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On special values of zeta functions

associated with a self-dual cone
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§ 1. Introduction

To explain the main idea of this paper, and also to fix some notations,

we start with reviewing the classical case of Riemann zeta function. As

usual, we set

S (s) = ;2__._’ n > (Re 8>1),
[’(s)*= fw x® Lo ~*ax ( Re s>0),

7(s) &(s)

M
l;\’l
CeTS
°y
&

We put

b(xs y) = - =

where

B,(y) = /:z (p)my"-#

ié the Bei'noulli polynomial, in which the b/,, are the Bernoulli numbers:

1
by=1, b, =-5,

b

LA '
v ={(-—l)‘ By (v even, >2),

0 (v odd, 3>3).

Then the above integral can be transformed into a contour integra]*of the

form

(1.1) ["(s)C(s) = (e2™1s | 1)1 f 1 n(x, 0) ax,
I(E,oo)

where I(€& ,%) denotes the contour consisting of the half-line [e, o)

taken twice in opposite directions and of a (small) cirecle of radius €
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about the origin taken in the counterclockwise direction. The contour integral
is absolutely convergent for all s&C, so that the function [ (s) <(s) can
be analytically continued to & meromorphic function on €. Moreover, in virtue

of the functional eqﬁation of the gamma function:

(1.2) ris)r@ ) T 2w i e ™18 '
. : s -8) 5 = =22MN1l —F=TT ,
. sin T4 ez.w’:Ls -1
one obtains 7
(1.3) G(s) = ™8 (1 - 5) 2 f 51 b(x, 0) ax.
2Ti
I(f-p"")

This shows that & (s) is holomorphic for Re s < 1. In particular, for
+ ,
s=1-m, meZ (positive integers), the contour integral reduces to the

residue of x "b(x, 0) at x = 0, i.e., bm/m.’. Hence one obtains

L) S -m = ()™ ) e ()2l

Thus &(1 - m) (me Z+) | is rational. In particular,
o ot
s =-4, ¢n=-L,

. B .
§(—.2/~) =0, S(1-2p)-= (-1§L——tf— (pz1).
, 2}&
This result has been generalized by Hecke, Klingen and Siegel [13] to

the case of Dedekind zeta functions of totally real number fields. More
recently, Shintani [i]] gave a proof’based on a direct generaliztion of the
.classical method explained above. Zeta functions attached to self-dual homo-
geneous cones have been studied by Siegel [J3] in a special case of quadratic
cones, and by Sato-Shintani [%] in a more general context of "prehomogeneous
spaces". (Cf. also Shintani [9], [10].) On the othef hand, the gamma functions
attached to self-dual homogeneous cones were studied by Kbecher‘[é], Gindikin
[3] and others (cf. e.g., Resnikoff [£]). In this paper, we try to extend
Shintani's method (i.e., the classical method) to examine the rationality of

the special values of zeta functions attached to self-dual homogeneous cones.



§2; The gamma function of a self-dual homogeneous cone

2.1. Let U be a real vector space of dimension n, endowed with a positive
definite inner product < > . By a "cone" in U we always mean a non-degene-
rate open convex cone in U with vertex at the origin, i.e., a non-empty

open set JZ in U such that

X,YGCJZ’,'),,/LER+==> )BX*'/*VGJL

and such that JL ‘does not contain any straight line. A cone JZ_ in U is

called homogeneous if the group of linear automorphisms
) = {eecnw) |ed) =}

is transitive on J| ; and J) 1is called self-dual if the "dual" of

D= {er ]<x, ¥>>0 for all ye - {0} }
coincides with aQ, .
. ) []
Let J] be a self-dual homogeneous cone in U and G = G(J.) . Then
it is well-known (e.g., Satake [7]) that the Zariski closure of G (in GL(U))
is a reductive algebraic group, containing G(JZ,) as a subgroup of finite

1 is a Cartén involution of Gj; the corresponding maxi-

index, and g |——-—>tg-
mal compact subgroup K = GDO(U) coincides with the isoﬁropy subgroup of
G at a "base point" ec JL (which is not unique, but will be fixed once and

for all). Let

(R
be the corresponding Cartan decomposition of Y% = Lie G. Then K= nie k

and one has for T € °}
(2.1) Tef < r=_1 <= Te-=o.

