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Abelian varieties attached to Hilbert modular surfaces

Takayuki ODA

§ Introductory speculations.

In this note, I would like to consider the Hodge realization

of the following speculations via motives (cf. Deligne [4 ]).
Let F be a real quadratic field over the rational number
field Q. Suppose that a Hilbert modular cusp form f is given,
which is a common eigenfunction of all Hecke operators. Let us
call such a form f (#0) primitive. And let Kf be the subspace
of the complex number field €, generated by the eigenvalues of

all Hecke opertors. Then we have the following conjecture.

Tensor Product Conjecture. (0.1).

(i) We expect that there exists a motif M(f) defined over Q

attached to f, on which K_ acts as endomorphisms on M(f)SDéc(Q)Spec(F).

b

Moreover the rank of M(f) over K. should be 22=4.

£

(ii) For any f which is given above, we expect that there exist

two motives and M defined over F with K_. actions on them,

Me £,2 : £

such that M(f) x Spec(F) ;} M
Spec(Q)

f,l®K Mf’2 (an isomorphism as

f

K_-motives). Moreover these two motives M and M , which will
f £,1 — £,2? ——

be of rank two over Kf, should be conjugate with respect to the

extension F/Q.

(iii) Let £ be a primitive Hilbert cusp form obtained from f,

applying an automorphism & of € over Q to the Fourier coefficients

of £f. Then Mfs:l':Mf,l and MfV,Z‘-'ng,Z s ﬂMfo',lng,Z
and Mf“,zg Mf,l'

-1-
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Let us apply the above conjecture to the problem of counting
the number of algebraic 2-cycles on Hilbert modular surfaces.
Let MZ(S) be the 2-motif defined over Q attached to a Hilbert
modular surface S, and let WZMZ(S) be the pure part of MZ(S).
Let & be a representative system of equivalence classes of
primitive Hilbert modular cusp forms of weight 2 with respect
to the following equivalence relation:

Two primitive forms f and g are equivalent, if and only if

s
f =cg for some € Aut(€/Q) and c € C.

Then we should have a decompostion of the motif WZMz(S)

WM () X spec(F) o/ (-6 ¢(-1J @ (e M(5)),
Spec(Q) fed

where F[-1] the Tate motif of "poids" 2 over F.

By Tensor Product Conjecture (0.l1l), there exist two abelian

varieties A_ . and A defined over F of dimension d=[K_:Q]
£,1 £,2 £

with endomorphism ring Kf, such that

M(E) ¥ Ag 1®1<f £,2°

where we regard these qj abelian varieties as l-motives,
(}MMMGW uupfc Kj oG |
Therefore,

WZMZ(S)X Spec(F) n F]:—l]ez GB{ &, ®_ A )}

Spec(Q) feg o1 Kp 52

Now let us consider the Tate twist of WZMZ(S))( " Spec(F):
Spec(Q)

W, u’ (s) X Spec(F))[ 11~ Fl0]® F[0]®(® A [1J® Af 2)
Spec(Q) fe@

Since Af 1 is an abelian variety, there exists a polarization

. bl

Ag. ®KfAf 1> Kf[—ﬂ.

Hence A, 1[1] is isomorphic to the dual motif K; of A
’
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Therefore, we have

2 ~/ 1
(WM ()% spec(£))[1] T rl0]® Flol@{® Hom, (A. ,,A; )},
2 Spec(Q) ' fe@"ﬂKf £,17%,2

where Hom f(Af,l’Af,Z) ig the Hom-object in the category of Kf—motives.
2 . 2
Let (WZM (8)X Spec(F))al be the submotif of W M (S)X
Spec(Q) & 2 Spec(Q)
Spec(F), generated by algebraic 2-cycles.

Then Hodge-Tate conjecture for motives implies that

2
#H WM Spec(F)) , [ 11 ~ Fil® m)e{ea Hom, (A, ;,A; ) §
= 1°7£,2
2 Spec(®) alg £ed [ Phu 5 A
{ e -13 ; i £
Here Home(Af,l’Af,z) is the Kf module of Kf linear homomorphism o
Kf—isogenie class of abelian varieties defined by Af 1’ to Kf—
b

isogenie class of abelian varieties defined by Af;z'
So, if (#) is true, we can reduce the problem of determination of
algebréic cycles, to determination of endomorphisms of ableian
varieties.

