of

X7 - By introducing the new variables (38), we see equation (39)

becomes

1-—
Dou + Ap(t,x,D )u = £(t,x +t T/(1-m), x2,..,%,) -

(40)
When m=1, corresponding result will be obtained.
When [ [A,B], B] = 0, it is easy to see
A(t,x,DX) = Al(t,x,DX) + XlAg(t,x,DX) (mod 877),
where Aj and Ap have symbols independent of x4 Use the
method above, we have
1-m
Dtu + Al(t’X’Dx)u,+ [x1+t /(l~m)]A2(x,t,DX)u
1-m
= f(t,xl+t /(1-m), x2,...,xn) (h1)

The reduction above holds microllocally, but since 1t

holds in every conic neighborhood of any point in T"M, we

can use it at every point of M.

- 14 -
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