It follows that, for each u€U, there exists a uniquely determined element
TuG '; such that Tue = u. It is well-known that the vector space U en-

dowed with a product
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uou' = Tu u’ (u, u' cv)
becomes a formally real Jordan algebra (cf. Braun-Koecher [2], or Satake [7]).
We define the (regular) trace on U by

(2.2) . _ T(u) = tr(Tu).

For the given (J), e), one may assume (by Schur's lemma) that the inner

product < > 1is so normalized that one has
(2.3) <u, u'> = T(usu')  (u, u'eU).

Next, let uecjl. Then, since G is transitive on JL , there exists g,€ G

such that u = g, e. We define the (regular) norm N(u) by

1
N(u) = det(gl),-
which is clearly independent of the choice of 8- There exists a unique

1

then by definition one has

element u, €U such that u = exp u, (which is defined to be (exp T, Je)s
. ‘ 1

(2.4) A N(u) = det(exp Tu ) = e-‘c(;;,).

1

In terms of the "quadratic multiplication" P(u) =2 'I‘u? - T 2 » one can also

write N{u) = de*t.(P(u))t . By the definition, it is cleé.r that
(2.5) N(e) =1, Nl(gu) = aet(g) M(u) (ge6(d), ue dl),

which characterizes the norm uniquely. Denoting the Euclidean measue on U

by du, we see that dJL (u) = N(u)‘—ldu is an inyvariant measure on JL .

Example. Let U = Symr(IR) (the space of real symmetric matrices of
degree r) and J)_ = ?")r(R) (the cone of positive definite elements in U).

Then one has

Tu(u') = -;— (uu' + u'u)

and so
r+l
r;l tr(u), = N(u) = det(u) % .

T(u) =
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2.2. We define the gamma function of the cone CQ. by

(2.6) [ (s) = &m(u«)s'l e T gy

which converges absolutely for Re s sufficiently large (actually for Re s

1 -X as we will see later).
"

LEMMA 2.1. Suppose that the inner product < > is normalized by (2.3).

Then one has for any v & ‘JZ_

(2.7) : LN(u)s-l e < V= r;L(,s) N(v)~5.

"Proof. Let v = g,.e with gteG and put u' ='tg'u. Then ore has
<u, v> =<u, s1e> = <u',e> = "U(u').

Hence by (2.5) the left-hand side of (2.7) is equal to

j;LN(u)S e~ <Y v>d‘))_(u)

- fé, (aet(g,) 7 W(u))® &= T a g (ur) |

= N(v)~® r;l(s), g.e.d.

It is known that the function r;?_ (s) can be expressed as a product
of ordinary gamma functions (cf. e.g., Resnikoff loc. cit.). For the sake of

completeness, we sketch a proof . First, it is clear that, if

VOQ,=er1x“' XOSZM

is the decomposition of JL into the direct product of irreducible {self-

dual homogeneous) cones, then one has
EZ(S) = FJZ‘(S) Ul,,f~s)'

Hence, for our purpose, we may assume that d?. is irreducible.

We need the root structure of °J— , which can be determined as follows.

Let
S by
(2.8) e = Z,ei, , eie'j = 13 e;
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be a decomposition of e (in the Jordan algebra U) into the sum of mutually

orthogonal primitive Videmp:otents. ("Primitive" means that each e; can not

be decomposed into the sum of mutually orthogonal idempotents any more.) Then
we obtain the following decompqsition of U into the direct sum of subspaces

("Peirce decomposition").