Here we consider the Hodge realization of the above argugment.
In this case, the validity of (#) is guaranteed by thevLefschetz

criterion on algebraic cycles:on surfaces:

A 2-cycle on an algebraic surface is algebraic, if and only

if it is rational and of (1.1)-type.
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fO. Main results.

Let F be a real quadratic field with discriminant D and with
class number 1. And suppose that F has a unit with negative norm.
Let f be a primitive form of weight 2 with respect to ‘ I"=SL2(0F).

For any primitive form f of weight 2, we can attach; in general,

two abelian varieties Af 1 and Af 2 of dimension d= [Kf:OJ s, which
b bl
have K_. as asisubring of End(A_. .)® Q (i=1,2). “defined over €
£ a £,i77Z
Definition. (0.1). A primitive form f(zl,zz) is called self-

conjugate, iff f(zl’22)=f(22’zl) .

Remark. We avoid the term "symmetric', because the associated

ut Wrwmm
the involution of Hilbert modular surfaces obtained from the mapping

2-form aaf=(21;1§f(z1,zz)dzl/\dzz is not symmetrlt;,}}ylth respect to
OAXEARRXRZXS {BRKEX (zl,zz) —> (zz,zl) on passing to the
quotients. There 1is also a theor@tical reason to call these

forms self-conjugate.

Foa\gelf-—conjugate form f, it is known that there exists a

a
‘reellen Neben Ty}z%@%orm Y of weight 2 with respect to

elliptic
[y(D) with multiplicator defined by Jacobi symbol ), such that
m AXXXKEHEK., IXKEXEX . 70y XXXE T EH XKXEIR
f is the lifting of ? (cf. Doi-Naganuma [{1], Naganuma [32],
Zagier tlB], ete).

Let us recall the results of Shimura [20). Let K,. be the

P

field generated by the eigenvalues of Hecke operator over Q.

And let kY be the totally real subfield contained in K? with

[K :k]=2. Then Shimura [20] naturally attached abelian variety
b4 .

b
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s .
A;p of dimension [K?:Q], which decomposé’into two conjugate abelian

varieties B? and B} defined over F of dimension [k?:Q]. Moreover
B and B! are isogenous over F.

4 ¥

Theorem A. Let f be a self-conjugate form of weight 2 obtained

from a reellen Neben typus elliptic modular cusp form'7' of weight

2. Then k?FKf, and the abelian varletles.Af’l and Af,2 are both

isogenous to BP' > as k-abelian varietiesYover the complex number

R
3 CS

In order to state our next theorem, we need more terminology.
Let Poc be the dimension of the subspace of cusp forms of weight 2,

generated by self-conjugate forms, and let Pec be p - i.e.

g Psc

P is the dimension of the non-self-conjugate forms.

nsc
~ o ~ }
Let )\, be bz(S)—f(S), where S is a - smooth proper model of
~, - o
S, KINEEXXXXXEXHXBIXAKIHHAXXIHEAXKIEKX and bz(S) and f>(S) are
the second Betti number and the Picard number of §1 respectively.

Since X, is a biratinal invariant, it does not depend on the choice

of the smooth proper model‘g

Theorem B. The following two statements are equivalent.

(1) ‘k =3'psc-{-apnsc'

(ii) TFor any non-self-conjugate primitive form £, the abelian

varieties A and A are not isogenous as K_.-abelian varieties.

£,1 £,2

For any self-conjugate primitive form £, A

f
1 (or equivalently Af,2)

£
is not of CM-type.

Corollary. lﬁ-pnsc 0, then £\ 3psc' (More genera}ly,3p8C+2pnsé=R).
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Remark. The equality X;§3p8c+4pnsc is proved by Hirzebruch
T63,

Let us explain the outline of our proofs. In the first four
sections, we construct abelian variety A(f) of dimension 4d defined
over €, attached ﬁo a primitive form f, where d=[Kf:Q]. Here we
use an idea of Satake[ﬁj, Kugé—Satake L8 3, and Deligne £23,

More precisely speaking, we attach a polarized Hodge structure H(f)

of "poids" 2 with K_ action to each primitive form (.52 ). And

f
next,following Kuga-Satake [X‘], we construct abelian varieties, by
using the Cifford élgebras attached to polarization forms on H(f).
In section 5, we consider two topological involutions on Hilbert
modular surfaces. And by means of these involutions, we show that
our Clifford algebras are isomorphic toxtwo 2X2 matrix algebra over
ma‘h

Kf. By construction, our Clifford algebras act on A(f). Accordingly,

3 . ’ . - ' * .
we have a decomposition up to isogenie A(f)»"'\-'Af,f&Af’l::(Af’2 Af,2

In section 6, we calculate explicitly the period 1lattices of
these two abelian varieties. In this calculation, the period relation
of Riema#iHodge plaims a key role.

> 7

The rest of this note discué%%the application of theses result
to the problem of counting the number of transcendental cycles on
Hilbert modular surfaces. The sources are following: Manin’s idea Dil
to represent the period integrals of modular forms by the twisted
L-functions of thrﬂégodular forms; liftings of Doi-Naganuma T 1} 7,

Jes

and Naganuma [ {2]; Shimura’s results on period integrals of elliptic
modular forms|; the determination of endomorphisms rings of abelian

T3, (3
varieties attached to elliptic cusp formsy&a Ribet [18) and Momose U7J .
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§ 1. Polarized Hodge structures attached to Hilbert modular surfaces.
(1.0) Definitions.
We fix a real quadratic field F=Q{d) with discriminant d
(> 0), and assume that F has a unit E with negative norm N€=-1.
Let H be the complex upper half plane {}ec .Im z)o}, and let
SLZ(R) be the special linear group of degree 2 with entries in the

real number field R. As usual SLZ(R) acts on H via
g(z)=(az+b)/(cz+d) for g=(i 2)6 SLZ(R), and zeH.

The product group SLZ(R)XSLZ(R) acts on the product HxH factorwise.
Let 0& and d2 be two embeddings of an element o of F into R.
Then the mapping

< oy By oy B
G5 —> (35D G 50

defines an injective homomorphism of groups SLZ(F) —_— S@Z(R)xSLz(R).
By means of this injection, the group SLZ(F) acts on HXH, and
accordingly its subgroup f"=SL2(0F) also acts on HxH. Here 0F is
the ring of integers of F. [’ acts properly discontinuously on HxH,
and the quotient analytic space Séf\ﬁxﬂ has a natural structure of
quasi-projective algebraic surface (cf. Baily-Borel [3¢) for example),
which is smooth except finite number of quotient singularities
corresponding to elliptic fixed points on HxH with respect to I'.
The surface S is callled the Hilbert modular surface attached to [7,
or to F. |

Let S be the standard compactification, which is a union of
S and SLZ(OFf\?l(f) as a set. Here Pl(F)=FLQO# is the l-dimen-
sional projective line over F. As is well known, the cardinality

of the finite set SLZ(OFy\Pl(F) is equal to the class number hF of

~7-
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F. An element of SLZ(OF)\PI(F) is called an equivalence class of
cusps, or by an abuse of languages, simply called a cusp. S has
singularities at these cusps, whose resolution is precisely studied

by Hirzebruch C5].

(1.1) Cohomology groups of Hilbert modular surfaces.

Let us recall some basic facts on the homology and cohomology
— ~ —
groups of S and S. Let :S —> S be a resolution of the quotient
— as
and cusp singularities of S. Then the cohomology group H2(S,Q)
— ns

is a direct sum of the image of_n%:HZ(S,Q) ——%>H2(S,Q), and the
subspace of H2(§,Q) generated by algebraic cycles which are obtained
as irreducible components of the inverse image loci of singularities

o . A 2 2 =
by . Restricting the intersection form on H™(S,Q) to *H"(S,Q),

we can define a nondegenerate pairing on ﬂ?HZ(g;Q).

. ns —_—
Lemma. Let (S',m') be another desingularization of S. Then

-“*Hz(g,Q) and qe*Hz(g,Q) are canonically isomorphic as veFor spaces

with inner products defined by intersection forms.