(2.9) u= & Ugy
R TR ¢
where
Uys = {“eUlei‘”“}’
=l' = = _' 3
Uij {ueUIeiu eu = 5 } (1 #3).
Then one has eku =0 for ueUij, k # i, j. Moreover
(2.10) dim Uy, =1, amU;, =d (1#J),

where 4 1is a positive intveger depending on the irreducible cone GD_ (Por
instance, one has d =1 for J. = "PI'(:B,).Z Prom (2.9), (2,10) one bas the
relation

(2-11) n=1r-+% _% r(‘r - l)d, i.e., d = 2(1’1 - I‘L .

r(r - 1)

It follows that

(2.12) Tle) =tx(r, ) =1+ +(r-1a=L1,
? Put
(2.13) n = {Te. clsisrz} .

Then 0} is an abelian subalgebra df "} of dimension r contained in }Z .

We denote by (7; ) the basis of @* (the dual space of 0L ) dusl to CTe L,

v
i.e., one has the relation

T
T= > MNT)T (Te o).

y=1 e

We put o, (A~ hé ) (iA&3).

L
¥ 2



 PROPOSTTION 1. The root syétem of ‘g— relative to 0L is given by CI) _

= -{ {x"j (i # j)} . The root space °f( o(%‘- ) corresponding to o(:}- is

given by
| () = l ‘
(2.14) 1 (s ) T+ ['I‘e; . T,] | ueu, }
This can be verified by a straightforward computation; see e.g., Ash et

al. [1] ch. II, $3. Proposition 1 implies that the R-rank of "} is equal

to r and the root system @ is of type (Ar__l).

2.3. Next we determine the Haar measure .of G. Put

w = <2; yACHS!
and let A, N be the analytic subgroups of G co;responding to &, W,
respectively. Then one has an Iwasawa decoﬁxposition VG = NA-K(~ NxAxK),
whicgh gives rise to the following forniula' for (the Volﬁﬁe element of) é,
(bil.inxlra;ri‘a.ﬁt)'Haar measure on G:

(2.15) ' ag = c; e2P (log 8y 4. ax

for g = pak with neN, a€¢A, k€K, wvhere dn, da, dk denote Haar measures

on N, A, K, respectively, c is a positive constant depending on the normal- -

1

ization of the Haar measures, and f is a linear form on 0 defined by
f(T) =~;— tr(adTl-w) (Te a);

be Proposition 1 one has
by

(2.16) Pt = <y =2 Z (r-2i+1)),.
Y J L=

The Haar measure of K 1is always normalized by - f}; dk = 1. We make an

+ -
identification A = (R')T by the correspondence a <-———>(t‘.) ‘defined by the

. ' _— A _
relation a = exp( > M Te; ), ti = e 3 then one has da = Tr (dti/ti).

Moreover one has

va

5%

det(a) = e e =

I
e, = E t.e,
i = 1 i?

x
Il

i:]

T(= he) . FEN
D
e

(2.17) a-e =
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o2 p(log a) T g 2(r-21+l)
i=

Since d?,= G/X, we can normalize the Haar measure of G by the relation
dg = dJL(u)‘dk where u = ge. Then by (2.15)}, (2.16), (2.17) one has

f N(ge)® e~ (ge) dg
& :

EL(S)

(2.18) e—2f(_lqg a) da f e.-'c(g.ae) an
N

f f _ﬂ_ (t, ¥s (;leﬂ)—l .til
xf -t = e )) 4
N

[l
0
[
P
[e]]
]
ct
f';
0

To compute: the integral over N, we introduce some notations. Por u =

?u €U with uijeuij,we put
b} B
() e s =t n
(2.19) Ta - Z(-Tu+ %[Te;\ﬁea."ru‘.&.])’
¢ 00
My es> = | >
g (u)= 2. 2. — 2. .
i< v=y V! Sehgoske 1kukk2 ukM J

(Then one has The U, J—component of ¢ (u) is denoted by e > (). )

LEMMA 2. The notation being as above, one has

' (H)y 2, = . = (+)
(2.20) (exp T, )( ;\?;';tiei) = 1‘%'_ (t. + '; LZ;i,tk (u) )e
v3 2 e R T g elm a“‘)<u))
a

This may be regarded as a generalization of the so-called "Jacobi trans-

formation". The proof is again straightforward. It follows that, if n

+ —
expT( ) (we 2_U,.), one has
u 1'<)'

iJ
(.21)  T@(Eee )= L Ter 4 T Pw,.