Proof. Routine. Q.E.D.

By this lemma we can define a unique natural intersection form
fond _—
on the coimage of 7§:HZ(S,Q) —> H2(S,Q). Now let us investigate

the kernel of n*. Let R o (resp. »Cp ) be the

K C1sCysere

set of quotient (resp. cusp) singularities on S. Put Ri=7fl(ri) and

Tty

-1 . . .
Ci=ﬂ. (Ci)' Then, considering the exact sequences of the relative

cohomology groups, we have

>0 > B2 (S mod {rl,...,rlj%cl,...,ch\,qg) 3 5 wE,9—> 0
b oo # s R

K h, D2 Uy 2.8 o
B (RN 216,50 —> B (§ mod Yr Ve, ,0) —> H°(5,Q)—>*

-8-
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Here the isomorphism 4¥ is obtained by the excision theorem.

By means of this diagram, we have Imagé3=Kerg*. Since T (1£igk)
are quotient singularities, Hl(Ri,Q)=0. Therefore, we have the
following proposition.

Proposition. The sequence
h 1 jwle 9 _ 9 A
® u'(c,, —ELs w5, —— G0
i=1

is exact.

We apply this exact sequence for calculation of the mixed

Hodge structure of H2(§,Q). From now on we consult with Deligne[43.

(1.2) The mixed Hodge structures of Hilbert modular surfaces.

Let us consider the mixed Hodge structure of HZ(S,Q), Hi(S,Q)
and HZ(E;Q). By means of the previous proposition, we have an
exact sequence of cohomological descent (cf. Saint—Donait(jT]i,
we can calculate the mixed Hodge structure of H2(§;Q) by this(DeﬁgneE%J).
By results of Hirzebruch [5), we can take as Ci a stable curve of
genus 1, which is not an elliptic curve (the socalled Neron’s
N-polygon). Therefore, Hl(Ci,Q):Q, and the weight filtration of
the mixed Hodge structure of Hl(Ci,Q) is given by
w00 (K0), g, 0me (=0), w ', 0=t C, 0 (0.
Therefore the weight filtration of H2(§;Q) is given by
 wE G0 (0,
wOHZ(E,Q)’é@Q (k=0) ,
WEE,QWE .0 (1),
W’ (,0H 5,0 (k2).
Moreover

2 — 2 — 2 —

—9-



81

is a polarized homogeneous sub-Hodge structure of the polarized
Hodge structure of HZ(S,Q).
By means of the trivial isomorphism Hi(S,Q)gHz(gpQ), we can
transcribe the mixed Hodge structure on H2(§;Q) to Hi(S,Q).
Since S is rationally smooth, we have tHe Poincare duality
HZ(S,Q)XHi(S,Q) — ql-21.

Therefore the weight filtration of the mixed Hodge structure on
HZ(S,Q) is given by

wkHz(S,Q)=O (k$1),

W (3,Q) =0 17 (S,Q),

WES(S,QH(5,0) (),

2
and WZH (5,Q) is a homogeneous polarized Hodge structure of ''poids”

2, and Gr4WH2(S,Q):Q[-2].

(1.3) The Hodge decomposition of the pure part WZHZ(S,Q) ggAHZ(S,Q).

From now on, for simplicity, we assume that the class number
hF of F is 1. Let ¥ =¥(,A) be the Hecke algebra {*=SL2(OF) with
respect to the commensurator ﬂ={o{éM2(OF) i detdeOF—{O‘j}.

Since we can naturally regard any element of P as an algebraic
correspondence of S, the Hecke algebra ;e acts on HZ(S,Q),

HA(S,Q), and B2(5,Q).

Remark. We can write the cohomology groups HZ(S,Q), and
Hi(S,Q);HZ(g;Q)gHZ(g mod cusps,®) as relative cohomology groups

of the discrete group r'=SL2(0F). Therefore fhese cohomology
groups are given as cohomology groups of certain complex of r—
equivariant cochains on HxH. Therefore, the commensurator A écts

naturally on these cohomology groups.

~-10-~
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The Hecke algebra j@ acts also on the space quﬂ of
holomorphic cusp forms on HXH with respect to
By means of the mapping

£(z,2,) € S,(7) > (2m) (2, 2,)dz pdz,,
we cah regard any element of SQ(P) as a holomorphic 2-form on S.
And it is known that these 2-forms are prolonged to holomorphic
2-forms on a smooth model‘g, and moreover by this mapping SZ(V)
- is canonically isomorphic tolr("S.‘,Q%) " (cf. Freitag ([3i13).
Especially, we have
aincs, (M=p (5).
Now the Hodge decomposition of WZHZ(S,Q) is given by the

following theorem.

Theorem (1.1). (Hirzebruch ©673).

Let F be a real quadratic field with has units with negative

norm. Let ¢ be such a unit, whose two embeddings into R satisfies

%?0, i2<0, i1i2=—l. Then as [ -modules, we have a natural iso-

morphism

2 2
WH (8,080 2 d (1) (2,2, dz; dz, | £ €5, ]
@ (2n1) £ (s 2y 0,7 )z pdz, | £65, ()Y
®{(2m) £ (7, 20 dz; Ndz, | £,

Olor) *e(z) -z, dz pdz, | £,

dz, \dz. dz, dz
1N? 2N “2
BGe—— B¢ ) .
Iy Yo

Here zi=xi+J—lyi (i=1,2).

-11~-



(1.4) The primitive part WZHZ(S,Q)pr g£~W2H2(S,Q);

Let L, and L, be the invertible sheaves corresponding to the

1 2

automorphic factors j£z,g)=(cizi+di)(i=l,2), respectively.

Here

_ 171 2
z (zl,zz) € HXH, and g ((C d ),(C2

171

2
d2))€SL2(R)XSL2(R).

We can prolong these two sheaves to two invertible sheaves Ll and

L2 on a smooth proper model of S by the results of Ueno-Van der Geer
[2¥). The Chern calsses of theseinvertible sheaves define two
elements of HZ(S,Q), and accordingly two elements of WZHZ(S,Q).

Let WZHZ(S,Q)pr be the orthogonal complement of the space spanned

by these two elements, with respect to the intersection form. Then
the Hodge decomposition of WZHZ(S,Q)pr is given by the right hand

side of the isombrphism of Theorem (1.1), without the last two

direct factors

Cdzl,\dzl 6 ¢ dzzhdzz
2 2 :
71 P

Because the Chern forms of L1 and L2 are given the above two (1,1)-

type 2-forms.

~-1ia-
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§2. Polarized Hodge structures attached to primitive cusp forms

of weight 2.

Definition. A Hilbert modular cusp form f (#0) of weight 2
with respect to [’ is called primitive, if it is a common

eigenfunction of all Hecke operators: T, f=a f (o< OF)-

We denote by Kf a subfield of €, generated by eigenvalues a over "

Q.
Lemma. Kf is contained in R.
Proof. Well-known. Recall that in our case all Hecke operators

Tﬂ are self-adjoint with respect to the Petersson metric ( , )

on SZ(P). Q.E.D.

Let éf be the homomorphism of F into K defined by

f’
the mapping *f: To —> a,-

oy PR .. ~
- Put HZ(S,Q)pr—001mage(3*.H2(S,Q) _ HZ(S,Q))/ {the space
generated by the homology classes correponding to the line bundles

L, and LY.,

and define Hz(f) by

Hz(f)=H2(S,Q)pr® K

) ©

Then the dual space of H2(f) over K_ is canonically isomorphic to

£
2 2
B (£)={ne W (5,Q) & K | Tm’1’=am"f}.

Theorem (2.1). Let f be aprimitive form of weight 2.

(i) The restriction ‘?f:Hz(f)x Hz(f) —_— Kf of the extension

of scalars

Al . 2 2
P %Kf.wzH (S,Q)pr@?QKf X WHT(8,Q) @ K, —> Ky

-12-
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of the intersection form ?, is a nondegenerate# symmetric bi-

linear form.

(ii) The extension of scalars of “+f with respect to the
injection Kf GR

VY © R:HZ(£)0, R X H2(£)®, R —>R
£ K, K K.

is of signature (2+,2-), and a polarization of a homogeneous

Hodge structure of "poids" 2 given by (iii)

(iid) szf)ﬁk € has a Hodge decomposition:
f .