We denote the Euclidean measure on Ui 3 (i< j) (relative to the inner

product <> ) by du, and define the Haar measure on N by -

iJ
T du for n = exp T(+).
i<) - u

(+)

Since the map ¢ is a bijection of Z U, ij onto itself with jacobian

'<_J
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equgl te one, one has

du = TI_ dui,j = —IT du'i

f<j

Wy o
where u' = ¢ )(Au),. Hence by (2.21) one has

. - t. 2
-T = Q. n“""Z_ S et - ?
f Tl Zte) gyl YL Il / e S'T(u‘;i Yaur,

N - i<y U;_;‘ . 1
o -7 2t - 8™,z
=e |
1<a‘ d

n-r

d .
, . 9

[}

Inserting this in (2.18), one obtains

n

n= L1 ' % n 4
ci(ja"ﬂ:)__fn Tr ( f tJTS~ 3‘(,1"‘3)."1 e-Tté d‘bj)
o =1

I_:Q‘(s )]

[}

B L et (re ' |
c,@m)® T @ P L)

]

n-t » n-Y T
e, (BmY * (BT TE Fr&s-S-1).
B

The consté.nt cl can be determined by the following observation. We

set

=
U% & V™ {egs v e by

and denote by du, the Euclidean megsure on UO (relative to < > ). Then, '

0

> =-Z‘T Jy » the bijection A —>U, defined by a=exp T ,

’31nce <ei, e y 0 .

J

or equivalently by ae = exp u,, &lves the relation

o

- —
duo (=) da.
Hence, when

u = (pa)e = n( '_Ltiei),

: (+) )
n = exp Tx’ x e Z}Uij’ x!' = £ (x),»
one has by Lemma 2
Ty v
2 (u) = ? (uoa u.‘,‘) = (11__)Z T (Ei)(J“l)d
r 2

2 (t, x) (¢, x} ) 3=
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.ﬁ ¥
— 4 e— L=
r -n ll t.(d 1)6..
N q"
It follows that ‘

a,(u) = r'n —T (t, (3- l)d-?dt ) dx,

which, in view of (2.11) and (2.16), implies (2.15) and the relation

1:
; . . _ ar=n ,n F)
(2.22) e, = 2 (-;) .
Thus we obtain the formula
'n—':r"nn('——s)"l:“"—- n d '
(2.23) [p(s) = (2m) * 77 [ Gs-50-1))
=

Our computation also shows that the integral for l& (s) converges absolutely

for Res > 1 - i:l—

From the relation (1.2) one obtains

T
[ (s) [ (1) = (2m)™F ;-I-‘. I~ <§-s -%—‘(i—l)) & (1-s) -%(r-j))
| s-L(5-1))
= (2)" T (2w1) ik
W 271( s- £(3-1)) _
Since one has by (2.11)
n-r-= d—r%i)-é ,( 0 (mod 2) for d even
| l[—;—i] (mod é) for 4 odd,
one has
x d Tv=-1) L
TI_ e-%if(j-l) = (—i)d—“_ ={ i8F for d even
S : ,
? 1P 1)[l] for 4 odd.

Hence one obtains the following functional equation:

. _
awiys _ 1)™" (4 even)

(2.2L) l_&(s) l—&(l-s) = (2"T‘1)n ncis (e

.
2 R

](ezmi'% s+J.)'[';"]

(d& odd).
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§3_, Zeta functions of a self-dual :..mogeneous cone.

3.1. We fix a Q-structure on U ‘and assume that (the Zariski closure of)

G is defined over @ and eeU_; then (the Zariski closure of) K is also

Q;
" defined over Q. We also fix a lattice L in U compatible with that Q-

structure, i.e., such that U = L@ZQ, and an arithmeitic subgroup F fix-

Q
ing L, i.e., a subgroup of GL’ = {g,e G |gL = L} of finite index; for
simplicity we assume that r has no fixed point in JZ . We then define the

zeta function associated with J?, » [7» L as follows:

(3.1) S (s3 7, 1) = > Nw’E,
MGF\&nb

the summation being taken over a complete set of representatives of JL NnNL
module | . It can be shown easily that this series is absolﬁtely ‘convergent
for Re s >1.

By the reduction theory, | has a fundamental domain in Jl  which is
a rational polyhedral' cone. More precisely, there exists a fini.te set of

simplicial cones

(29 G) ]
c V', eees V
{ (I > Ay }R_._

[}

L .

{ Z % v;") MER, } (1gi<m),
a‘=

() R

where Vs osees vl‘
1

JL = J__L X C“).

Fer

Ig{sm

are linearly independent elements in J—Z_ n L, such

that

It follows that

Ciss Phw) = 2 2. mw™.

weCanl

Forva set of linearly independent vectors Vs e Yy € L, we put

2
R(y), 0= { Z %vlo<y <)o,

. o
which is finite. Then u GCL,’\ I, can be written uniquely in the form
£ (

u=sv, + m.v

o% ]

) N
, ‘{,GR((‘S(')): L), m€2, m = 0.
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~For a set of linearly independent vectors Vs cees V) € JT_ nVQ and v, =
c .
Z_ « a/\( o, € Q,), we define a "partial zeta function" by
p)
(3.2) C(s,(V),V)‘Z_N(V+2,mv)

™20

which will also be written as C&(s; (v;), (o(d- )). Then the zeta function
(3.1) can be written as a finite sum of partial zeta functions as follows:

(1)
W) )’ vo)'

i=) v, ek((v 3,0)
Hence the study of special values of C& (s; s L) is reduced to that of

(3.3) Salss [, 1) = 2 2 3us; (v,

the partial zeta functions of the form (3.2).

be as above. Then by (2. 7) one obtains

3.2. Let (v‘j) and v,

‘F&(S)QL(S; (v;)s v,) = 2, Talsn(y, + Z m v, )™

lsdsl
=2 Nt e T “ms) % B gy
!Js&si

Jpm® T vy uss 1) ap)

"‘|

rdet(g) T b(<va,ge>,l- ¢ )ag.
G =

In the notation of § 2, but this time using the decomposition G = KAK, one

has

(3.14) dg = ¢ A(a) dk-da-dk'
for g = kak', k, k'€ K, acA. Here ¢ is a positive constant and

A (2)

‘ﬂ' (ed(log a) _ e-o((log a))d
e,

x oL .
(T t;)’f(?'l) | Altys e ]9,

where A (t,, ..., t) = 1 (%, - t) (cf. Helgason[], Ch. X, §1). Hence

l<3

in view of (2.11) and (2.17) one has

1=

00 0o O )
G5) Tale) Sales Gy Gy = o[ (T, F 7 s B Q
. 0 0

where
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S §
F(t;, cees ty) = f I vi<v. , k 2 t,e, >, 1 -'«xd‘) dk.
B S S | |
It is clear that F(t,, ..., tr) is holomorphic for Re t, >0 (1<Sivr).