2 2 _ 2 — —
H (f)@kf@ Q:C(an) f(zl,zz)dzll\dz2 @® €¢(2xi) f(ilzl,ezzz)dzl'\dz2
@ c2ri) 2 (e 7., £.2.)dz, ndz, @ €(2nd) 2£ (-7, ,~2.)da.p d2
2912 F1%27 %1% i Yo [\
. . 2
Especially dlmK H™(f)=4.
£

Proof. We first recall the following basic fact.

Multiplicity One Theorem. Let f and g be two primitive forms

of weight 2. If T,f=a,f and T;g=a g for all integral ideal

of OF. Then f is a constant multiple of g.

Evidently, we can canonically identify Hz(f)(g)K C with
f

{Me WZHZ(S,Q)prQa ¢ Tty

By Multiplicity One Theorem XKXXXEFARRXXEX>
and Theorem (1.1), this sapce is isomorphic to the right hand side
of the statement (iii). So (iii) is proved.

Let £

iy e ,fp be basis of SZ(F) consisting of primitive

g

forms. Then we have
f
2 i 2
WH(S,Q) ® € =6 H(£)® c.
2 pr Q i=1 i Kfi

-13-



86
.

3
Hence W HZ(S,Q) ® R= & Hz(f,)® R.
2 pr Q 421 i Kf
i

Let us consider "-f’dDR. Let f. and £, be two primitive form such

1 2
that flaécf2 for any ceC, and denote by am’l and alm,2 the eigen~
values of Ty for fl and f2’ respectively. Then, for
2 2
>4
171€H (fl) Kf R and ’VIZGH (f2)®Kf R, we have
1 2

ans‘ll’b.): <a n,]_71’ 72>=<T611{1 ’?’2):<7]_’Tﬂ7 2)=<7]l’a’7!,272> = nlﬂﬂ_(’l}‘v‘z)
where < , » is the intersection form. YoR .,

Since flaécf2 for any ce¢C, by Multiplicity One Theorem, there exist

some ideals @1 such that am,l#am’z. Hence (7)1,7]2’>=0
Therefore the bilinear form ¢®QR is a direct sum of IPf? R

(i=1,2,.. .,pg), and consequently each ‘kf_ is nondegenerate§.
Thus (i) is proved. :

Because of the indéx theorem of Hodge, the bilinear form ""@QR has
signature (2pg+,2pg—) , where pg=dimCSZ(["). For we took the
"primitive part" of WZHZ(S,Q). The Hodge decomposion of
Hz(f)WK C, and the fact that Hecke operator commute with the C

f
operator of Weil imply (ii). Q.E.D. .

-14-
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3. @Q-basis theorem.

Let SZ(F;Q) be the space of Hilbert cusp forms, whose Fourier
coefficients are rational numbers. Then the following theorem is

known.

-Basis Theorem (3.1). (Shimura [Hﬂ, or Rapoport [107).

(i) SZ(F;Q) spans SZ(P). In other words, there is a natural

isomorphism sz(r;Q)a:Qc o~ Sz(l")-

(ii) Let f(zl’ZZ) be an element of Sz(r) with Fourier expansion

f(zl,zz)= Z a(V)exp[Zﬂi()’lzl+V2z2)] ,

Ved :_l

where S;F' is the intersection of the codifferent and the set of

totally positive elements.

For any element 6 Aut(C/Q), we define fs(zl,zz) by a formal

Fourier expansion

129 =ve%'1 a)%expl2rt (v 2 +%,2,)] -

+

fs(z

€
Then f (21’22) belongs to sz(r)i

Corollary (3.2). Let f be a primitive form of weight 2 such

9» .., } be the set of all

that  Tpf=apf. And let (€l=idKf, €

embeddings of K_ into R, where d=[Kf:Q]. Then there exist

f

primitive forms in Sz(r), such that
Tﬂfi=si(a°'l) fi (i=2,3,...,d)

for all integral ideal 1. Especially we have Kf =5;(Kf)
i

(1%i€d), and K_ is a totally real field.