Since K contains an element which induces any given permutation of

et, cees €, the function F is symmetric. Hence, denofing by B, an open

simplicial cone in’ R® defined by t,> ... >t, >0, one has

(350 Ig(e) Sales (v () =ext [ (T T 40w Tas,.
) By
33 Still following Shintani [11], we make a change of variables (tfi) B

(tys Tp» eees Tp) with T =t,;/t;, (2<i<r). Then B, can be expressed

as

~ . v :
B, = 1(t;) l t; =t;ﬂ;¢5 L 0<t<m, 0<T <1},

A3
&=

Putting T, = t,, one has

T .

2(t eeey b - V-t
( K] ’ t) = WT; 5

’B(t,,’tq_ a"',TI) v=)

o _ﬂ- t, —W;t;—i*l,
A(t) T[..rt‘;i‘_(r—i+l)(r-i) —H- (1 -Tie.. TJ)-

2Si<Nr

[

It follows that the exponent of “T; in the integrand in (3.5 is equal to

(r=141) % (5-1) + % (r-i41)(r-1) + r - 1
= (r-i41){% s -$(i-10) } - 1.

Hence one has
. |
(3.6)  [(e) Sylss () gD =t [ 40
1o : :

: . . m_ Ay ~ X

| {J‘ -ﬂ— T‘ (r—1+1){-‘.s- 2(1—1)} -1 F(t, 7) “ a7,

T=2

0

o
where

(3.7) Fle, T)= || Q-meeitp ) Flegs 6,7, cens 8% )

2si<jgy
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3.4. We now assume that all va._'s are in OQ_ (not on the boundary of J) ).
(In the situation explained in 3.1, this means that the @-rank of G is

equal to 1.) Then for any v ¢ OQ— -{0} , one has <\5. , ¥> > 0; in particular,

(3.8) <\§_ s ke“ > >0 fdr all keX, 1gi<r.
Put
(3.9) § = <v,kZ t e >

[}

T :
v, <V, k(e, + ‘_%z T, ++- T, &) >

X
to<v, ke, > (L4 2 T o...T, ShrEZ),
i=2
‘ <v5,ke,>

For the fixed e,, v

TR choose p, ,D' > 0 in such a way that

-;t_. -1 <va-9 ke‘>

(3.10) < <1 for all k€K, 1<js i,
V=2 <V, ke, >
¢ 1
p < — ™ for all 1ls<j<{ .
} <V, ke >
"
. The/for
(3.11) o<lt,l<p > Ilml<?p (2<i<r),

one has 0 < }?a- | « 2  and so bl 3 » 1 - ulé ) is holomorphic. Hence the
function F(t) = F(t,, t, &, +.+5 t, T ... Ty) has a Laurent expansion in
ty» Tws «eo5 Tp in the domain defined by {(3.11). The coefficients in

this expansion is a Q-linear combination of the integrals of the form

p 'V';
(3.12) O I((v. ) = I <v, , ke.>7 dk
P Isest L4 t
Isy<t

where V:\;;O for 2<ig<r and Vg-e Z for all i, J.
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3.5.. Let I(¢, 1) denote the contour consisting of the line segment [ € ,1]
taken twice in opposite directions and of a (small) circle of radius §
about the origin taken in the counterclockwise direction. When the T, (2=i

<r) are on I(€, 1), one has by (2.12)

- X L
l<v§’ k(e1 + i%-sz"‘Tceg)>‘ < lv.r)' i=21_'e‘~’= Vnr Ivél
and
L X ;
Re <V5’ k(e1 + %ZT,_ T e )> = <va-, ke1>+£zRe(T, ..T;)(va-, ke, >
T
2 <v.,ke, >-¢lv| 2 Je,|
2 2 = 1
= - - oy
| <va.,ke,> i(rl)\JTlv?].
We choose ¢§ ' so that one has
(3.13) € \™n lvj( < Min {2%, <V, ke, > (kéK)} for all 1sj<d,

' L
" X
The/the above inequalifies show that < Vi k(e, + :ézTh .., €;)> belongs

to the domain
 ew ‘ v
{zeCl‘z|<-—£—,Rez>%\/;lvji}.
It follows that, if t, is on the contour I(€,%), one has
‘%,<2"T- or Refé >0,

so that the funcfion b E)- , 1 -o(é- ) is holomorphic.

From this observation, it is clear that the integral on the r.h.s. of (3.6)

is equal to the contour integral

2 ins 1 s "t 1
(e -1) . ” (e v -1)
i=2

tel(s,00) T.e J(&1)

which is independent of the choice of € satisfying (3.13). As is easily

s
seen, the contour integral converges for all s¢€ C. Hence the/\in%egral

B Y, viewed as a function in s, can be continued to a

meromorphic function on the whble plane; the possible poles are of the form

v  (veaw).
(r-i+i)n
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§ L. The special values of he zeta functions.

4.1. As a preliminary, we check the rationality of the constant ¢ in (3.4).

For that purpose, we compute r&(s) by using the decomposition G = KAK.

]

(4.1) lyto) fJL ww® & 4y )

f N(ge)® e-'t(ge) ag
G

]
0

de'l',(a’)S e T(ae) A (a) da "
A .
c ff (T %) ¥(s-1) lae)[® e T =t T at, -

[

We make another change of variables:
=
t= = t,., tl!=t£/t..

Then

(tys eens ty)

2(t, t] ,e.ast!l )

and the exponent of t in the integrand in the last member of (4.1) is equal

to

n(s-l)+-2°'=r(r—l)+r-l=ns;-l.
Hence one has
(.2) [g(s) = cy(s)-ple),
where

¥ (s) = f 5L T g (£)"° [ (ns),
(%.3) ’ "

n
v(s-1)
]
f for o, (=38 ) x
t;’>0

St'<t A, o, v, =26 )| et/ .

F(S)

For s = 1, one has

[5 (1)

e y1)) = o () (1)t B,
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f(1) = s k!, 108! ‘)]d"(rdt; € Q.
' t{>0 ‘ -
§T¢,<I
By (2.23) one has
. w -
(h.4) (e = o)™ (LF ]| 7@+ £
- - '
aT ¢ (d even)
o~ T+
© | TP @ ca),
where a~b means that a/b € Q. Thué one has
@ ny onox :
em)® (* T ras+$£u1) _
- ast .
(k.5) e = ~ Iﬁ(l).
(n-1)! f(l) (A
Since [ (1) = [+ fv) for vez, one obtains
(%.6) J _ﬂ:n—r (d even)

)vr,tnf[%"] (4 oaa).

L.2. We first consider the case where d 1is even. Then by (2.2h4) one has

r&—(s) D;_(l-s) = (2mi)n ewcins(e2‘n:i’7ls _ l)—I:
Hence v

. _ e lp(1-s)
(%.7) Gy (s3 (v )5 () = (2-ﬁi)”'te"°ins x R(s),
where m |

e2'TCi"-.:S -1 —1( _
R(s) = (" i ) r! fB (Tt)F" ‘S"l) A (£)%F(e) T at,
. 1 -
e2'ni“-$s 1

Y

H R e VR oY

3=t 27w i —%’:—-ns
e

T ellen)

We are interested in 4he values of §& at s = -}:TV (v

ns-1 dt1

|
. X(Z;E—)t (‘ t1

I(E,N)

T, (r-1+1)]2 s- %(1-1)}( -1

0,1, ...

r! 'i?’(t, »T;)

. The
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firsg factor in the right hand side of (4.7) is holomorphic for Re s < &
and by (4.6) the value at s = —%1-\/ is rational:
9 ‘ —2—“-Y +rv o,
+ — V : 1+ =V
(h.ﬁ) chz(l ) = (-1) ¢ EL( m ) e Q.
- -rvari n-r
(2wi)¥F (2%)

On the othér hand, it is clear that

n
2wi=s
e YU L] , 1
E'Ri‘;fr—*-ins
- e -1

—— 1
roitl when s —> = Wv .