-15-
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; 4, (Clifford algebras and abelian varieties.

Let us recall the data given in the previous section.
Data (4.1)
Kf: a totally real algebraic number field of degreee d over Q.
ie ,Gz,...,éas be the set of all embeddings of Kf to R.

H(f): a Kf—module of rank 4 on which a symmetrié non-denerate
bilinear form 'vf with values in Kf is defined, which satisfies

the following condition:

(i) For any Si (i=1,...,d), H(f)@K . R is equipped with a
S

homogeneous Hodge structure of "poids" 2, and '\}’OK c R gives
£271

1

a polarization with respect to this Hodge structure.

Let start from this data, and construcE}ébelian variety ~
attached to this data. First we choose an iiﬁegral structure.
From now on, until the last part of this section, we omit the
§%écript f to simplify the notation. Now let OK be an order
of K, and let HZ be an OK—module of rank 4 in H. And moreover
we can choose HZ such that the values of ﬁ? on HszZ is contained
in OK.

Let C+(HZ) be the even Clifford alegebra attached to

© over OK’ Thus this algebra is of rank 23=8 over OK. There
is a sophisticated description to attach abelian variety by
Deligne. [2]. We recall here more naive definition of C3 1.

First, we consider a real torus of dimension 8d

+ +
c' (8,) ®ZR/C (H,) .

~16-
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Clearly on this real torus, the Clifford algebra C+(Hz) acts by
left multiplication. Next, we define a complex structure on this
real torus.

Let us note the natural isomorphism

+ d 4 +
CHR~® Cc H,)R® R~@C HSD R).
271 =" Z270,,6, =% Z 0,6,
i=1 K’71i i K71
Let us consider the intersection
2,0 0,2)
HZ®0 ,G.R f\(H AH h
K* i
for each i (i=1,2,...,d). Choose an orthognal basis e;’ e; of
this intersection subspace with respect to 1PQ,R. Then,
i

+ -
Ji=eiei (i=1,2,...,d) defines a complex structure on each factor

C +(H£36 ¢ R) by means of right multiplication. Therefore the
K>7i

direct sum J= G§.1i of Ji defines a complex structure on our
i

real torus by right multiplication.

Theorem (4.2) This complex torus has a structure of abelian variety.

Proof. It is well-known that a complex torus with sufficient many

endomorphisms becomes automatically an abelian variety, as in our

case. IAd/ HRé /W géhé/ See also Kuga-Satakel, or Deligne/for
[g1" [y

K=Q. Q.E.D.

Remark. The dimension of this abelian variety is equalfto 4d.

The isogenie class of this abelian variety does not depend§ upon

the choice of the integral structure HZ in H.

-17-
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55. Involutions of Hilbert modular surfaces and decomposition of

abelian varieties.

Let ¢ be a unit such that €l>0 and EZ<0. Let G,, H

02

and F,, be “involutions on H H defined by

G.: (z

o ,) € HXH ——> (€

121,2222) €HxH,
H@: (21’22) € HxH +——> (izzl,il

F: (z1’22> € Hxl p—> (—zl,—zz) € HxH.

1%
22) € HxH,

Clearly, we have GH, =H G.=F,.
On passing to the quotient S, we obtain involutuions on H H, which
we denote by the same symbol

Gy 8 —> S, HyiS —> S8, F =H,G,=GH,:S —> S.
Evidently these involutuion acts on the homology groups and cohomo-
logy groups H,(S,Q), 1% (s,0Q), W2H2(S,Q) etc..

Note here that Ges and He changes the orientation. -To check this

apply G, and H,, to dzl/\d;l/\dzzi\dzz.

Remark. F,, 1s the Frobenius at infinity. Namely let SR be a
canonical model of S defined over the real number field R. Then
F, coimcides with the action of the nontrivial element of Gal(C/R)

on €-valued points S of Sg-

Definition.~ Proposition (5.1) Put
H++(f)={o(eH(f) | Ga=d , H“,g=o(§,
H, (H={oen(f) | co=t , Hd=-o ],
H_ (D={«eu(® | cd=-o, Hol=dl,
H (£)=A4€Hu(f) | cd=—d , Ho==} .