Hence We sée that R(-—%—v) is equal to the coefficient of

v i ",Tc(r_iﬂ) { v +%(i~1)}

in the Laurent expansion of F(t,,7T),

which is a Q-linear combination of 1 ((V‘}‘ )).

4.3. From now on we assume that d is odd. By the classification theory,
it is known that this assumption implies that r =2 (n =4 + 2) or d = 1

(n = 5 r(r+l)). By (2.24) one »has;‘\

1
2
n n"us (e2'1ti¥s _

Bz(s) l&(l—s) = (2mi)”

Hence

(111) & (55 (), () = Y(s) 8%(s),

where s ™ Alea) . X
(e2’|tlvs _ l)[ = ] ’(62""1;- + l)[ ]

(2eilre) 3 s-fenk

P(s) = (2w1)T ft1n$"1dt, [ { 4““1){”' Ty, T ar,
T(e,0) I
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The first factor in the right hand side of (Y4.11) is holomorphic for Re s

<—:—L and by (4.6) the value at s = - ’YLLV (v =2 0) is rational:
Y . ,
o (145 v dn=-[E2 D4rv |~ v
(4.12) © laBtwY) =(-1f(n[2 DY e g ek € Q.
' n=-[EE] _wirv n-[T1]
(2mi) 2 ‘e . (2) z
Note that one has
n= [_rzl (mod 2),
since
n=a=1-= [g] (mod 2) if r =2, and
n= ;—r(r+l) = [I—‘—;—l] - (mod 2) if 4 = 1.
4.4, To compute Rm(s),‘ we first note
STia(k1) (r-k1) {’1 if k=r=0 (mod2),
1 otherwise.
We put
r omilks
[2—- = r1 s ; = e r .

The case r 1is odd. One has

(g -1)"1* g+ )b

R (s) = (2mi)™ r! ——
I | el B
A=)
r! T+ 1 r
= % (2aui- )
T " +...+541) ¢-1
k=1
Hence, when s — -,%v , one has
(413) (S+,Yt_L'V)r'R(')(S) ____)A(z%tt_)r,.
«) ¥
Thus R (s) has a pole of order r, at s=-V.

The case r 1is even. One has
Iy Ty
) -
B (s).= (emi)ipr (5 -D(E*1)

‘ j:rt {(v_l)ké.k _ 1}
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. 1
- (_2wi)r‘ Ir.
k-t -1
T (8 4+ g 41) T (25 il - 3 +1)
ISksy 1ISk<e
) 1{‘69&\.«. v {e Ci&
Hence R"° is holomorphic at s = -7V and
w, 1 1 r! AT, Tl
(b.1%) RY(-Lv) = (comi)? E = (emi) Eo
" (2r, )" Tye
P
4.5. When r is odd (hence d =1, n = —r(r+1)), R"Ns) for s = -+
v N

2v
T+

is given by the coefficient of

rv T (r-1+l)(v+—)

in the Laurent expansion of F(‘c,1 , T ) Hence C&(s, (v ), (o( )) has

at most a pole of order ry = I—E—‘—— at s = - -i% and one has
(4.15)  Lim (s + =) & (s (vy), (o N~ B (- V).
v s -2 T+1 7" JAERTA S & T
To treat the case r is evén, we use the formula
»m
2 _1 at = - * (m odd),
m
(e, 1) =
which can be verified easily. When r is even, the value of R {s) for
s = -;E—-v is given by
(4.16) : (- 1)75 Z - 8 (m; >
i e Z ([(m g (234§ v+ £(25-0)} )
3=\

where a.(,m ) is the coefficient of
X,
rv —l" (r-2j3+2)(v +a(j-1)) ” Tms
z)—l a
in F(t1,‘t ). Hence for the value of 55)‘ , one has

' s @&, X
(4.17) c&_(—ﬁ%v 3 (%), (4 )y (ERDTRT (-5 v).
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