Then we have a direct sum decomposition

H(E)=H,, () @H,_(5) 6 1_ () GH__(D).

- 18 -
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Moreover H++(f), H+_(f),.;.,H__(f) are.all of rank one over Kf.
Proof. Note that the Hecke operators commutes with G, H , and Eb.

And use the Hodge decomposition (Theorem (1.1)).

Noting that G, and H_, change the orientation of S, we have

the following proposition.

Proposition (5.2). For the intersection form q!f , we have
(0,8, (D)= @8E, (0)=Y@, (DH ()
=“§(H+_(f),ﬂ__(f))=tPf(H,*(f),H__<f))=~§(H__(f) SH__(£)=0.

And H++(f) and H_ (f), and H+h(f) and H_+(f) are mutually ﬁual

with respect to ’+f each other.

Corollary (5.3). '¢f is a kernel form.

Corollary (5.4) C+(H(f)) the even Clifford algebra over H(f) with v

respect to 'Pf is a direct product of two copies of 2 2 matrices

. e ‘
with entries in Kf, C (H(f));\/ Mz(Kf) @Mz(Kf).

Corollary (5.4) Let A(f) be an abelian variety'constructéd in

the previous section. Then we have a decomposition upto isogenie:

AE) o~ Ap xAp 1¥Ag, %A o

Here A i (i=1,2) are both of dimension déEKf:Q], with endomorphism

f,
rings K. G EndC(Af’i)%S.

~19-
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6. Explicite calculation of period lattices of A and A

f,1 £,2°

In this section, we give the period lattices of the isogenie
classes of abelian varieties represented by Af 1 and Af 2°
3 H]

Let £ bé a primitive form of weight 2, and let Kf be the
field of the eigenvalues. Let»{ €l=idKf, éz, cevet,6.% be the set
of embeddings of K. into R, where ’ d=[Kf:Q] . Let fg:.L be the
primitive forms obtained from f by applying O"i to the Fourier
coefficients of £ (We normalize f ). Let I{Z(fei) be the

6.
homology group attached to £ *

(i=1,2,...,d). Let con&ider the
X ©i . ++ -
action of G, and Hy on Hz(f ). And define H, (f) etc. similarly
as the case of cohomology groups. We normalize f such that the
"first" Fourier coefficient of f is a rational number.
Put
w =(2'rci)2f(z z,)dz \dz
£ 1’727 77INTT2
for such form f. Then we have the following lemma.

Lemma (6.1)

If X—H- € H?-(f), and Y ¢ H;—(f). Then the-period integrals

o s [
4—!—{- £ and y" £ are rea; numbers,

and if X‘he- H;—(f), and y_+e H;+ (f), thenwmxhaws the period

integrals

4 _ C‘-"f and [+ wf are purely imaginary numbers.

{

Fe Y- o
Definition. Fix the above four cycles x++, X ,X +;2{ . in

H, (£)=H,(S,0)® K And let }/ A etc be the element of H (fsi)
2 272 (x¢é £° i > 2 s

-20-
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++ . .
obtained from \6, etc. with respect to conjugation of K_ over Q.

f
Then we put
&
W, (£ 1= Wei LW, (F =i

¥

sogenie dasses “'p
Theorem (6.2) The period lattices of Ae 1 and Af 5 are given by

- _ R d
Ll—{v (Vl,Vz,VB,...,,Vd) & C ‘

v,= €, (L)+ S (P, (£ D, (Y (=1,2,...,d)
i i i +- + PEr TS

for some d,%@ in K. } »

and
d
L2= {v%(vl,vz,...,vd) €C '
€ (Vs € €5 S ,
= 6, (O+ S (pIV_ (£ M (ED (1=1,2,...,d),
for some L, ? in Kf k .
In the calculation of these periods, we need the following
theoren.

Theorem (6.3) (The period relation of Riemann-Hodge).

A A A
If 1*“f(}S—H_,)\g__)="}’f(‘6""',?5-_'.) for the intersection form \Pf of

Hz(f), we have

W (DW__(£)=W, (EW_,(£).

Proof of Theorem (6.2). A very easy computation of Clifford

algebras. We omit it here, because of a short of time.
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